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Abstract 

Mass transport is a fundamental process in living organisms, responsible for the delivery of 

oxygen, nutrients, and drugs from blood vessels to tissues, as well as the removal of waste 

products back to the vascular and lymphatic systems. This exchange occurs across various 

biological barriers, including blood vessel walls and cellular membranes, and involves complex 

mechanical and biochemical interactions. Traditional experimental and clinical methods have 

provided valuable insights into mass transport, but due to the complexity and heterogeneity of 

biological systems, computational models are essential for deeper understanding. Here, we give 

a brief review of a smeared modeling concept, termed the Kojic Transport Model (KTM), for 

gradient-driven physical fields within composite media such as biological tissue. The basic idea 

of the KTM is the formulation of the composite smeared finite element (CSFE). This element is 

composed of volumetric domains with different physical fields that are coupled by connectivity 

elements at each FE node representing biological barriers. The domains include 1D fields 

represented by 3D continuum form by formulation of the consistent transport tensors The KTM 

has been implemented in our finite element package PAK and demonstrated to be accurate and 

robust in modeling. We have selected models of mass transport (diffusion and perfusion) in the 

liver, pancreas, and tumor which grows over time. 
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1. Introduction 

Mass exchange is a vital process in all living organisms, occurring at multiple levels—from 

blood vessels down to the interior of cells and their organelles. Along this route, molecules such 

as oxygen, metabolic byproducts, and drugs move through different environments, including 

blood, extracellular fluid, the cell interior, and organelles, while crossing biological barriers like 

vessel walls and cellular or organelle membranes. Although considerable progress has been 

made, many aspects of mass transport remain poorly understood; particularly the biophysical 

mechanisms that govern drug delivery. Current research in this area relies largely on laboratory 

studies and experimental approaches. 

Convection and diffusion are the fundamental processes regarding transport of molecules or 

particles (e.g. nanoparticles used in drug delivery) from the cardiovascular system to tissue and 

interior (cytosol and organelles). The interdisciplinary scientific field where the mass transport 

is studied, related to drug delivery by applying nanoparticles as the drug carriers to tumor sites, 

is named oncophysics (Ferrari, 2010; Koay and Ferrari, 2014). Mass transport in tumors is 

strongly influenced by perfusion, affecting oxygenation, nutrient delivery, waste removal, and 

drug efficacy. Studies on blood flow in tumor vasculature have shown that it is influenced by 

factors such as geometric resistance (Sevick and Jain, 1989) (which reflects network 

irregularities), viscous resistance, and the mechanical properties of red blood cells (RBCs). The 

dysfunctional tumor vasculature disrupts convective transport and diffusion, leading to hypoxia, 

drug resistance, and metabolic shifts. Targeting these transport limitations is a key strategy in 

improving cancer treatment outcomes. 

For modeling particulate transport in complex organs and tumors, we employ standard laws of 

extracellular transport: Darcy’s law for convection and Fick’s law for diffusion (Kojic, 2008). 

Due to the computational challenges of resolving physical fields such as pressure or 

concentration within whole organs or tissues, we developed a smeared mass transport 

methodology for capillaries and tissue (Kojic et al., 2017a; 2017b; Milosevic et al., 2018; Kojic 

et al., 2018a; Kojic, 2018b; 2019). This approach, termed the Kojic Transport Model (KTM), 

generalizes to any gradient-driven field and has demonstrated advantages over conventional 

models (Kojic et al., 2022). Here, we present the KTM framework and illustrate its application 

to three cases: liver, pancreas, and tumor growth. 

The primary computational tools used in this research include the Finite Element Analysis 

(FEA) software PAK (Kojic et al., 2019) (Program za Analizu Konstrukcija - an abbreviation in 

Serbian for Program for Structural Analysis), along with CADFiS (Milosevic, 2020) - a 3D 

graphical interface software for designing the computational models and visualization of results. 

2. Methodology 

Here, we first summarize the basic laws and equations in differential form which are further 

used in our KTM formulation. 

2.1 Flow through porous media 

For incompressible fluid flow through a porous rigid medium, the governing equation is given 

by Darcy’s law: 
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where vi is the Darcy velocity (as fluid flux per unit area of the continuum) in direction xi, p is 

fluid pressure and  kDij is the Darcy tensor. The mass balance equation is 
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where qV is a source term. 

2.2 Diffusion  

The constitutive law for diffusion is known as Fick’s law, 
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and the mass balance equation is 
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Here, c is concentration, Qi flux and Dij is the diffusion tensor. The generality is kept under the 

assumption that the diffusion tensor can be a function of concentration, i.e. it can be Dij=Dij(c). 

2.3 1D-conditions  

Further, we consider mass transport the expressions for the 1D conditions. For fluid flow, these 

conditions represent the relations for flow within pipes (Smith et al., 2002). In the case of a 

rigid pipe, the governing equation can be expressed as 
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where x  is the pipe direction and kpipe is the pipe resistance coefficient which can be derived 

from the so-called Hagen-Poiseuille law. Additional terms are present in this equation for the 

case of deformable pipe (Kojic et al., 2014), but are not used here.  

In the case of diffusion, the 1D condition follows from equation (4), 
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where v  is the fluid velocity and D is the diffusion coefficient. 

2.4 Finite element formulation 

The governing equations above can be converted into finite element (FE) balance equations for 

a single element using the standard Galerkin weighting method (Kojic et al., 2008, Kojic et al., 

2022). The incremental-iterative balance formulation for a time step Δt and iteration i can be 

derived in the form 
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where Φ stands for pressure or concentration as nodal variables; NI are the interpolation 

functions, V is element volume; cm is the rate coefficient (=0 for fluid flow, and =1 for 

diffusion); Dkm  is diffusion or the Darcy tensor; for the case of Darcy’s flow or no convection, 

the convection matrix Kv is equal to zero 

In the case of 1D problems, the equations have the same form as the above, with one index k 

and no summation; and the element volume is V=AL, where A is the cross-sectional area and L 

is the element length. The implicit integration scheme over time is used, i.e. all variables are 

evaluated at the end of the time step and the current equilibrium iteration. This integration 

scheme is unconditionally stable and provides the best accuracy (Kojic and Bathe, 2005). 

3. Smeared modeling concept (KTM) and Composite Smeared Finite Element (CSFE) 

formulation 

To introduce the smeared methodology, we first consider a detailed model of a composite 

medium (Fig. 1a), comprising continuum domains (extracellular space, cells, and organelles) 

and a network of fiber-like 1D domains (capillaries, lymphatic vessels, and neural fibers). 

Continuum domains exhibit a hierarchical structure, as cells may contain organelles, and each 

domain is discretized with a finite element (FE) mesh: continuum elements for continuum 

regions and 1D elements aligned with the axes of fiber-like structures. Connectivity elements 

(A–F in Fig. 1a) couple the domains at common boundary nodes. These elements are assigned 

transport coefficients based on membrane or wall properties, cross-sectional areas Am 

corresponding to nodal surfaces, and lengths hm representing membrane or wall thickness. 

The detailed model description highlights the significant effort required for its generation. In the 

case of complex media like tissue, creating such a model would be impractical or even 

impossible. This challenge becomes even greater when using continuum finite elements (FEs) 

for membranes instead of connectivity elements. To address this, we have introduced a 

composite smeared model by formulating a continuum composite finite element (CSFE). This 

approach integrates all constituents (both continuum and 1D elements) in a way that preserves 

the true physical fields of the detailed model but represents them in an averaged (smeared) 

manner, ensuring sufficient accuracy. Figure 1b illustrates the smeared model for the same 

detailed setup as in Figure 1a, but with only continuum elements. 
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Fig. 1. Schematic representation of the detailed and smeared models: (a) A detailed model of 

tissue as a composite medium, with continuum subdomains and capillaries/fibers in a 2D view, 

including continuum, 1D, and connectivity elements; (b) Smeared finite element (FE) 

representation of the detailed model; (c) Composite smeared finite element (CSFE) with 

subdomains and a connectivity element at FE node J. (According to Kojic et al., 2018a). 

The formulation of the CSFE element (Figure 1c) involves several conceptual steps, which are 

given in our previous publications (Kojic et al., 2017a; Kojic et al., 2017b; Milosevic et al., 

2018;  Kojic et al., 2018a; Kojic, 2018b, Kojic et al., 2019). Briefly, we first transform the 1D 

field equations into a 3D form by introducing transport tensor as 

 
1
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where DK, AK and lKi are transport coefficient, cross-sectional area and directional cosine for 1D 

segment, respectively; Atot is the total area of all 1D segments in the vicinity of the considered 

spatial point. Then, as shown in Fig. 1, we represent the continuum by the 3D CSFEs. The 

CSFE is divided into domains occupying volumetric fractions rvK each with its physical field. 

The balance equations of the form (7), with the matrices for a domain K: 
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Connectivity elements are introduced at each FE node to couple the corresponding domains. 

The balance equations for each 2-node element can be written in the form (7) with the element 

matrices 
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where ,J J

AV Vr r are area-to-volume ratio, volumetric fraction; 
JV is the volume belonging to the 

node J; J

wc  and J

wD are the rate constant and wall transport coefficient. The connectivity 

elements represent the biological barriers (in this equation of the thickness hJ), such as the 

capillary wall or cell membrane. 

4. Numerical examples 

We present three numerical examples to highlight the key features of our smeared modeling 

methodology. These examples demonstrate the applicability of the KTM to large biological 

systems. The models are implemented in our finite element (FE) code, PAK, with a dedicated 

CAD interface developed at the R&D Center for Bioengineering BIOIRC. 

4.5 Liver model with tumors 

The liver and vascular geometry were reconstructed at the R&D Center BIOIRC using micro-

CT scans of a mouse liver, with imaging performed by the Preclinical Imaging Core at the 

Houston Methodist Research Institute. The resulting finite element (FE) model (Fig. 2) consists 

of 7,736 1D pipe elements representing larger vessels, 39,832 3D composite smeared elements, 

and 726 connectivity elements linking the major vessels to the continuum nodes of the smeared 

FE mesh, i.e., the capillary domain. Two tumors are incorporated into the model, represented by 

316 elements. In total, the model comprises 54,590 nodes. Full data for this example are 

reported in (Kojic et al. 2019). 

 

Fig. 2. Liver model geometry with two tumors and pressure distribution field within large 

vessels (inlet and outlet pressure and concentration branches marked). (According to (Kojic et 

al., 2019)). 

Our goal was to show the difference in concentration between the two tumors, assuming the 10 

times smaller diffusion coefficient within tumor 2 than in tumor 1. Figure 3 shows the pressure 

field for two views of the model: for the outer surface of 3D smeared elements, cross-section, 

and a dotted representation of large vessels and continuum. Tumor surfaces are indicated by 

dashed lines. There is a clear reduction in pressures - from large vessels to capillaries and 

further to tissue. 
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Fig. 3. Liver model geometry with two tumors and pressure distribution field within large 

vessels (inlet and outlet pressure and concentration branches marked). (According to (Kojic et 

al., 2019)). 

The concentration field within large vessels, liver tissue, and tumors is shown in Fig. 4a for 

three time points. It is noticeable that concentrations have the largest values in blood vessels 

(practically the same due to convection and large diffusion coefficient in fluid), following a 

decrease going to capillaries and tissue. Also, the concentration within tumor 2 is smaller 

compared to tumor 1 due to reduced diffusion coefficients. Evolution of the mean concentration 

within capillaries (capillary domain) and tissue of the liver, and tumors 1 and 2, is shown in Fig. 

4b. The model gives insight into the transport of particles or molecules within the entire organ. 

In the first period, when the entering mass is increasing (entering concentration is increasing), 

concentration within capillaries and tissue is increasing. The maximum concentration within 

capillaries has a delay with respect to the maximum of entering c(t); and the maximums in 

tissue and tumors have further delays. Also, transport continues from capillaries to tissue as 

long as the concentration within capillaries is larger than in tissue. It is evident that 

concentration in tumor 1 is higher than in tumor 2 due to the larger diffusion and partitioning 

coefficients 

 

Fig. 4. a) Concentration field in the liver with tumors (marked with dashed lines), dotted results 

in tissue domain and with full mesh in tumors, for times t =10, 20, and 50s. b) Concentration 

evolution in the liver. The inlet concentration c(t) at the large vessel has a bolus character and 

generates bolus-type profiles of the mean concentrations in capillaries and tissue of the liver and 

within tumors – reduced with respect to c(t). The lowest concentration is in tumor 2 with the 

smallest diffusion and partitioning coefficient. (According to (Kojic et al., 2019)) 
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4.6 Pancreas model 

This model was chosen due to its distinct geometry, blood vessel size, and capillary volumetric 

fraction compared to other tissues, and the goal of enhancing the understanding of drug delivery 

for pancreatic cancer. The material properties and entering concentration bolus are assumed to 

be the same as in the liver model. The model is generated in the R&D Center BIOIRC 

according to the CT imaging from the MD Anderson Cancer Institute, Houston, under an 

approved Institutional Review Board protocol (PA14-0646). The model’s geometry is shown in 

Fig. 5a. As in the previous example, we have here the 1D pipe finite elements (1602 elements) 

representing larger vessels, 3D composite smeared elements (104,884 elements), and 

connectivity elements (312 elements) that link large vessels to the capillary domain of the 

smeared finite elements. The total number of nodes is 127,783. 

 

Fig. 5. Pancreas model. Concentration distribution at t=40s. (a) Geometry and concentration in 

large vessels; (b) Capillary domain concentration; (c) Tissue domain concentration (According 

to (Kojic et al., 2017a)). 

Figure 6 displays the concentration fields at the end of the first time step (t=40s) within large 

vessels, as well as the capillary and tissue domains. Due to the lower capillary volumetric 

fraction, the concentration difference between capillaries and tissue is more pronounced 

compared to the liver model (Figure 4a). 

 

Fig. 6. Pancreas model. Concentration field within vertical plane for capillary and tissue 

domains, for three time steps. (According to (Kojic et al., 2017a)) 
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4.7 2D model of perfusion within solid murine lung cancer growing tumor 

The computational methodology employed for finite element (FE) model generation is briefly 

summarized below. Comprehensive descriptions of the 2D tumor imaging protocol, heatmap 

construction, and derivation of material parameters are available in (Martino et al., 2024). The 

FE model is reconstructed from the representative imaging data presented in (Martino et al., 

2024) (Figures 3i, 3v, 3ix, and 3xiii), wherein the tumor domain is discretized using a structured 

9×9 mesh. A uniform intravascular pressure of 10 mmHg is prescribed within the capillary 

network to incorporate the combined effects of hydrostatic and oncotic pressures, as well as 

contributions from arteriolar and venular segments. This pressure serves as a physiological 

driving force for interstitial fluid exchange between the capillaries and the extracellular matrix 

within the tumor microenvironment. Furthermore, a Dirichlet boundary condition of zero 

pressure is imposed along the outer contour of the computational domain, in accordance with 

(https://courses.lumenlearning.com/suny-ap2/chapter/capillary-exchange), under the 

assumption of equilibrium between fluid perfusion and reabsorption at the capillary–interstitium 

interface. 

Based on the referenced figures in the previous paragraph, tumor contours were extracted from 

six individual tumors at 15% of total volumetric growth to compute an average geometry, 

which served as the initial configuration for the simulations. Additional contour data were 

obtained from subsequent imaging corresponding to 25%, 60%, and 80% of total tumor growth, 

enabling the determination of mean geometrical configurations at these specific growth stages. 

During the finite element simulations, boundary contours—encompassing both shape and 

size—were linearly interpolated between these experimental time points to model the temporal 

evolution of tumor geometry based on the averaged configurations. 

Next, we applied the experimentally averaged vasculature, capillary diameter, and permeability 

to our model (Figures 3ii-iv, vi-viii, x-xii, and xiv-xvi in (Martino et al., 2024)). In this process, 

to assign all the data, equation solutions are interpolated using the inverse of the distance 

between two nodes as a weighting factor in accordance with the position of the final element 

node within the averaged heatmaps. Within each timepoint of the finite element computation, 

remeshing was performed, allowing for finite elements not to be fixed in space by their size or 

shape, since geometry evolves during calculations. Evaluation of the capillary volumetric 

fraction, rVcap, is performed as follows (described here for the parameters at 15% of the tumor 

growth). The averaged vasculature is first assumed to be equivalent to the capillary internal 

surface (Acap) divided by the total surface of the cell grid (Atot) to yield a percentage Acap= 

100Acap/ Atot, and then expressed in terms of the capillary diameter (d) and capillary length (L),  

as 

 %
100 100cap

cap

tot tot

A d L
A

A A


= =  (12) 

to provide an experimental derivation of Atot. Since capillary volume can be expressed as Vcap= 

d2πL/4, we can then obtain capillary volumetric fraction rVcap at a point of the surface as 

 %

400

cap

Vcap cap

tot z z

V d L
r A

A h h


= =  (13) 

where hz=1 µm is the model thickness in the direction normal to the plane. Evaluation of the 

volumetric fraction of the extracellular space (rex), is performed as follows. The average 

permeability is assumed to be equivalent to the area covered by the cells (Acell) divided by the 

total surface of the cell grid (Atot) to yield cell volumetric fraction (rVcell), where rVcell=Acell /Atot. 

We then express the volumetric fraction of the extracellular space (rex) as 

https://courses.lumenlearning.com/suny-ap2/chapter/capillary-exchange
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 1ex Vcap Vcellr r r= − −  (14) 

Finally, the wall hydraulic coefficient ℎ𝑐𝑎𝑝
𝐽

 is obtained from the filtration coefficient (Kf) in 

(https://courses.lumenlearning.com/suny-ap2/chapter/capillary-exchange) reduced to unit 

surface and expressed as 1.57x10-3 μm/(s Pa). We include perfusion anisotropy within the tumor 

since the volumetric fractions of the capillaries and extracellular space vary over the model 

domain in accordance with our experimental records. 

Figure 7 illustrates the spatial and temporal evolution of interstitial pressure within the tumor at 

four selected time points: 7, 10, 13, and 16 days post-implantation. Pressure fields at each time 

point were obtained via interpolation from the preceding time point's finite element mesh to the 

current configuration, thereby ensuring the continuity of data and numerical stability required 

for successive simulations. In Figure 7A, pressure distributions are visualized as contour maps 

generated using our in-house CAD environment integrated with finite element analysis tools. 

Figure 7B presents a three-dimensional profile of pressure values along two orthogonal cross-

sections (x- and y-axes) intersecting the tumor center. Notably, maximum pressure values 

exhibit minimal variation across the investigated time span, with a modest increase observed at 

day 16, which correlates with a reduction in extracellular volume fraction. Elevated pressure 

values originate near the tumor core and propagate toward the periphery. 

 

Fig. 7. (A) Pressure field at 7, 10, 13, and 16 days. (B) Pressure field in a 3D representation at 

7, 10, 13, and 16 days. (C) Mean pressure vs time. (D) Pressure distribution along x-axis. (E) 

Pressure distribution along y-axis. (According to (Martino et al., 2024)) 

Figure 7C provides a temporal profile of the mean intratumoral pressure, offering insights into 

pressure progression during tumor growth. Spatial pressure distributions are further detailed in 

Figures 7D and 7E. Due to the requirements of the computational model—including defined 

geometries and boundary conditions—data presented in Figures 7C and 7D are confined to the 

interval between day 7 (corresponding to 15% tumor growth) and day 16 (80% tumor growth). 

While linear interpolation could theoretically be extended to time points outside this interval, 

such extrapolation would necessitate assumptions regarding geometry and growth dynamics 

https://courses.lumenlearning.com/suny-ap2/chapter/capillary-exchange
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that are not empirically validated, thereby limiting its reliability. In both spatial directions (x 

and y), pressure is maximal at the tumor center and decreases radially toward the boundary, 

ultimately approaching zero. As evidenced in Figures 7C–E, pressure exhibits a nonuniform 

temporal evolution, with the configuration at day 16 showing a noticeable increase compared to 

that at day 7. 

Figure 7C provides a temporal profile of the mean intratumoral pressure, offering insights into 

pressure progression during tumor growth. Spatial pressure distributions are further detailed in 

Figures 7D and 7E. Due to the requirements of the computational model—including defined 

geometries and boundary conditions—data presented in Figures 7C and 7D are confined to the 

interval between day 7 (corresponding to 15% tumor growth) and day 16 (80% tumor growth). 

While linear interpolation could theoretically be extended to time points outside this interval, 

such extrapolation would necessitate assumptions regarding geometry and growth dynamics 

that are not empirically validated, thereby limiting its reliability. In both spatial directions (x 

and y), pressure is maximal at the tumor center and decreases radially toward the boundary, 

ultimately approaching zero. As evidenced in Figures 7C–E, pressure exhibits a nonuniform 

temporal evolution, with the configuration at day 16 showing a noticeable increase compared to 

that at day 7. 

5. A summary and concluding remarks 

This paper presents the smeared modeling approach, termed Kojic Transport Model (KTM), as 

an effective tool for simulating mass transport and drug delivery within complex biological 

systems, including specific conditions within tumors. The methodology is developed in a way 

that relies on measurable material parameters. Here, the KTM is validated through numerical 

examples of whole-organs simulations, such as liver and pancreas, demonstrating both accuracy 

and applicability to real physiological conditions. Also, we examined tumor-specific 

biophysical properties throughout the dynamic process of tumor growth and utilized 

experimental data to develop a mathematical model capable of predicting the spatial and 

temporal evolution of intratumoral fluid pressure and velocity in three dimensions. Continued 

refinement and validation of this model will enhance our understanding of the tumor 

microenvironment, enabling improved prediction of therapeutic efficacy across diverse cancer 

subtypes. 

The KTM as a general concept has the potential to support the rational design of drug delivery 

systems, optimize dosing strategies, and the development of more personalized and effective 

treatment regimens. While primarily applied to biomedical investigations, its potential extends 

to other complex transport systems, including non-biological environments like soils. 
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