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Abstract 

Wave acoustic equation is implemented and solved using finite element method in PAK solver 

to simulate propagation of sound waves, that cause oscillations of ear’s components, such as 

cochlea (part of inner ear). To simulate mechanical behaviour of cochlea, behaviour of fluid in 

chambers and behaviour of basilar membrane which separates them have been analysed as one 

coupled system, since pressure changes in fluid directly affect movement of membrane. 

Therefore, strong fluid-solid coupling has been applied in common nodes on common surfaces, 

in a way that change in fluid pressure, its gradient in direction normal to the contact plane is 

equalised to the acceleration of basilar membrane nodes in contact, also normal to the common 

contact plane. This manuscript provides an overview of derivation of acoustic wave equation 

and its implementation into in-house built PAK solver, together with steps performed in fluid-

solid coupling in simulation of mechanical cochlea model, followed by analysis of obtained 

results. 

Keywords: acoustic wave equation, finite element method, PAK solver, fluid-solid coupling, 

mechanical cochlea models 

1. Introduction 

PAK is an in-house built solver written in Fortran programming language, that uses finite 

element method (FEM) for numerical solving of different problems in engineering area. It has 
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been developed at Faculty of Mechanical Engineering, University of Kragujevac (today’s 

Faculty of Engineering, University of Kragujevac) by the group of professors and assistants 

from this institution 50 years ago. PAK solver is able to provide a solution for solid and fluid 

domains and to capture fluid-solid interaction. The PAK source code has been upgraded 

throughout the years to enable various applications in engineering. Some of the PAK 

applications are simulation of lung epithelial cells barrier formation (Nikolic 2022, Nikolic et al. 

2020), sedimentation process (Nikolic et al. 2021), behaviour of otoconia in semicircular canals 

(Vulovic et al. 2019), monocyte behaviour inside bioreactor (Nikolic et al. 2019, Nikolic et al. 

2018), 3D modelling of plaque progression (Saveljic et al. 2018, Filipovic et al. 2017, Filipovic 

et al. 2012), simulation of blood flow and ablation process (Obradovic et al. 2010), numerical 

simulation of human hearing system (Isailovic et al. 2018, Isailovic et al. 2015, Nikolic et al. 

2015, Isailovic et al. 2014). 

This paper presents part of the research that has been performed in computationally 

analysed human hearing system, as a participation role in European horizon project Semantic 

Infostructure interlinking an open-source Finite Element tool and libraries with a model 

repository for the multi-scale Modelling and 3d visualization of the inner-ear (SIFEM), where 

primary work was development of computational models of inner ear. Inner ear has two major 

components – cochlea and semicircular canals. Cochlea is the part of inner ear in charge of 

detecting sounds, while semicircular canals have the main role in maintaining balance. 

Several cochlea models have been developed during the project. The models differ by 

complexity, scales, geometry, outputs (mechanical and electrical response) (Nikolic 2017, 

Isailovic et al. 2016). Electrical models include Organ of Corti, placed within the cochlea, in 

scala media chamber, where transmission of mechanical movement to electrical signal occurs. 

These models are more complex in geometry and require smaller scale. On the other side, 

mechanical models of cochlea can be presented in more simple way. Tested geometries include 

coiled (Isailovic et al. 2015) and uncoiled version of cochlea (Nikolic et al. 2014). Uncoiled 

cochlea models were developed in different shape – box model (rectangular), conic shapes with 

straight and narrowing sides. 

The simplest cochlea model is uncoiled, in shape of box, containing two fluid chambers 

divided by one membrane. More details can be found in Section 3 of this paper. External sound 

travels in waves from outer to the middle and finally inner ear. Oscillation of eardrum at the end 

of outer ear cause oscillation of three small bones in contact, placed in middle ear, that transmit 

these oscillations further to cochlea through oval window. Sound travels through fluid chambers 

causing changes in pressure and oscillations of basilar membrane. To be able to capture such a 

behaviour, acoustic wave equation is used to mathematically describe travelling of sound wave 

through cochlea. The equation is derived to the form suitable for numerical analysis by FEM in 

PAK solver. 

Section 1 of this paper gives a brief overview of in-house developed PAK solver and some 

applications, focusing on one example of PAK utilisation in simulation of human hearing 

system and derivation of acoustic wave equation to capture phenomena of sound propagation 

through the medium. Details on derivation of acoustic equation and implementation in PAK 

solver are provided in Section 2. Section 3 gives more information of cochlea model and 

utilisation of derived acoustic wave equation. In Section 4, we present harmonic analysis and 

results obtained in PAK solver. The paper ends with final concluding remarks in Section 5. 
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2. Fundamental relations 

Wave equation describes wave propagation through certain medium. These waves can be of 

different origin – light, sound, electromagnetic, etc. If the wave travelling through the media is 

sound wave, then wave equation is called acoustic wave equation. Wave equation belongs to the 

group of partial differential equations of second order, more specifically hyperbolic type of 

equation, considering its discriminant is less than zero (Kevorkian 1999). In general form, wave 

equation can be represented by Eq. 1 (Elliot et al. 2013) 

 
2 2 2 2/u t c u=    (1) 

where c  stands for speed of wave propagation that is constant for a specific medium, u  is a 

scalar of interest, while 2 =   represents Laplacian.  

Speed of wave can be in some cases dependent on wave frequency and that phenomenon 

calls dispersion. For such cases, wave speed c  from Eq. 1 should be replaced with phase speed 
 , as defined in Eq. 2. 

 / k =  (2) 

In Eq. 2 k  represents wave number and   is an angular speed ( 2 f = ). 

If wave speed depends on amplitude of wave, then wave equation becomes nonlinear (Eq. 

3). 

 2 2 2 2/ ( )u t c u u  =   (3) 

In propagation of sound wave, a scalar variable of interest is acoustic pressure ( p ) that 

changes in space (Cartesian coordinates x, y and z) and time (t), as it is formulated in Eq. 4. 

 2 2 2 2 2 2 2 2 2 2 2/ ( / / / )p t c p c p x p y p z  =  =   +   +    (4) 

Acoustic wave equation can be solved analytically and numerically. Mostly used numerical 

methods for solving acoustic wave equation are finite difference method (FDM) (Smith 1985) 

and FEM (Grossmann et al. 2007, Morton and Mayers 2005). This paper presents derivation of 

acoustic wave equation for numerical solving in in-house built PAK solver using FEM. 

2.1 Solving acoustic wave equation using FEM and PAK solver 

Derivation starts from Eq. 4, division with 2c , putting everything on the left-hand side of the 

equation and volume integration (Fletcher 1984). We are using interpolation functions, kN  that 

are functions of space and not functions of time ( ( ), ( )k i kN f x N f t=  ) 

 2 2 2 2 2 2 2 2 2(/( / / ) 1/ / ) 0k k

V V

N p x p y p z dV c N p t dV  +   +   −   =   (5) 

ix for 1,2,3i =  stands for Cartesian coordinates ,x y and z , respectively. 

 2( / )( / ) 1/ / )( / )) 0( (k i i k

V

N x p x c N t p t dV    −    =  (6) 

Acoustic pressure can be written as a set of products of pressure values in element nodes (
Jp ) and corresponding interpolation functions ( JN ). 
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 J

Jp N p=  (7) 

The first integral from Eq. 6, originated from Laplacian formulation, can be expressed 

through first derivative of product between interpolation function and first partial derivative of 

pressure (Eq. 8). 

 / )( / ) ( / )( / ) ( / )( / )(k i i i k i i k i

V V V

N x p x dV x N p x dV p x N x dV    =     −        (8) 

Gauss’s theorem (Stolze 1978) can be applied to the first member on right-hand side of the 

Eq. 8, so that integration by volume can be substituted with surface integration. 

 ( ) ( )
V S

F dV F n dS  =    (9) 

Gauss’s theorem (divergence theory) equalises volume integral with surface integral over a 

closed contour – surface that border considered volume. In that way, flow of vector field 

through the surface equalises with behaviour of vector flow within that surface. Unit vectors are 

directed from the surface. By applying Gauss’s theorem (Eq. 9) to the first member on the right-

hand side of Eq. 8 we obtain Eq. 10 

 ( / )( / ) ( / )i k i k i i

V S

x N p x dV N p x n dS    =     (10) 

Substituting Eq. 7 and Eq. 10 into Eq. 8 leads to formulation provided in Eq. 11 and further 

Eq. 12. 

 / ( / ) / ( ( ) / /( ) ( ) )( )J

k i i k i i J i k i

S VV

N x p x dV N p x n dS N p x N x dV    =   −        (11) 

 (( ) )( ) ,/ ( / ) / / ( / )k i i k k i

V

J

Si Si ii

V

J i

S

N x p x dV N q p q px x ndS N N x dV    = −     =      (12) 

Eq. 13 and Eq. 14 represents just further derivation of Eq. 12 and some substitution in 

annotating the members 

 , , , ,( ) , /( , // / )k i i k

V

J

Si k i J i k i k i J i J i

S V

q N NN x p x dV N dS dVp N N x N N x    = − =   =      (13) 

 , ,)( ) ,/ ( / S

k i J i k

J

Si i

S

k i k k

V SV

N SNx N Fp x dV F p dV N dq    − ==   (14) 

S

kF  from Eq. 14 stands for surface force. 

Next, we change obtained right-hand side of Eq. 14 into Eq. 6 to formulate Eq. 15 and Eq. 

16. 

 ,

2

, ) 01/ ( / ( ( ) / )k i J i

S J J

k k J

VV

F Np dV c N t N p tN dV− −   =    (15) 

 ,

2

, 1/ ( / )( ( ) / )J J S

V

k i J

V

k Ji kp dV c N t N p t FN N dV+     =   (16) 

Interpolation functions are not time dependent so they will not have derivation by time in 

contrast to pressure that will change with time. Taking this statement into account Eq. 16 

becomes Eq. 17 and further Eq. 18 and Eq. 19. 
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, , 1/J J S

k i J i k

V

J k

V

p N N dV c N N p dV F + =   (17) 

 2

, , 1/J J S

k i J i J

V

k k

V

p N N dV c p N N dV F + =   (18) 

 21/J J

JkJ k

S

kp K p Mc F+ =  (19) 

kJM and kJK  from Eq. 19 stand for mass and stiffness matrix, respectively (Fahy and 

Gardonio 2006). 

 , ,kJ k i J i

V

K N N dV=   (20) 

 kJ k J

V

M N N dV=   (21) 

Upon performed derivation, acoustic wave equation has the form as presented with Eq. 22. 

 21/ J J S

kJ kJ kc M p K p F+ =  (22) 

If we use natural boundary condition that external surface force is equal to zero ( 0S

kF = ), 

acoustic wave equation has the final form (Eq. 23) (Kojic et al. 1998). 

 2 01/ J J

kJ kJc M p K p+ =  (23) 

Therefore, starting from Eq. 6 we transformed acoustic wave equation to the Eq. 23 that is 

suitable for applying finite element method. 

In order to numerically solve Eq. 23 Newmark’s method was applied (Kojic et al. 1998). 

We used approximation that second order derivative of pressure in arbitrary time moment (  ) 

can be determined upon pressure values in two neighbouring time steps. 

 ( ) (1 ) t t tp p p   += − +  (24) 

In Eq.24 
t p  and 

t t p+
 stand for pressure values in time steps t  and t t+  accordingly, 

while   is a correction constant (usually used value is 0.5). Integration of Eq. 24 is performed 

on time interval t . 

 | [(1 ) ] |t t t t t t t

t tp p p t + + += − +   (25) 

 [(1 ) ]t t t t t tp p p p t + +− = − +   (26) 

 [(1 ) ]t t t t t tp p p p t + += + − +   (27) 

Another integration over time interval t  is required due to second derivative of pressure. 

 2| 1/ 2[(1 ) ]t t t t t t

tp p t p p t + +=  + − +   (28) 

 21/ 2[(1 ) ]t t t t t t tp p p t p p t + += +  + − +   (29) 

For better expression of Eq. 29 coefficient   is replaced with coefficient / 2 = . 

 2 2(1/ 2 )t t t t t t tp p p t p t p t + += +  + −  +   (30) 
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 2 2(1/ 2 )t t t t t t tp t p p p t p t + + = − −  − −   (31) 

 2 2(1/ ) (1/ ) (1/ ) ((1 2 ) / 2 )t t t t t t tp t p t p t p p    + +=  −  −  − −  (32) 

Once values of pressure at the end of time step and corresponding derivative values are 

established these expressions are substituted in Eq. 23. 

 20, 1/ ,kJ

J J

kJMp Mp cK M K K== =+  (33) 

 2 2[(1/ ) (1/ ) (1/ ) ((1 2 ) / 2 ) ] 0t t t t t t tM t p t p t p p K p    + + −  −  − − + =  (34) 

 2 2(1/ ) (1/ ) (1/ ) ((1 2 ) / 2 ) 0t t t t t t tM t p M t p M t p M p K p    + + −  −  − − + =  (35) 

 2 2[ (1/ ) ] [(1/ ) (1/ ) ((1 2 ) / 2 ) ]t t t t tM t K p M t p t p p    + + =  +  + −  (36) 

 
2

0 1 2
ˆ ˆ( ], (1/ )t t t t tK p M a p a p a p K M t K+ = + + =  +  (37) 

ia  coefficients and K̂  from Eq. 37 stand for: 

 

2

0

1

2

2

0

1/

1/

(1 2 ) / 2

ˆ (1/ )

a t

a t

a

K M t K M a K





 



= 

= 

= −

=  + =  +

 (38) 

This derivation ensures incremental scheme of acoustic wave equation. In general way, we 

can find solution of Eq. 39 by time steps. 

 
2

0 1 2
ˆ ˆ ˆ ˆ, ( ], (1/ )t t t t t t t t t t tK p F F F M a p a p a p K M t K+ + + += = + + + =  +  (39) 

If solution cannot be achieved in incremental steps, we need to ensure correction of 

solution by iterations, meaning that solution obtain in time step t t+  and i  iteration depends 

on pressure value in the same time step and previous iteration ( 1i − ) enlarged for increment in 

value due to thi  iteration (Eq. 40). 

 1t t i t t i ip p p+ + −= +   (40) 

To calculate solution in current iteration we have to use a solution from previous iteration. 

 
1 1ˆ ˆt t i t t i t t iK p F+ − + + −=  (41) 

 
1 1 1ˆ ˆ( )t t i t t i i t t iK p p F+ − + − + −+  =  (42) 

 
1 1 1 1ˆ ˆ ˆt t i t t i t t i i t t iK p K p F+ − + − + − + −+  =  (43) 

 
1 1 1 1ˆ ˆ ˆt t i i t t i t t i t t iK p F K p+ − + − + − + − = −  (44) 

Solving of Eq. 44 repeats until defined number of iterations or convergence criteria has 

been reached. Solution of first iteration is the solution from previous time step. 
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3. Utilisation of derived acoustic wave equation 

Acoustic wave equation was used to simulate propagation of sound wave through cochlea, 

which represents part of the inner ear. Sound travels through outer ear, reaching eardrum and 

transmitting oscillation from eardrum to the section of middle ear (three small bones – hammer, 

anvil and stirrup). Middle ear is in contact with inner ear through oval window of cochlea. This 

is the section of cochlea that receives oscillations (originating from sound wave) that will be 

transmitted further through cochlea. Coiled shaped cochlea consists of three fluid chambers that 

are separated by two membranes. Three chambers filled with fluid are scala vestibuli, scala 

media and scala tympani. Scala vestibuli and scala media are separated by Reissner’s 

membrane, while scala media and scala tympani are separated by basilar membrane. In 

simulating mechanical behaviour od cochlea, we can assume that scala media and Reissner’s 

membrane can be omitted and take all into account as scala vestibuli. In that way, we obtain two 

fluid chambers – scala vestibuli and scala tympani divided by basilar membrane. 

 

Fig. 1. Anatomy of ear. (a) Outer, middle and inner ear structures; (b) Cross-section of cochlea 

showing the scala vestibuli, scala media and scala tympani separated by two membranes - 

basilar and Reissner’s membrane. 

Sound wave travels through scala vestibuli, causing movement and oscillations of basilar 

membrane, influencing behaviour in scala tympani as well. Propagation of sound through fluid 

fulfilling scala vestibuli is represented by derived acoustic wave equation. Movement of basilar 

membrane, as a solid, is modelled with Newtonian dynamic equation (Kojic and Bathe 2005). 

 
1 1 1 1M u B u K u F+ + =  (45) 

Metrices 1M , 1B  and 1K  stand for mass, damping and stiffness matrices respectively. ,u u  

and u  are vectors of acceleration, velocity and displacement of nodes, while 1F  is vector of 

external force. 

Numerical solution of Eq. 45 is performed with Newmark’s method, like it was explained 

for acoustic wave equation (Kojic et al. 1998). Integration of Eq. 45 has been performed in N  

time steps. Upon derivation and forming of incremental-iterative scheme, we calculate 

displacement increment for thi  iteration and upon it, displacement at specific time step for thi  

iteration. 
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1 1 1 1

1 1 1
ˆ ˆ ˆt t i i t t i t t i t t iK u F K u+ − + − + − + − = −  (46) 

To analyse together behaviour of sound propagation through fluid in cochlea chambers in 

line with caused oscillations of basilar membrane, two domains, fluid and solid, have to be 

coupled together. Domains can be coupled loosely or strongly (Filipovic et al. 2006). Loose 

coupling implies solving of domains alternately, meaning that solution from one domain at 

certain time step is used to correct geometrical parameters or boundary conditions of other 

domain before start solving that domain in that time step. Then solutions from other domain are 

returned to the first domain in the same manner before continuation of solving equations in next 

time step. Solutions obtain from loose coupled systems are usually less precise, but positive 

aspects of this approach are faster response and reduced computational resources. In the system 

is strongly coupled, both domains are solved simultaneously. To achieve simultaneous solving, 

coupling condition (coupling equation) has to be defined. Coupling equation is applied to the 

elements bordering two domains and this equation defines how domains affect each other. 

In simulating mechanical behaviour of cochlea, we used strong coupling of domains by 

defining coupling equation to equalise solid and fluid forces in contact planes, orthogonal to the 

plane of contact and directed from common surface. Therefore, change of fluid pressure, its 

gradient in direction of normal to the common contact plane is equalised with acceleration of 

basilar membrane, also in direction normal to the common plane (Zienkiewicz 1983). 

 n p n u =   (47) 

In Eq. 47 n  stands for normal vector, p  is pressure gradient,   is density of basilar 

membrane. Coupling equation is implemented in PAK solver as boundary condition to form 

coupling matrices for fluid and solid. 

Coupled system consisting of Eq. 33 for defining sound propagation through cochlea 

chambers and Eq. 45 for defining behaviour of basilar membrane. To make easier defining of 

coupling matrices, damping matrix from Eq. 45 is interpreted as complex component of 

stiffness matrix (Myklestadt 1952), so Eq. 45 can be rewritten in the form of Eq. 48 (with 

purpose to be similar in shape to acoustic wave equation). 

 1 1 1(1 )M u K i u F+ + =  (48) 

Finally, coupled system for simulating mechanical behaviour of cochlea is presented with 

Eq. 49. 

 
1 1 10 (1 )

0

M u K i S u F

R M p K p q





+ −         
+ =        

−         
 (49) 

In Eq. 49 matrices R  and S  are coupling matrices formed upon coupling equation (Eq. 

47) (Zienkiewicz 1983). There is a correlation between coupling matrices TR S= , while q  

from acoustic wave equation stands for external excitation occurring at oval window, i.e. for 

nodes belonging to the oval window 1q = , otherwise it is equal to zero. 

4. Harmonic analysis and results obtained in PAK solver 

Coupled system defined with Eq. 49 can be analysed through harmonic analysis. Input in the 

system is harmonic function, in this case oscillations of nodes making the oval window. Output 

from a system has oscillatory character as well – wave propagation and oscillations of basilar 
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membrane. In that way, we can assume that solutions of our coupled system have sinusoidal 

forms (Isailovic et al. 2014). 

 sin( )uu A t = +  (50) 

 sin( )pp A t = +  (51) 

uA  and pA  are magnitudes of nodes displacement and pressure. In this analysis, we 

calculate first and second derivatives, as they are functioning in Eq. 49. 

 2cos( ), sin( )u uu A t u A t     = + = − +  (52) 

 
2cos( ), sin( )p up A t p A t     = + = − +  (53) 

Next step is to substitute assumed solutions, first and second derivatives (Eq. 50 – 53) into 

Eq. 49. Additional assumption is that there is no external force acting on basilar membrane, so 

that 1F  is equal to zero. 

 
2

1 1

2

0(1 ) u

p

AK i M S

A qR K M

 

 

  + − −   
=    

− −       
 (54) 

Solving Eq. 54 comes down to solving characteristic modes of oscillation – eigen values 

and eigen vectors. For specified application and simulating mechanical behaviour of cochlea it 

is sufficient knowing modes of oscillations, rather than time and way of response. 

Derived acoustic wave equation and dynamic equation of basilar membrane oscillations are 

implemented in in-house built PAK solver. Performed analysis and obtained results are 

presented below. 

Mechanical cochlea model can be presented with two fluid chambers, scala vestibuli and 

scala tympani separated by basilar membrane, in coiled shape or unfold in rectangular or 

trapezoidal cross-section (box model). In box rectangular cochlea model due to symmetry only 

half of the geometry was created (Fig. 2) (Wang et al. 2012) 

 

Fig. 2. Cochlea box model (uncoiled) – red section: scala vestibuli; green section: basilar 

membrane; applied geometrical symmetry to include behaviour of scala tympani below basilar 

membrane. 
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Young’s modulus and damping coefficient change along the length of basilar membrane, 

while in other directions values are constant, meaning that basilar membrane can be considered 

as isotropic material (Ni 2012). When ear is stimulated by sound, basilar membrane oscillates. 

Each excitation frequency in the range human ear can detect (20Hz – 20 kHz) causes maximum 

oscillation and amplitude peak at exact position along 35 mm long basilar membrane 

(Greenwood 1961). Response of basilar membrane for external frequency of 1 kHz is presented 

in Fig. 3. 

 

Fig. 3. Cochlea box model with longitudinal coupling – red section: scala vestibuli; green 

section: basilar membrane; applied geometrical symmetry. 

Behaviour of cochlea can be presented through modal velocity – its magnitude and phase. 

Modal velocity has the form of harmonic function (e.g. sine, cosine functions) (Yoon et al. 

2007). If we apply Euler’s formula (Feynman et al. 1977), we can transform harmonic function 

into exponential function, containing magnitude and phase of modal velocity in expression (Fig. 

4 and Fig. 5) (Nikolic 2017). 

 

Fig. 4. Modal velocity magnitude of basilar membrane for excitation frequency of 1kHz in box 

uncoiled cochlea model with longitudinal coupling. 
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Fig. 5. Modal velocity phase of basilar membrane for excitation frequency of 1kHz in box 

uncoiled cochlea model with longitudinal coupling. 

Derived mathematical models that was implemented in PAK solver had been used to 

analyse cochlea behaviour in conduction of sounds through air (air conduction, AC) and 

through bones (bone conduction, BC) (Isailovic et al. 2015b). Oscillations of basilar membrane 

when sound conducts through air (AC) and bones (BC) for excitation frequency of 1kHz and 

conic shape uncoiled cochlea model with narrowing sides are presented in Fig. 6. 

 

Fig. 6. (a) Geometry of narrowing cone-shaped uncoiled cochlea used for simulation of AC and 

BC; (b) Response of basilar membrane for AC and input frequency of 1 kHz; (c) Response of 

basilar membrane for BC and input frequency of 1 kHz. 

In conducting sound through air, input to the model represents movement of stirrups in 

contact with scala vestibuli at oval window position, while in sound conduction through bones 

movement originates from surrounding bones in contact with cochlea, like temporal bone. 

Response of basilar membrane differs for AC and BC, but both models can precisely enough 

capture the position of peak corresponding to the input frequency. 

We tested how much geometry of cochlea affects response from this mechanical model, 

and results showed small difference in obtained responses. Geometry has bigger influence in 

analysis of electrical components (Organ of Corti). Fig. 7 shows geometry of coiled cochlea and 

fluid pressure distribution inside of the fluid chambers for input frequency of 1 kHz. 
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Fig. 7. Coiled cochlea model – obtained pressure distribution inside the fluid chambers for input 

frequency of 1 kHz. 

Validation of obtained results from several mechanical cochlea models that have different 

geometries was performed by comparing obtained responses against Greenwood function 

(Greenwood 1961), that was created empirically (Fig. 8). 

 

Fig. 8. Comparison of different cochlea models response for input frequency in range of human 

ear detecting sounds against empirically determined Greenwood function – relation of 

characteristic position at basilar membrane reaching maximum oscillation for corresponding 

input frequency. 

Fig. 8 shows that all developed cochlea models for simulating mechanical behaviour 

follows appropriately Greenwood function. Box cochlea models with and without longitudinal 

coupling follow very well Greenwood function for input frequency up to 10 kHz. For higher 

values obtained results slightly diverge from empirically generated function. Coiled cochlea 
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model shows good matching in obtained results for input frequency up to 2 kHz. Higher 

frequencies lead to bigger discrepancies but the trend is similar. In general, all mechanical 

cochlea models show good comparison with Greenwood function, with a slight variation in 

precision. Also, different tested geometries demonstrated that mechanical cochlea model 

response is not highly influenced by geometry, which is in accordance with literature 

(Manoussaki and Chadwick 2006). Derived numerical models and solutions obtained in PAK 

solver showed appropriate simulation of acoustic wave propagation applied for analysis of 

human hearing system and can be further used for additional analysis and more complex 

models. 

4. Conclusions 

This manuscript summarises efforts on deriving acoustic wave equation to the form suitable for 

numerical solving in in-house built PAK solver using FEM. Formed matrices and vectors are 

integrated into source code. The need for deriving and implementing acoustic wave equation in 

PAK solver arose from the need to recapitulate computationally behaviour of cochlea (part of 

inner ear). Further exploration on functioning of cochlea, including electrical and electro-

mechanical models’ development, was the subject of research question in European horizon 

project SIFEM, where authors of this manuscript participated. 

Acknowledgements: The authors acknowledge support of the Ministry of Science, 

Technological Development and Innovation of the Republic of Serbia, contract number [451-

03-137/2025-03/200108 (Faculty of Mechanical and Civil Engineering in Kraljevo, University 

of Kragujevac)], contract number [451-03-136/2025-03/200378 (Institute for Information 

Technologies, University of Kragujevac)] and contract number [451-03-65/2024-03/200107 

(Faculty of Engineering, University of Kragujevac)], and as well as FP7 ICT SIFEM project, 

number 600933. This research is in line with the strategic plan of the Republic of Serbia 2030, 

particularly in the section 2.2.2 Development of human resources, goal 3: Good health. 

References 

Elliot S J, Ni G, Mace B R and Lineton B (2013). A wave finite element analysis of the passive 

cochlea, The Journal of the Acoustical Society of America, Vol. 133, No. 3, pp. 1535-1545, 

ISSN 0001-4966 

Fahy F and Gardonio P (2006). Sound and Structural Vibratio: Radiation, Transmission and 

Response, second edition, Elsevier Academic Press, ISBN: 9780123736338 

Feynman R, Leighton R, Sands M (2006). The Feynman Lectures on Physics, Volume I, mainly 

mechanics, radiation, and heat, Addison-Wesley, ISBN 0-201-02010-6. 

Filipovic N, Isailovic V, Milosevic Z, Nikolic D, Saveljic I, Radovic M, Nikolic M, Cirkovic-

Andjelkovic B, Exarchos T, Fotiadis D, Pelosi G, Parodi O (2017). Computational 

modeling of plaque development in the coronary arteries, IFMBE Proceedings of the 

International Conference on Medical and Biological Engineering, CMBEBIH 2017, 

Sarajevo, Bosnia and Herzegovina, 16-18 March, 2017, Vol. 62, pp. 269-274, eISBN 978-

981-10-4166-2, pISBN 978-981-10-4165-5, DOI:10.1007/978-981-10-4166-2_40 

Filipovic N, Radovic M, Isailovic V, Milosevic Z, Nikolic D, Saveljic I, Milosevic M, Petrovic 

D, Obradovic M, Krsmanovic D, Themis E, Sakellarios A, Siogkas P, Marraccini P, Vozzi 

F, Meunier N, Teng Z, Fotiadis D, Parodi O, Kojic M (2012). Plaque formation and stent 

deployment with heating thermal effects in arteries, Journal of the Serbian Society for 



Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    403 

 

  

Computational Mechanics, Vol. 6 No. 1, pp. 11-28, UDC: 004.921 ; 616.13-004.6-073, 

ISSN 1820-6530 

Filipovic N, Mijailovic S, Tsuda A and Kojic M (2006). An Implicit Algorithm within the 

Arbitrary Lagrangian-Eulerian Formulation for Solving Incompressible Fluid Flow with 

Large Boundary Motions, Comp. Meth. Appl. Mech. Eng., Vol. 195, No. 44-47, pp. 6347-

6361 

Fletcher C A J (1984). Computational Galerkin Methods, Springer Series in Computational 

Physics, ISBN: 978-3-642-85951-9 

Greenwood D D (1961). Critical Bandwidth and the Frequency Coordinates of the Basilar 

Membrane, The Journal of the Acoustical Society of America, Vol. 33, No. 10, pp. 1344–

1356, ISSN 0001-4966 

Grossmann C, Roos H, Stynes M (2007). Numerical Treatment of Partial Differential 

Equations, Springer Science & Business Media, ISBN 978-3-540-71584-9 

Isailovic V, Nikolic M, Bibas T, Sakellarios A, Tachos N, Milosevic M, Filipovic N (2018). 

Numerical simulation of human hearing system, 2nd EAI International Conference on 

Future Access Enablers of Ubiquitous and Intelligent Infrastructures (FABULOUS 2016), 

Belgrade, Serbia, 24-25 October, 2016, Published in EAI Endorsed Transactions on 

Pervasive Health and Technology, Vol. 4, No. 13, e3, pp. 1-4, received on 06 June 2017, 

accepted on 14 November 2017, published on 28 February 2018, ISSN: 2411-7145, doi: 

10.4108/eai.28-2-2018.154144 

Isailovic V, Nikolic M, Nikolic D, Saveljic I, Filipovic N (2016). Using of Finite Element 

Method for Modeling of Mechanical Response of Cochlea and Organ of Corti, ICIST 2016 

6th International Conference on Information Society and Technology, Kopaonik, Serbia, 

from 28 February to 2 March, 2016, Proceedings, Vol. 1, pp. 102-105, ISBN 978-86-

85525-18-6 

Isailovic V, Nikolic M, Milosevic Z, Saveljic I, Nikolic D, Radovic M, Filipovic N (2015). 

Finite Element Coiled Cochlea Model, 12th International Workshop on the Mechanics of 

Hearing, Cape Sounio, Greece, 23-29 June, 2014. AIP Conference Proceedings 2015, Vol. 

1703, No. 070015-1 – 070015-4, ISBN 978-0-7354-1350-4, ISSN 0094-243x, 

https://doi.org/10.1063/1.4939389 

Isailovic V, Nikolic M, Milosevic Z, Saveljic I, Nikolic D, Radovic M, Filipovic N (2015b), 

Finite Element Model of Cochlea – Air Conduction and Bone Conduction, ICIST 2015 5th 

International Conference on Information Society and Technology, Kopaonik, Serbia, 8-11 

March, 2015, Proceedings, Vol. 1, pp. 19-21, ISBN 978-86-85525-16-2 

Isailovic V, Obradovic M, Nikolic D, Saveljic I, Filipovic N (2014). SIFEM project: Finite 

element modelling of the cochlea, 13th IEEE International Conference on Bioinformatics 

and Bioengineering (BIBE), Chania, Greece, 10-13 November, 2013, IEEE Xplore 

available online since 09.01.2014., pp. 1-4, eISBN 978-1-4799-3163-7, doi: 

10.1109/BIBE.2013.6701611 

Kevorkian J (1999). Partial Differential Equations: Analytical Solution Techniques, second 

edition, Texts in Applied Mathematics, Springer, ISBN-13: 978-0387986050 

Kojic M and Bathe K J (2005). Inelastic Analysis of Solids and Structures, Springer, Berlin, 

Germany, ISBN 978-3-540-22793-9, 2005 

Kojic M, Slavkovic R, Zivkovic M, Grujovic N (1998). Metod konacnih elemenata I – linearna 

analiza, Masinski fakultet u Kragujevcu, ISBN 86-80581-27-5 

Manoussaki D and Chadwick R (2006). Effects of Geometry on Fluid Loading in a Coiled 

Cochlea, SIAM Journal on Applied Mathematics, Vol. 61, No. 2, pp. 369–386, ISSN 

(print): 0036-1399, ISSN (online): 1095-712X 

Morton K W and Mayers D F (2005). Numerical Solution of Partial Differential Equations, 

second edition, Cambridge University Press, ISBN-13 978-0-521-60793-3 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-71584-9
https://doi.org/10.1063/1.4939389
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-71584-9


404                               M. Nikolić et al.: Solving Wave Acoustic Equation Using Finite Element Method in PAK Solver 

 

Myklestadt N O (1952). The concept of complex damping, Journal of Applied Mechanics, vol. 

19, pp. 284-286 

Ni G (2012). Fluid coupling and waves in the cochlea, PhD thesis, University of Southampton, 

Faculty of engineering and the environment, Institute of sound and vibration research, pp. 

1-202 

Nikolic M (2022). Chapter 7: Lab-on-a-chip for lung tissue from in silico perspective, in book 

Cardiovascular and Respiratory Bioengineering, Elsevier, pISBN: 978012823956807, 

eISBN: 9780128242292, Published: May 12, 2022, https://doi.org/10.1016/B978-0-12-

823956-8.00007-9 

Nikolic M, Sustersic T, Filipovic N (2021). Numerical Simulation of Sedimentation Process 

using Mason-Weaver Equation, 21st IEEE International Conference on BioInformatics and 

BioEngineering (BIBE), Kragujevac, Serbia (hybrid event), 25-27 October 2021, 

https://doi.ieeecomputersociety.org/10.1109/BIBE52308.2021.9635216 

Nikolic M and Filipovic N (2020). Chapter 4 - Lung on a chip and epithelial lung cells 

modelling in book Computational Modeling in Bioengineering and Bioinformatics, pp. 

105-135, ISBN 978-0-12-819583-3, https://doi.org/10.1016/B978-0-12-819583-3.00004-7 

Nikolic M, Sustersic T, Muller C B, Zhang Y S, Vrana N E, Filipovic N (2019). Monocyte 

Behaviour under Perfusion Conditions for Development of Granuloma on-a-chip, Tissue 

Engineering Therapies: From Concept to Clinical Translation & Commercialisation, 

TERMIS European Chapter Meeting 2019, Rhodes, Greece, 27-31 May, 2019, Termis EU 

2019 Conference Book, pp. 1356 

Nikolic M, Sustersic T, Saveljic I, Vrana N E and Filipovic N (2018). Modelling of Monocytes 

Behaviour inside the Bioreactor, Belgrade BioInformatics Conference, BelBi 2018, 

Belgrade, Serbia, 18-22 June, 2018, Book of Abstracts, Biologia Serbica, Vol. 40, No. 1 

(Special Edition), pp. 123, ISSN 2334-6590, UDK 57 (051) 

Nikolic M (2017). Elektro-mehanicki model kohlee i analiza odziva modela (engl. Electro-

mechanical cochlea model and model response analysis), doktorska disertacija, Fakultet 

inženjerskih nauka Univerziteta u Kragujevcu, datum odbrane: 19.09.2017., Kragujevac 

Nikolic M, Teal P, Isailovic V, Filipovic N (2015). Finite Element Cochlea Box Model – 

Mechanical and Electrical Analysis of the Cochlea, 12th International Workshop on the 

Mechanics of Hearing, Cape Sounio, Greece, 23-29 June, 2014. AIP Conference 

Proceedings 2015, Vol. 1703, No. 070012-1 – 070012-5, ISBN 978-0-7354-1350-4, ISSN 

0094-243x, https://doi.org/10.1063/1.4939386 

Obradović M, Avilla A, Thiagalingam A and Filipović N (2010). Finite element modeling of 

the endocardial radiofrequency ablation, Journal of the Serbian Society for Computational 

Mechanics, Vol. 4, No. 2, pp. 43-53, ISSN 1820-6530, UDC: 616.12-008.318-073:519.673 

Saveljic I, Nikolic D, Milosevic Z, Isailovic V, Nikolic M, Parodi O and Filipovic N (2018). 3D 

Modeling of Plaque Progression in the Human Coronary Artery, The 18th International 

Conference on Experimental Mechanics, ICEM 2018, Brussels, Belgium, 1-5 July, 2018, 

Published by MDPI AG, Basel, Switzerland, Vol. 2, No 8, 388, pp.1-6, eISSN 2504-3900, 

doi:10.3390/ICEM18-05213 

Smith G D (1985). Numerical Solution of Partial Differential Equations: Finite Difference 

Method, third edition, Oxford Applied Mathematics and Computing Science Series, ISBN 

978-0198596509, 1985 

Stolze C H (1978). A history of the divergence theorem, Historia Mathematica, Vol. 5, No. 4, 

pp. 437-442 

Vulovic R, Nikolic M, Filipovic N (2019). Smart Platform for the Analysis of Cupula 

Deformation caused by Otoconia Presence within SCCs, Computer Methods in 

Biomechanics and Biomedical Engineering, Vol. 22, No. 2, pp. 130-138, ISSN 1476-8259, 

DOI 10.1080/10255842.2018.1539166 

https://doi.org/10.1016/B978-0-12-823956-8.00007-9
https://doi.org/10.1016/B978-0-12-823956-8.00007-9
https://doi.ieeecomputersociety.org/10.1109/BIBE52308.2021.9635216
https://doi.org/10.1016/B978-0-12-819583-3.00004-7
https://doi.org/10.1063/1.4939386
https://en.wikipedia.org/wiki/International_Standard_Book_Number


Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    405 

 

  

Wang X, Wang L, Zhou J and Hu Y (2012). Finite element modelling of human auditory 

periphery including a free-forward amplification of the cochlea”, Computer Methods in 

Biomechanics and Biomedical Engineering, Vol. 17, No. 10, pp. 1096-1107, doi 

10.1080/10255842.2012.737458, 2012 

Yoon Y, Puria S, Steele C R (2007). Frequency and Spatial Response of BasilarMembrane 

Vibration in a Three-Dimensional Gerbil Cochlear Model, Journal of Mechanics of 

Materials and Structures, Vol. 2, No. 8 

Zienkiewicz O C (1983). The finite element method, third edition, Published by McGraw-Hill 

Book Co., New York, ISBN 10:0070840725 / ISBN 13:9780070840720 

 

 


