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Abstract 

The extremely complex biological and biochemical processes are mainly treated by laboratory 

and clinical investigations. In recent decades, the application of computational modeling has 

become more important in research and applications in the medical sciences. Despite enormous 

efforts and achievements in this modeling, there is still a need for new efficient and reliable 

methods, particularly within today's hot field – Artificial Intelligence (AI). In this report, we 

present a brief description of a methodology that we believe offers a basis for modeling 

gradient-driven physical fields in composite media, such as tissue.   This methodology is based 

on the concept of multiscale smeared physical fields, termed the Kojic Transport Model (KTM), 

that is published in several journal papers and summarized in a recent book (Kojic et al. 2022). 

Our KTM includes modeling of partitioning, blood flow, molecular transport within the tissue, a 

multiscale-multiphysics model of coupling electrical field and ion concentration, and a model of 

convective-diffusive transport within the lung parenchyma. We present here two typical 

examples for the illustration of our KTM application. 

Keywords: convective-diffusive transport, Kojic Transport Model, multiscale-multiphysics 

models, composite smeared finite element, tissue, pancreas 

1. Introduction 

Among many computational methods, the most generally used is the Finite Element Method 

(FEM), which is the basic methodology in this paper. We here provide a brief derivation of the 

Kojic Transport Model (KTM), which is based on the smeared concept of physical gradient-

driven fields,  and we indicate its generality regarding application in biomedical engineering. 

As discussed in our paper (Kojic et al. 2024), the KTM has a strong distinction from other 

approaches; other approaches are given in references (Koh et al. 2003, Hyde et al. 2013a, Hyde 
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et al. 2013b, Di Gregorio et al. 2019, Corrias et al. 2012) and compared with our KTM. 

Inspiration for the formulation of the KTM was the task of how to model in a simple, robust, 

and applicable manner mass transport in a tissue, composed of a capillary system, extracellular 

space, and cells; with, the possible inclusion of the biological processes within cells.  

In the next section, we summarize the basic concept of the KTM by the derivation of the 

fundamental equations of our Composite Smeared Finite Element (CSFE). Then, we show two 

typical examples of the application of the KTM, and give concluding remarks in the final 

section.  

2. Formulation of the Composite Smeared Finite Element (CSFE) 

Here we summarize the FE formulation according to (Kojic 2018) . Application of this 

methodology is given in a number of our references (Kojic et al. 2017a, 2017b, 2017d,  2018a, 

2018b, 2019 and Milosevic et al. 2018a, 2018b, 2020), while the complete summary is provided 

in (Kojic et al. 2022) . The KTM is implemented in our FE software package PAK, the modulus 

PAK-KTM (Kojic et al. 2006).  

The first step in the derivation of the smeared concept is to transform the 1D flow and mass 

transport within capillaries into a continuum form.  Following the illustration in Fig. 1, we can 

write  the following relation: 

 

Fig. 1 Illustration of the transformation of the 1D flow to a 3D form, a first step in the 

formulation of the KTM. a) Capillary system and blood flow through a representative domain. 

b) Electrical conduction through the Purkinje network in the heart.  c)  A representative volume 

of the continuum in the vicinity of the space point P. (according to Kojic et al. 2022) 

,    sum on : 1,2,3K
tot cont K K K Ki i

KK K

A D A i i
x


= = − =


 q Q i                               (1) 

where for  the K-th 1D element we have: AK is the cross-sectional area, QK is the flux 

through the surface AK,  DK is the transport coefficient; K =  is the value of the field    – the 

same for all 1D structures (assuming that they are interconnected) in a small surrounding of a 

continuum spatial point P; xK is the axial coordinate, Ki  are projections of the axial unit vectors 

ii ;  
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tot K

K

A A=                                                    (2) 

is the total area of all cross-sectional areas AK; and qcont is flux as the amount of the 

transported physical quantity per unit time through the surface Atot.  We here assume the 

gradient-driven flow within the 1D structures, i.e. 

 ,    no sum on K
K K K
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D A K
x
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= −
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Q                                         (3) 

Further, we have that 
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Kj

K j

K j j
x x

  
=

 
                    (4)  

and then, substituting to (1), we have   

              ( )
1

;    or   qcont K K Ki Kj i ij i cont iji
tot j j jK

D A D D
A x x x

    
= − = − = −

  
q i i          (5) 

where        

1
ij K K Ki Kj

tot K

D D A
A

=                                             (6)        

is the transport tensor representing all 1D structures. This form of the transport tensor was 

derived analogously in references (Dimkic et al. 2013, Kojic et al. 2017, Milosevic et al. 2018) 

for diffusion and fluid transport through porous media and mass release from nanofibers.  

Looking at a composite medium, we have different domains with their continuum physical 

fields which are mutually interdependent. In the formulation of our continuum finite element, 

we introduce connectivity elements. So,  the next step is to formulate connectivity as follows. In 

analogy with our connectivity elements in (Dimkic et al. 2013), we introduce the connectivity 

elements at each FE node. Fig. 2b shows a connectivity element at node B between the 1D 

element and continuum. According to Fig. 2a, we have that the elementary flux dQw is  

( ) ( ) ( )1 1 2 1w w surface D sur w surface w AV V D surdQ D dA D dA D r r dV     = − − = − − = − −      (7) 

where dAsurface is the elementary surface, dV is the elementary volume of the continuum; rAV 

and  rV  are the volumetric fraction and the area-to-volume ratio of the 1D structure, 

respectively; Dw is the transport coefficient through the wall of the thickness h; and 1D  and 

sur are values of the physical field in the 1D space and 3D surrounding. Then, for a node J of 

the finite element mesh and linear interpolation functions, we have the following equilibrium 

equation of the connectivity element, for a time step of the size t  and iteration i:  
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where  the matrices M and Kw can be expressed as 

11 22 12 21

11 22 12 21

1 1
,     M  M =      

3 6
AV V J AV V J

w w w w
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M M cr r V cr r V

K K K K D r r V

= = =

= = − = − =

     (9)        

 

Fig. 2 Geometrical interpretation of the formulation of the connectivity element between 1D 

and 3D surrounding. a) Elementary flux dQw through the surface dA1D to the surrounding of the 

volume dVsur. b) Connectivity element with the length h corresponding to the volume of the 

continuum VB. (according to Kojic, et al., 2022). 

 

where c is the rate coefficient. The material parameters of this element, c and Dw, represent 

the characteristics of the wall and can include various biological properties important in 

modeling biological barriers; they are used in our models built in the PAK-KTM software 

package (Kojic et al. 2006). 

Now, we can formulate our Composite Smeared Finite Element (CSFE) shown in Fig. 3. 

We have the continuum domains composed of different physical fields, occupying the 

corresponding volumetric fractions, which include the 1D domains represented by the 

continuum form with the transport tensors (6). The domains are mutually coupled by the 

connectivity elements satisfying the balance equations (8). The balance equations for the 

continuum domains can be written as 

( )
( ) ( )
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11( ) ( 1)1 1 1
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− −
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M K Φ Q Q M K Φ MΦ  (10) 
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where the element matrices M and K take into account transitional and transport 

characteristics, while 
( )1ext i−

Q  and ( )1i

V

−
Q  are external (to the element) and volumetric fluxes; 

and  ( )i
Φ , ( )iΦ and t

Φ are nodal vectors, nodal increments, and vectors at the start of a time 

step, respectively.  The matrices include the volumetric fractions of the domains. For example, 

the transport matrix K for a domain K is 

,     , ;  , 1, 2,3K K K JI
IJ V ij

i jV

NN
K r D dV sum on i j i j

x x


= =

                    (11) 

where 
K

Vr  is the volumetric fraction, and NI, NJ are the FE interpolation functions. 

 

Fig. 3 Composite Smeared Finite Element (CSFE) with coupled physical fields within 

volumetric domains occupying the element space. According to (Kojic et al, 2022). 

The connectivity elements are practically fictitious elements representing biological barriers as 

capillary walls or cell membranes. The balance equation for a connectivity element at node J 

between domains m and n is (neglecting the rate terms) 

, , ,    , 1,2m n m n
wIJ J wIJ JK K I J = −  =                                       (12) 

where the connectivity matrix 
,m n

wIJK  is 

, 1 1

1 1

m n
wIJ V AV w nodeK r r D V

− 
=  

− 
                                          (13) 

In the above equations, , ,V AV wr r D and nodeV  are the nodal values of the volumetric 

fraction, area-to-volume coefficient, wall transport coefficient, and volume (of the continuum) 

belonging to the node, respectively. We have that the area coefficient is 4 /AV capr d=  for 
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capillaries with dcap being the capillary diameter, while for spherical cells with diameter dcell, it 

is 6 /AV cellr d= . It is important to emphasize that various characteristics of the biological 

barriers (capillary walls, cell membranes), such as partitioning or effects of ionic transport, are 

represented by the connectivity elements. 

3. Examples 

Among a large number of examples in our references, we select two characteristic ones, one to 

illustrate the accuracy of the KTM solutions, and the other to show applicability to large 

models.   

3. 1. Diffusion within tissue sample taken from a pancreatic tumor  

A small tissue sample 50x50 micron size, shown in Fig. 4a, is taken from images of pancreas 

cancerous tissue (E. J. Koay, MD Anderson Cancer Center, Houston). We have assumed that 

there are two types of cells, with different cytosol properties, and with three organelles within 

each cell. It is assumed that there are 6 capillaries normal to the plane of the model, with a 

prescribed concentration. We consider two FE models, the detailed model – in Fig. 4c, and the 

smeared model – in Fig. 4d. As shown in the figure, there is a large difference in the number of 

equations between the two models. Model geometrical data are (lengths in microns): 

Capillaries:  5, Diameter  dmean = 3.97, wall thickness = 0.62, vol fraction rV = 0.0247; Tissue: 

50x50, Atotal = 2500, Atissue = (1 - 0.0247) * Atotal = 2438;  Cell 1 (24): rV = 0.307, dmean = 6.30; 

Organelles: 1) rV  = 0.334, dmean =3.64; 2) rV = 0.034, dmean = 1.16; 3) rV = 0.03,  dmean = 1.10; 

Cell 2 (21):  rV = 0.257, dmean = 6.16; Organelles: 1) rV  = 0.257, dmean =3.17; 2) rV = 0.051, dmean 

= 1.39; 3) rV = 0.056,  dmean = 1.46. 

 

Fig. 4 2D model of diffusion within tissue. a) Image of pancreatic cancer tissue; b) Contours of 

capillaries, cells and organelles; c) Detailed model with 2D elements; d) Smeared model (KTM) 

with nodal concentrations to be calculated (concentrations in capillary domain are prescribed). 

(according to Kojic et al., 2022) 
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It is assumed that the two cell types occupy separate domains; the boundaries of the two 

cell groups are shown by black and dark lines in Fig. 5b. It is assumed that concentration within 

capillaries is constant (a bolus type is considered in Kojic et al. 2022). Also, different 

diffusivities and partitioning are assumed. We presume that wall diffusivities are the same for 

tissue and the medium (for capillaries as in extracellular space, for cells as in cytosol, and 

organelles as within organelles). It is taken that diffusion coefficients are the same in all 

compartments and the walls, D=100[µ2/s]; while concentrations are given in [M].  

We assume that there is hydrophobicity, expressed the partitioning,  at the cell membrane 

and organelle membranes of cell group 2. We consider two cases, with partitioning P=10 and 

P=0.1. The evolution of the mean concentration for four compartments is shown in Figs. 5a, 

while the concentration field at time t=0.5s and diagram of the ultimate concentration along the 

central axis x are shown in Figs. 5b,c. It can be seen that concentration discontinuities occur at 

membranes with partitioning. Besides the fact that there is a very heterogeneous field of 

concentration shown in the figure, obtained by the detailed model,  there is quite a good 

agreement between mass accumulation within compartments for the detailed and the KTM 

model.  Detailed discussion of the results is given in (Kojic et al. 2022). 

 

Fig. 5 Diffusion from capillaries, with constant concentration C=1, to tissue with two groups of 

cells, Cell 1 and Cell 2. Diffusivities are the same in all compartments D=100, while 

partitioning for cell membranes is: P=1 for Cell 1 and its organelles, and P=10 for Cell 2 and its 

organelles.  a) Mean concentration evolution in four compartments. b)  Concentration field at 

time t=0.5s; c) Diagram of ultimate concentration along the axis x. (according to Kojic et al. 

2022) 

3.2. Diffusion within the pancreas 

This example demonstrates the application of the KTM to large-scale models. In  ( Kojic et al. 

2022 and 2018a), it was considered mass transport in the pancreas when a bolus-type is injected 

within the entrance of the main artery of the pancreas. It is assumed the pressure is constant at 

the entrance. We used imaging data obtained at a lab in the MD Anderson Cancer Center in 

Houston. The mode consists of:  large blood vessels, capillary system, lymphatic system, 
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extracellular space, and two types of cells with their organelles. Altogether, we have 7 

continuum subdomains with their volumetric fractions, diffusion characteristics, and 

partitioning at cell and organelle membranes. Each node has 10 variables – 3 pressures and 7 

concentrations. The number of equations to be solved is 1,025,502. Other details are given in 

the reference (Kojic et al. 2018a and 2022). Fig. 6 displays concentration fields in different 

domains, where differences can be noticed due to partitioning effects. Fig. 7 shows the 

evolution of the mean concentration in different domains which also demonstrates the effects of 

the diffusion and partitioning characteristics. 

 

Fig. 6. Concentration fields within the pancreas at time t = 20s. Concentration for the Cell 2 

group (portioning P = 10 at cell membrane) is significantly smaller than for Cell 1 (P =5) due to 

partitioning. (According to Kojic, et al 2018a and 2022) . 
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Fig. 7. Evolution of concentration in different domains of the pancreas. ( According to Kojic, et 

al. 2018b and 2022) 

4. Concluding remarks 

This summary serves as a description of our smeared concept for the finite element modeling of 

the gradient-driven physical fields. This methodology is termed the Kojic Transport Model 

(KTM). We believe that, due to the generality of the KTM, it can be applied to medicine, 

biology, and science to model various complex multiscale and multiphysics problems. The 

accuracy of the KTM is illustrated on two characteristic examples from our earlier publications. 

The first example demonstrates the efficiency and accuracy of the KTM. The second example 

serves to show the applicability of the KTM to large-scale models, with a true multiscale 

description. The FE model of the entire pancreas is generated from images, and it includes large 

vessels, extracellular space, capillary and lymphatic systems, and two groups of cells with their 

organelles and hydrophobic properties of transported molecules.  

It can be concluded that the KTM, due to its generality, ease, straightforward application, 

accuracy, and efficiency, can serve as a tool in the development of today's important expert 

systems within AI and for everyday medical practice. 
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