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Abstract 

Material transport by diffusion is present in nature, as well as in living organisms as a vital 

process. The basic and generally used is a phenomenologically established law, named Fick’s 

law, It states that the material flux is proportional to the concentration gradient and that the 

material flows from the higher to lower concentration. However, if the diffusion occurs in nano 

space, the interaction of the transported molecules produces deviation from Fick’s law leading 

to a so-called restrained, or retarded diffusion. Using the Molecular Dynamics (MD) 

methodology, we have calculated the effects of the molecule-solid interaction by introducing 

the scale functions and used them in our finite element code PAK to find the equivalent bulk 

diffusivity and equivalent distance from the solid surface. This computational procedure is 

called numerical homogenization, where the equivalent diffusion parameters are evaluated from 

the mass release curves. Verification of our multiscale modeling of the retarded diffusion is 

demonstrated on glucose transport through a device with nanochannels (NDS).  Our 

methodology is illustrated by two examples – one to show the effects of the molecular 

interaction within a space with solid spheres and several porosities, and another where the 

equivalent diffusion coefficients are computed using images of pancreatic tumor tissue.  

Keywords: Constrained diffusion, Multiscale, Numerical homogenization, Composite media, 

Finite element method, Molecular dynamics 
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1. Introduction 

In mass transport by diffusion within a fluid, Fick’s law is generally used. This law is 

phenomenological and is defined by the following relation: 

,    i ij
j

c
c J D

x


= −  = −J D                                               (1) 

where J is the mass (or volumetric) flux, c is concentration and  D  is diffusion tensor. In 

the case of an isotropic medium, the diffusion tensor is diagonal with values representing the 

diffusion coefficient D (Kojic et al. 2022). The physical law (1) corresponds to the so-called 

free diffusion. However, if the transported molecules flow within a nano space, as we have in 

the case, for example, of diffusion within the tissue, there is an interaction with the solid 

surfaces so that the proportionality between the flux and the concentration gradient is dependent 

on the concentration  (Gladden and Dole, 1953,  Grattoni et al. 2011, Ziemys et al. 2011), as 

given in Table 1.  

 

c[M] 0.00 0.55 1.09 1.66 2.23 2.78 3.36 

D∙10-6 [cm2/s] 6.75 5.80 4.86 3.96 3.02 2.20 1.33 

Table 1. Experimental data of diffusivity used in the model (Gladden and Dole, 1953). 

Using Molecular Dynamics, it was shown that in the nano space, there is a significant 

effect of the interaction of the transported molecules with the solid surface, Fig. 1. We have 

introduced  

 

Fig. 1 Effects of the interaction of the transported molecules with the solid surface on diffusion. 

a) Diffusion coefficients of glucose through silica nanochannel in terms of the distance from the 

wall h, for three concentrations; MD solutions. b) Scaling functions -  normalized diffusion 

coefficient by the bulk value in terms of the distance from the wall. (according to Ziemys, et al., 

2011). 
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the functions s(h,c), as the dependence of the normalized diffusion coefficient, with respect 

to the bulk diffusion coefficient Dbulk ,   on distance from the wall h and concentration c ,  

( ),
bulk

D
s s h c

D
= =                                               (2) 

We have implemented this formulation of the constrained diffusion into our software PAK. 

The fundamental finite element balance equation of a finite element can be written as (Kojic et 

al. 2022), 

( ) ( )
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where C and Ct are nodal concentrations at the end and the start of the time step of size t ; 

Qext and QV are external and volumetric fluxes; and the matrices are  

, , ,,   ,  K =  , 1,2,3IJ I J IJ ij I i J j vIJ i I J i

V V V

M N N dV K D N N dV v N N dV sum i j= = = =        (4) 

and NI, NJ are the interpolation functions, Dij is the diffusion tensor. and vi are fluid 

velocities in the case of diffusion with convection. We modeled  the nanodevice as a membrane 

composed of the microchannels and nanochannels for drug delivery (Ziemys et al. 2011), 

shown in Fig. 2a. Two-dimensional elements are used for microchannels,  

 

Fig. 2 a) Schematics of the nanodevice system (NDS) for drug delivery. b) Drug delivery 

through the NDS, computed and experimentally recorded. 

while the nanochannels are modeled by 1D elements where the diffusion coefficient is 

numerically determined by a model of a nanochannel with the scaling functions (2) (computed 

by MD methodology). Agreement between computed and experimental results shows the 

correctness of our concept of the multiscale-hierarchical formulation. When the hydrophobicity 

is present at the interface between the fluid and solid phase, a factorization by 1/P (P is the 

partition coefficient) is performed on the corresponding terms in the diffusion matrix at the FE 

nodes on the interphase (Kojic et al. 2015).   

2. Numerical homogenization 

The above analysis and results of the hierarchical MD-FE coupling are further generalized to a 

numerical homogenization concept for modeling diffusion in complex media with strong 
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interaction between transported molecules and the surrounding solid phase  (Kojic et al. 2011 

and 2014),.  An analogous numerical procedure was given in (Kojic et al. 2006 and 2012).We 

here give a brief review of this concept. 

A generalization of the 1D formulation in Section 1 to the 3D diffusion is illustrated in Fig. 

3.  Here, we have a space with bulk diffusion and nanospace where diffusion is affected by 

solid surfaces.  Following the definition of the scaling functions, we now have the restrained 

diffusion  

 

Fig. 3 Diffusion in nanospace. a) Nanochannel. b) Domain with free diffusion connected to a 

channel with nano-height. c) A 3D space with domains with bulk diffusion and those with the 

influence of solid surfaces. (according to Kojic et al. 2014 and 2022]) 

governed by the diffusion tensor with diagonal terms as, 

                                          (5) 

where , ,  are the scaling functions in the local coordinate system at the solid surface  ( 

 and are in the tangential plane, and  is normal). Illustration of the FE procedure in 

modeling the retarded diffusion domain is illustrated in Fig. 4, where, for an integration point 

with the current concentration c we determine the bulk diffusion coefficient Dbulk , and the 

scaling functions – from the concentration and the distance h from the solid surface.  

,   ,    bulk bulk bulkD s D D s D D s D     = = =

s s s

  
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Fig. 4 Illustration of the FE computational procedure for modeling diffusion while taking into 

account the interaction between transported molecules and solid surface. (according to Kojic, et 

al. 2014 and 2022), 

Using this computational procedure we have introduced the concept of numerical 

homogenization. Namely, we consider that the effects of the constrained diffusion within 

composite media as tissue can be properly taken into account by evaluation of mass release 

curves. If we take a small sample, as schematically shown in Fig. 5, we can perform 

experiments or compute the mass release curves in the three orthogonal directions by separately 

enforcing diffusion in these directions.   Then, from these curves, we can evaluate the 

equivalent bulk diffusion coefficients  and equivalent distance for the solid surface . 

Details are given in our references (Kojic et. al. 2011, 2014, 2015 and 2022). We have shown 

that the equivalent diffusion parameters do not depend on the size of the sample and the 

boundary conditions (difference between inlet and outlet concentrations). It can be seen from 

Fig. 6 and Table 2 that different mass release curves give the same equivalent parameters. 

Hence, the mass release curves can be considered constitutive curves (analogous to constitutive 

curves in mechanics), as discussed in detail in our reference (Kojic et. al. 2018 and 2022).  

 

Fig. 5 Numerical homogenization by evaluation of mass release curves (according to Kojic et 

al. 2014 and 2022). 

 

iD ih
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Fig. 6 Mass release curves for volumes of the inlet reservoir: 7.85 ∙10-8, 1.57 ∙10-8, 7.85 ∙10-9 

and 1.57 ∙10-9 μL.  Porosity is 64%. (according to Kojic et al. 2018 and 2022) 
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Table 2. Material parameters  and for four reservoir volumes , porosity 64%, with the 

same initial concentration  

3. Examples 

Here are given two examples as illustrations of the accuracy and application of our 

homogenization methodology to large models.  

3.1. Diffusion in the space with spheres with several values of porosity  

We consider diffusion within a space with spheres according to Fig. 7. The goal of this 

example is to demonstrate the accuracy of the model using the equivalent diffusion parameters 

obtained by numerical homogenization, and the detailed models following the description 

related to Fig. 3.  It is shown that surface interaction plays an important role in diffusion and 

that solutions obtained using the equivalent parameters agree with the detailed model solutions. 

 μLinV 2μm /sD     nmh

87.850 10− 381.010 0.89676

81.570 10− 381.010 0.89676

97.850 10− 381.010 0.90579

91.570 10− 381.010 0.89676

D h inV

0 2.75c M=
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The porosity of the space is changed by changes in distances between spheres and includes the 

case with even intersecting spheres. The mass release curves obtained by estimated parameters 

in the first step are also shown in the figure. 

 

Fig. 7  Mass release curves for microstructural and continuum (MC) models, porous medium 

with spheres.  a) Fickian and surface-affected diffusion, initial and final curves. b) 

Microstructural and final continuum mass release curves, with surface effects for three 

porosities; c) Microstructure consisting of intersecting silica nanospheres, porosity 9%; d) Mass 

release curves for the model with intersecting spheres and for three small porosities (9, 15, 

21%); the time scale is three orders-of-magnitude greater than in b). (according to Kojic et al. 

2018 and 2022) 

3.2.  Diffusion in pancreatic tumor 

We used images from pancreatic tumor samples (Kojic et al. 2018) shown in Fig. 8. We have 

performed numerical homogenization for reference volumes (RVs) and the calculated 

equivalent diffusion parameters; details are given in (Kojic et al. 2018 and 2022). 
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Fig. 8 a) Image of a cross-section of pancreatic cancer (Koay, et al. 2014). b) Five reference 

volumes (RVs) are used to compute equivalent diffusion coefficients by applying numerical 

homogenization. (according to (Kojic, et al. 2018 and 2022) . 

Concentration fields and concentration profiles for two RVs are shown in Fig. 9. The profiles 

are displayed for the case of detailed models (microstructural) and using equivalent diffusion 

coefficients. 

 

Fig. 9 Concentration fields and concentration profiles at time 1s for RV2 and RV4. 

Concentrations on the left side and the right side are prescribed: 1M and 0M; while bottom and 

top boundaries are impermeable. a) and d) – Concentration fields. b) and c) Concentration 

profiles along the two orthogonal lines; full lines – detailed model, dashed lines – use of 

equivalent diffusion coefficients. (according to (Kojic, et al. 2018 and 2022). 
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Computed equivalent diffusion coefficients for the RVs are interpolated; interpolation 

points are shown in Fig. 8 by black points. Fig. 10 shows distributions of the equivalent 

diffusion coefficients to demonstrate the anisotropy of the tumor tissue. 

 

Fig 10 Distribution of the equivalent diffusion coefficient (in [ ]) for the entire 

domain. a) x-direction, b) y-direction. (according to (Kojic, et al. 2018 and 2022). 

4. Concluding remarks 

We have shown in this brief overview a concept of numerical homogenization for the 

evaluation of the equivalent diffusion parameters in the case when the interaction between 

transported molecules and the solid surfaces has significant effects. These effects are 

pronounced when diffusion occurs within the nanospace, as we have for diffusion within 

biological tissue. The numerical homogenization is based on the mass release curves which can 

be determined experimentally or computed. It was illustrated that these curves represent in 

essence the constitutive curves for a given transported molecule and the medium where the 

diffusion takes place.  Two characteristic examples are selected to illustrate our diffusion 

models with the molecule-solid surface interaction effects.  
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