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Abstract 

This paper describes software developed based on numerical implementation of algorithms for 

coupled acoustic – structure interaction. This class of problems implies coupling of the fluid 

domain, with sound wave propagation, and the domain of solid, which vibrates under the 

pressure caused by sound waves from the fluid domain. The physical behavior of the solid 

domain is described by using Newtonian dynamic equations. On the other hand, sound wave 

propagation through the fluid domain is described by using the acoustic wave equation. The 

coupling of differential equations for these two different domains is accomplished by equalizing 

the most dominant forces from the both domains: inertial forces from the solid domain and 

pressure gradients from the fluid domain. As a result of scientific research, we present 

numerical software developed based on mentioned equations. The details of the equations and 

their coupling are given in the Methods section. The spatial discretization of equations is done 

by using the finite element method. The software is tested on benchmark examples found in 

literature (Beranek et al. 1992; Kojic et al. 2010). Additionally, the application of software in 

modeling of the problems in the field of biomedical engineering applied to cochlear mechanics 

is shown. 

Keywords: Fluid-Structure Interaction, Cochlear mechanics, Finite element method 

1. Introduction 

Solid-fluid interaction problems are very widespread in different fields of science and 

technology. For example: aerodynamics of aircrafts or vehicles, fluid motion in tanks, fluid 

flow in tubes, blood flow in blood vessels, airflow in respiratory organs, sound wave 

propagation in hearing system, etc. Problems like this imply the presence of two different 

domains: fluid and solid. The fluid domain is usually described by the Navier – Stokes 

equations and the equation of continuity (Kojic et al. 2010; Kojic et al. 2008; Kojic et al. 2017; 
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Isailovic et al. 2014; Kojic et al. 2015). Unknown field variables in that case are the velocity 

and the pressure, or just velocity if a penalty formulation is used (Kojic et al. 2008). Besides, 

there is a class of problems where fluid flow is almost negligible, but the propagation of the 

acoustic waves (i.e. acoustic pressure) through the fluid medium is significant. These waves that 

travel through the fluid media can be described with the acoustic wave equation with the 

acoustic pressure as an unknown variable. In both cases, the first, where fluid flow and pressure 

distribution are significant, and the second, where only the sound wave propagation is 

significant, it is essential to take into account the influence of the fluid on the surrounding solid 

domain. The mechanical behavior of the solid domain is described by Newton’s equations of 

motion with displacement as an unknown variable. 

Different numerical methods or combinations of numerical methods can be applied to 

evaluate the mechanical behavior for arbitrary spatial domains. But, most commonly used is 

finite element method. For fluid domain there are several different techniques, such as the finite 

element method, finite volume method, finite difference method, spectral methods, etc. The 

focus of this paper is finite element method and its application on coupled problem: solid and 

fluid (acoustic) interaction. The finite element method will be used for both, solid and fluid, 

domains. As a starting point, software package PAK (Program for Analysis of Constructions, 

Kragujevac, Serbia, Kojic et al. 2017) is used. Basic functionalities necessary for numerical 

discretization are taken from this source. Moreover, for the solving of system of linear 

equations (obtained by the discretization) the MUMPS parallel solver is used (Amestroy et al. 

1999). 

Since the objective of this research was to develop numerical software, suitable examples 

have been used for its validation. Examples are found in literature and have analytical solution 

in closed form. Matching of the results obtained numerically (by developed software) with 

results obtained analytically is a proof of the accuracy of the software solution presented here. 

2. Methods 

The methods section will provide the basic equations implemented in the software. Also, the 

method of coupling of equations used for describing two different domains (fluid and solid) will 

be described. 

For physical describing of the fluid flow, the Navier – Stokes equations are commonly 

used. However, in the propagation of sound waves through the fluid, fluid motion is not 

dominant since the Mach number is very small (M << 1).  Bearing that in mind, the acoustic 

wave equation can be used for describing the sound wave propagation (ANSYS Theory 

Reference Release 5.6; Moand et al. 1995; Rienstra et al. 2009): 
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where is: 𝑝 – fluid pressure, 𝑐 – speed of sound, 𝑥𝑖  - spatial coordinates in Cartesian coordinate 

system (𝑖 = 1,2,3) and 𝑡 – time. Using Galerkin method (Kojic et al. 2010), the equation (1) can 

be written in the matrix form: 

 

 Qp + Hp = 0  (2) 
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where is: 

2

1 T

V

dV
c

= Q N N – acoustic “inertia”, 

' 'T

V

dV= H N N – acoustic “stiffness”. 

In the last two equations, the matrices 𝑵 and 𝑵′ contain linear shape functions and their 

derivatives (Bathe 1996, Kojic et al. 2008). 

Starting from the principle of virtual work, that equalizes the virtual work of internal and 

external forces, and taking into account the influence of inertial and dissipative forces, the 

equation of solid motion (and deformation) can be defined in the following form: 

 
ext

Mu + Cu + Ku = F  (3) 

where is: 

T

V

dV= M N N – mass matrix, 

T

V

c dV= C N N – damping matrix, 

T

V

dV= K B DB – stiffness matrix with elasticity matrix D and strain-displacement matrix B , 

u   - displacement vector, 

u – velocity vector, 

u – acceleration vector, 

ext
F – vector of external forces. 

The details of equations given above can be found in literature (Zienkievicz 1983, Bathe 

1996, Kojic et al. 2008). 

In acoustics, it is often necessary to observe only the free response of the vibrating system, 

without damping. In that case, damping term in the dynamic equation can be omitted. 

Therefore, the equation can be reduced to a simpler form: 

 
ext

Mu + Ku = F  (4) 

The software for solving equations (3) or (4) is already done (Kojic et al. 2017) and that 

part of code is used here as a starting point. Since that code exists and has been thoroughly 

tested, this paper will not deal with validation of that. 

The focus of this paper is developing of the finite element software for solving of equation 

(2) and coupling of equations (2) with (4) by additional equation that will be explained below. 

Equations (2) and (4) can be coupled by introducing an additional equation (or, in other 

words, a boundary condition) which equalizes the most dominant forces from both domains: the 

inertial forces from solid domain and pressure gradient from fluid domain. Force equalization is 
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performed in the direction of the normal of the boundary surface between the fluid and the solid 

domains (ANSYS Theory Reference Release 5.6; Morand et al. 1995; Zienkievicz 1983): 

 p  = n n u  (5) 

where is: 

n – normal vector on fluid – structure interface (FSI), 

p – gradient of fluid pressure, 

 – density of fluid, 

u – acceleration of solid. 

Finally, coupled system of the equations has the form: 

 


−         
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 (6) 

In equation (6) the matrices S  and 
T

S  correspond to the forces acting on the fluid – solid 

boundary,   is fluid density and q  is vector that corresponds to the Neumann boundary 

condition in acoustic equation (pressure amplitude). Those matrices represent the action of the 

solid inertial forces on the fluid through a common boundary surface, and, on the other side, the 

action of fluid pressure on the solid domain through the same boundary surface (ANSYS 

Theory Reference Release 5.6; Morand et al. 1995; Zienkievicz 1983). Those forces are: 

T

s

S

dS= =f N N p Sp  

T T

f

S

dS = =f N N u S u  

In the last two equations, matrices N  correspond to linear interpolation of unknown 

variable and matrices N  correspond to weight functions for numerical surface integration. 

Temporal discretization of the system of equations (6) can be done using Euler’s or Newmark’s 

time integration schemes. 

However, for vibro-acoustic analysis, the free response of the system is most often 

considered. In that case, the solution of the system of equations (6) can be assumed in 

sinusoidal form (Kojic et al. 2010; Bathe 1996): 

 ( )sinu t = +u A  (7) 

 ( )sinp t = +p A  (8) 

Substituting equations (7) and (8) in equation (6) produces system of linear equations: 
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This system of equations (8) is linear and can be solved by vectors of constants uA  and 

pA . After that, obtained vectors of constants can be replaced in equations (7) and (8) in order 

to find solutions for displacements or pressure field along with its time derivatives. 

Fig. 17 shows computational procedure algorithm used here. The algorithm consists of 

loading of nodes, elements, prescribed loads and boundary conditions, loop over elements with 

spatial integration over finite elements and surface integration over solid-fluid interface surface. 

The algorithm outputs are calculated nodal displacements, nodal pressures and element stresses. 

 

Fig. 17: The Algorithm of the computational procedure 

3. Benchmark test 

Fluid cavity 

The first benchmark test is fluid cavity: modal shapes and natural frequencies. Fluid cavity 

modal shapes, or acoustic modes, are specific patterns of pressure within a confined fluid 

volume that occur at discrete natural frequencies. These shapes describe how the fluid oscillates 

at these frequencies. Three-dimensional fluid cavity is discretized by 8-node brick elements.  

The theoretical solution of the natural frequency is given by Beranek et al. 1992. 

 ( )
22 2

31 2
1 2 32 2 2

, , , 0,1,2,...
2

nn nc
f n n n

L W H
= + + =  (10) 

where is: 
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f – natural frequency, c – speed of sound, 1 2 3, ,n n n – natural numbers, L  – length of fluid 

cavity, W  – width of fluid cavity, H  – height of fluid cavity. 

In the simulation, the fluid cavity is assumed to have a rigid boundary condition at each 

boundary surface. The dimensions of the fluid cavity, mean density of fluid in the cavity and 

speed of sound propagation in the fluid are given in the Table 5. 

Dimensions 

Length 0.414m  

Width 0.314m  

Height 0.360m  

Mean fluid 

density f  
3

1.21
kg

m
 

Speed of sound c  1500
m

s
 

Table 5: Dimensions and material parameters of the fluid cavity model 

The benchmark test is done for the first six natural frequencies. Table 6 shows calculated 

values for those natural frequencies: 1. Analytically calculated values, 2. Numerically 

calculated values in parentheses. The difference between analytical and numerical values them 

is very small (consequence of a numerical discretization error). 

1n  2n  3n  Natural frequency [Hz] (exact value) 

0 0 0 0 

1 0 0 1811.594203 (1815.13) 

0 0 1 2083.333333 (2086.94) 

0 1 0 2388.535032 (2392.27) 

1 0 1 2760.824394 (2765.85) 

1 1 0 2997.828073 (3002.93) 

Table 6: Natural frequencies of a fluid cavity: analytical value and numerical value (in 

parentheses) 

Table 6: Natural frequencies of a fluid cavity: analytical value and numerical value (in 

parentheses) shows the first six natural frequencies and modal shapes of the given fluid cavity. 

It can be seen that the finite element software gives results very close to the theoretical solution. 



378             V. isailović et al.: Finite Element Modeling of Fluid-Structure Interaction – Applied to Cochlear Mechanics 

 

Natural frequency Modal shapes Scale 

1815.13 Hz 

 

 

2086.94 Hz 

 

2392.27 Hz 

 

2765.85 Hz 

 

3002.93 Hz 

 

Table 7: Fluid cavity: natural frequencies and modal shapes. Scale is normalized by value 

9.95e-1. 

Quadratic solid plate 

The second benchmark test is simply supported quadratic solid plate that also includes modal 

shapes and natural frequencies. Quadratic solid plate modal shapes refer to the vibration 
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patterns (mode shapes) of a three-dimensional, solid plate, where the plate's geometry is 

described using quadratic finite elements.  

There is also analytical solution for natural frequencies in closed form Kojic et al. 2010. 

The equation for natural frequency is given as: 

 ( )2 2

1 222

D
f m m

a h




= +  (11) 

where is: 

a  – side length of the quadratic plate, 

( )

3

212 1

Eh
D


=

−
– stiffness of the plate, 

h – thickness of the plate, 

  – density of the plate, 

1m , 2m – natural numbers. 

Table 8 shows dimensions of the plate and material properties used as benchmark example. 

Dimensions 
Plate side 1.00m  

Thickness 0.001m  

Mean fluid 

density f  
3

1.21
kg

m
 

Young’s 

modulus 
E  

112.1 10 Pa  

Poisson’s 

ratio 
  0.33  

Table 8: Dimensions and material properties of vibrating solid plate 

Table 9 and Table 9: Natural frequencies of a simply supported quadratic plate: analytical value 

and numerical value (in parentheses) 

 show natural frequencies and modal shapes obtained by choosing various values for 1m  

and 2m . Similar to the fluid cavity example described above, the natural frequencies of simply 

supported quadratic plate obtained by developed software are very close to the results calculated 

analytically. This is a proof of the accuracy and reliability of the developed finite element code. 

       1m  

2m  
1 2 3 

1 47.986 (47.888) 119.966 (119.885) 239.932 (240.260) 

2 119.966 (119.885) 191.946 (191.597) 311.912 (311.667) 

3 239.932 (240.260) 311.912 (311.667) 407.885 (409.438) 
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Table 9: Natural frequencies of a simply supported quadratic plate: analytical value and 

numerical value (in parentheses) 

Natural frequency Modal shapes Scale 

47.888 Hz 

 

 

119.885 Hz 

 

191.597 Hz 

 

240.260 Hz 

 

311.667 Hz 
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409.438 Hz 

 

Table 10: Natural frequencies and modal shapes for simply supported quadratic solid plate. 

Displacements scale is normalized by value 0.283. 

Fluid – solid interaction 

The type of problems that include both domains, fluid and solid, does not have solution for 

natural frequencies in closed form. In order to test coupled system, we made an example based 

on fluid cavity model. The model consists of a prismatic fluid domain with dimensions given in 

the Table 5. On the upper side, the fluid is in contact with clamped rectangular solid plate. The 

thickness of the plate is 0.001m . 
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Fig. 18. Natural frequencies and modal shapes for fluid cavity coupled with thin simply 

supported solid plate (normalized by values: 0.048 for solid and 0.089 for fluid) 

Fig. 18 shows natural frequencies and modal shapes for the rectangular clamped solid plate 

coupled with the fluid below. 
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Application to the modeling of cochlear mechanics 

The main purpose of the development of numerical software presented here was to conduct 

numerical simulation of a part of the human inner ear – the cochlea. Initial model of the inner 

ear was taken from the literature (Ni 2012, Ni et al. 2014). Human cochlea is bony structure like 

a snail shell, with two fluid chambers. Those chambers are separated by basilar membrane 

(BM). The impulse from the middle ear, generated by acoustic pressure on the ear drum, is 

transmitted to the cochlea by three ossicles in the middle ear – malleus, incus and stapes. That 

impulse travels through fluid chambers and causes vibrations of BM. 

 

Fig. 19. Human hearing system: Outer, middle and inner ear – cochlea (left); Detail of the 

cochlear chambers with real coiled geometry and simplified uncoiled geometry (right) 

The BM is about 35mm long elastic structure with specific geometry: narrow at the 

beginning and wide at the end. Consequently, the stiffness is variable along the membrane (high 

to low, in direction from middle ear to the cochlear apex), allowing for each specific frequency 

to have an appropriate membrane response. Our simplified model consists of only one fluid 

chamber and BM. Other parts can be neglected, because they do not affect the response of BM 

much. Moreover, a simplified uncoiled form of cochlea is used, since it does not affect the 

results (Ni 2012). Prescribed load is unit force applied at the stapes side of the fluid chamber. 

Coupling between fluid and solid is achieved through common faces on the fluid – solid 

boundary surface. The boundary conditions for the BM are three clamped edges and one simply 

supported edge. These boundary conditions correspond to the real BM, since clamped boundary 

conditions were applied on the edges where the BM is coupled with bony structure, while 

simply supported boundary condition was applied on the edge where there is contact between 

the BM and the spiral ligament (Steele et al. 2002). Material properties used in this model are 

not investigated here. They are taken from Ni 2012. 

The coupling of the fluid and solid domains is achieved by applying boundary condition 

(5). The simplified geometry of the model is given in Fig. 20. In addition to the equations 

presented in the paper, this model also includes damping. In order to reduce the problem to a 

simpler form, damping was taken into account through complex stiffness and hysteretic 

damping factor (Ni 2012; Maia 2009). This is practically modifying of the solid stiffness matrix 

by an additional complex term. All geometrical and material properties including curves of 

distribution of Young’s modulus and hysteretic damping coefficient along the BM are used 

from Ni 2012.  
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Fig. 20. The geometry of the model of simplified cochlea 

Here are given basic geometry quantities (Fig. 20 and Table 11), space dependent Young’s 

modulus (as an alternative to the variable geometry) and hysteretic damping coefficient (Fig. 

21). 

Fluid chamber cross-section  1 1mm  

BM length 35mm  

BM width 0.3mm  

BM thickness 0.05mm  

Table 11: Geometrical properties of the model 

 

Fig. 21. Young’s modulus and damping coefficient distribution along BM 

Fig. 22 shows the response of the BM under the excitation frequency of 1 kHz. 

 

Fig. 22. The response of the BM under the excitation of 1 kHz. The length of membrane is 35 

mm. Results are normalized by value 0.0145 

As a proof of correctly written numerical software, the distribution of modal velocity 

amplitude along the BM (Fig. 23) is compared with results obtained by WKB method (Steele et 

al. 2002; Ni 2012). Modal velocity amplitude is the maximum velocity reached during a 

specific vibration mode of a structure or system, identified by analyzing its response across 

different frequencies and corresponding to a particular modal shape. Besides that, in the Fig. 24 

is given modal velocity phase for the same model. Modal velocity phase, describes the phase 

velocity of a wave as it propagates through a complex medium or structure, where the overall 

wave can be decomposed into distinct modes of vibration. In applications like structural 

vibration or wave propagation, controlling or understanding modal phase velocity is crucial for 

optimizing performance or mitigating issues like vibration or signal dispersion. 
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In the figures 7 and 8 are given modal velocity amplitude and phase for simplified cochlea 

model.  Very small discrepancy between solution calculated by WKB method and numerical 

solution obtained by FEM software explained here can be explained as a consequence of a 

numerical discretization error. 

 

Fig. 23. Comparison of modal velocity amplitude of BM obtained by developed software with 

WKB method with excitation frequency of 1 kHz. 

 

Fig. 24. Modal velocity phase of BM calculated by developed software with excitation 

frequency of 1 kHz. 

In addition to this simple example, a more complex model that contains elements of the 

middle and inner ear was made. This model has more realistic geometry, material properties and 

boundary conditions. All those data are taken from Homma et al. 2009, Kim et al. 2011 and 

Tachos et al. 2016. Cochlea and BM have variable geometry along its length in order to obtain 

response which corresponds to the real BM behavior. Boundary condition is prescribed 

displacements in both three directions, X, Y, Z with value of 0.01 µm. For such a boundary 

condition, which corresponds to the transmission of sound through the bones, the frequency 

response of the whole system is observed. In Fig. 25 are given: 1. geometry of the model with 

different materials, 2. contour plot of nodal displacements obtained by developed software and 

modal velocity magnitude of BM. The distribution of modal velocity magnitude along BM is 

also validation of the software solution described in this paper. The diagram in Fig. 25 shows 

comparison of results obtained by our software (PAK, Kojic et al. 2017) with COMSOL 

software used in Homma et al. 2009 and Kim et al. 2011. There is a small difference due to the 

spatial discretization of models which are not completely identical in terms of the finite element 

mesh. The result shown here is one more proof of accuracy of the developed software, since 

results show very good agreement with results obtained by commercial software COMSOL. 
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Fig. 25. Finite element model of the middle and inner ear. Geometrical and material data, 

boundary conditions and prescribed loads are used from Homma et al. 2009 and Kim et al. 2011  

The model presented here is simplification of real human hearing system. This model can 

be upgraded with more appropriate material models for ligaments and bones. But, the most 

sensitive and the most significant part in this model is model of BM. The real geometry of BM 

is not too complex, but real material properties of BM material are very anisotropic. Both of 

these things need to be adjusted to get the appropriate mechanical response of BM. At the 

current stage of general research in this field is not possible to “measure” and apply real 

material properties. It is only possible to fit material (or geometrical) properties in order to 

obtain mechanical response that corresponds to the real behavior of the cochlea and BM. 
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4. Conclusion 

This paper presents part of research done during successfully finished SIFEM project. One of 

the main project objectives was developing of software solution for modeling of inner ear. The 

scientists engaged in research related to the modeling of the middle and inner ear (Böhnke et al. 

1999; Chang et al. 2018; Kamieniecki et al. 2017) most commonly use software such as 

ANSYS (ANSYS Multiphysics module) or COMSOL (COMSOL Multiphysics, Structural 

Mechanics & Acoustics Modules). The numerical software presented here is result of the 

research on the mentioned project. However, it is general purpose software and can be applied 

for modeling in other fields of science considering that acoustic – structure problems occur in 

various fields of science and technology. The software is developed based on three-dimensional 

fluid and solid finite elements, but can be easily extended by other types of elements, especially 

structural elements like shells, beams, rods, etc. Furthermore, the domain of solid and fluid can 

be completely arbitrary, given that a finite element method with 3D elements was used. The 

code is uploaded into a public repository of software solutions resulting from the scientific 

research done during projects from FP7 calls, making it publicly available to the scientists 

interested in using and further development of such a software solution. 

Acknowledgement. This work was supported in part by grants from Serbian Ministry of 

Education and Science III41007, ON174028 and FP7 ICT SIFEM 600933. The result reflects 

only the author's view and the European Commission is not responsible for any use that may be 

made of the information it contains. 

Appendix 

In Table 12 is given nomenclature used in the paper.  

Symbol Description 

p  Acoustic pressure 

ix  Spatial (Cartesian) coordinates 

t  Time 
c  Speed of sound (in acoustic wave equation) 

Q  Acoustic inertia 

H  Acoustic stiffness 

N  Pressure shape functions 

'N  Pressure shape functions derivatives 

M  Mass matrix 

C  Damping matrix 

K  Stiffness matrix 

D  Elasticity matrix 

u  Solid displacements 

u  Solid velocities 

u  Solid accelerations 

ext
F  External forces 

B  Strain-displacement matrix 
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  Solid density 

c  Damping coefficient (in Newtonian equation of motion) 

n  Normal vector 
  Angular frequency 
  Phase shift 

f  Natural frequency 

f  Fluid density 

Table 12: Nomenclature 

References 

Amestoy P, Duff I, L'Excellent YI and Koster J. A Fully Asynchronous Multifrontal Solver 

Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal. Appl. 1999. 23(1), 15–41. 

ANSYS Theory Reference, Edited by Peter Kohnke, Release 5.6, ANSYS Inc. 

ANSYS Multiphysics module https://www.ansys.com/products/platform/multiphysics-

simulation 

Bathe KJ. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, N. J., 1996. 

Beranek LL and Vér IL. Noise and Vibration Control Engineering. John Wiley & Sons, Inc. 

New York, 1992. 

Böhnke F, Arnold W. 3D-Finite Element Model of the Human Cochlea Including Fluid-

Structure Couplings, ORL J Otorhinolaryngol Relat Spec. 1999;61:305–310 

Chang Y, Kim N, Stenfelt S. Simulation of the power transmission of bone-conducted sound in 

a finite-element model of the human head. Biomechanics and Modeling in 

Mechanobiology, 2018. Volume 17, Issue 6, pp 1741–1755. 

COMSOL Multiphysics, Structural Mechanics & Acoustics Modules https://www.comsol.com/ 

Homma K, Du Y, Shimizu Y, Puria S. Ossicular resonance modes of the human middle ear for 

bone and air conduction. J Acoust Soc Am. 2009 Feb;125(2):968-79. doi: 

10.1121/1.3056564. PMID: 19206873; PMCID: PMC2852437. 

Isailovic V., Kojic M., Milosevic M., Filipovic N., Kojic N., Ziemys A., Ferrari M., A 

computational study of trajectories of micro- and nano-particles with different shapes in 

flow through small channels, Journal of the Serbian Society for Computational Mechanics, 

Vol. 8 No. 2, pp.14-28 UDC: 532.517.2, 2014. 

Kamieniecki K, Piechna J, Borkowski P, Basilar Membrane Vibration in Time Domain 

Predicted by Fluid–Structure Interaction Model in Pre- and Post-stapedotomy State. 

Procedia IUTAM Elsevier 2017. Vol. 24. 

Kim, N., Homma, K. & Puria, S. Inertial Bone Conduction: Symmetric and Anti-Symmetric 

Components. JARO 12, 261–279 (2011). https://doi.org/10.1007/s10162-011-0258-3 

Kojic M, Slavkovic R, Zivkovic M, Grujovic N. Finite Element Method – Linear analysis. 

Faculty of mechanical engineering, University of Kragujevac, 2010. 

Kojic M, Filipovic N, Stojanovic B, Kojic N. Computer Modeling in Bioengineering – 

Theoretical Background, Examples and Software. John Wiley and Sons, 978-0-470-06035-

3, England, 2008. 

Kojic M, Slavkovic R, Zivkovic M, Grujovic N, Filipovic N. PAK, Finite element software, 

BioIRC Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia. 

Kojic M., Milosevic M., Kojic N., Isailovic V., Petrovic D., Filipovic N., Ferrari M., Ziemys A., 

Transport phenomena: Computational models for convective and diffusive transport in 

capillaries and tissue, in: Suvranu De, Wonmuk Hwang, Ellen Kuhl, Eds., Multiscale 

Modeling in Biomechanics and Mechanobiology, Springer, Chapter 7, 131-156, 2015. 

https://www.ansys.com/products/platform/multiphysics-simulation
https://www.ansys.com/products/platform/multiphysics-simulation
https://www.comsol.com/
https://doi.org/10.1007/s10162-011-0258-3


Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    389 

 

  

Maia N. Reflections on the hysteretic damping model. Shock and Vibration 2009. Vol 16. pp. 

529–542. 

Morand H, Ohayon R. Fluid Structure Interaction. Applied Numerical Methods. Chichester etc., 

John Wiley & Sons; Paris etc., Masson 1995. 

Ni G. Fluid coupling and waves in the cochlea. PhD thesis. University of Southampton, Faculty 

of engineering and the environment, Institute of sound and vibration research, 2012. 

Ni G, Elliott SJ, Ayat M and Teal PD. Modelling Cochlear Mechanics, Hindawi Publishing 

Corporation, BioMed Research International, 2014. 

Rienstra SW and Hirschberg A, An Introduction to Acoustics, Eindhoven University of 

Technology, Eindhoven, 2009. 

Steele C, Baker G, Tolomeo J, Zetes-Tolomeo D. Cochlear Mechanics. In: Schneck DJ, 

Bronzino JD. Biomechanics – Principles and Applications 2002. 

DOI:10.1201/9781420040029.ch18,  

Steele C and Taber L. Comparison of WKB calculations and finite difference calculations for a 

two-dimensional cochlear model. The Journal of the acoustical Society of America 1979. 

65(4), 1001-1006 

Tachos, N.S., Sakellarios, A.I., Rigas, G., Isailovic, V., Ni, G., Böhnke, F., Filipovic, N., Bibas, 

T., and Fotiadis, D.I., Middle and inner ear modelling: From microCT images to 3D 

reconstruction and coupling of models, IEEE 38th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), Page(s): 5961-5964, August 

16-20, 2016. ISBN: 978-1-4577-0220-4, doi: 10.1109/EMBC.2016.7592086 

Zienkievicz O. The finite element method (third edition), McGraw-Hill Book Co., New York, 

1983. 


