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Abstract 

Huxley-type muscle models offer a physiologically grounded description of cardiac contraction 

but remain computationally prohibitive for large-scale, multi-scale simulations. This article 

reviews surrogate modeling strategies that alleviate these costs for ventricular biomechanics, 

with emphasis on data-driven (RNN/TCN/GRU) and physics-informed (PINN) formulations 

and their coupling to finite-element solvers. The data-driven approach utilizes deep neural 

networks trained on numerical simulation data to replicate the behavior of the Huxley model 

while significantly reducing processing costs. The physics-informed approach approximates 

solutions to Huxley’s muscle contraction equation, which governs cross-bridge dynamics and 

force generation. By predicting the probability of myosin-actin interactions, this method enables 

direct calculation of stress and stiffness for finite element simulations. The coupling of these 

surrogate models with finite element computational frameworks allows for faster and more 

scalable simulations.  Our goal is to provide a consolidated reference and actionable guidance 

for selecting and implementing surrogate approaches for Huxley-type muscle simulations. 

Keywords: surrogate modeling, recurrent neural networks, physics-informed neural networks, 

finite element method, Huxley’s muscle model 

1. Introduction 

Cardiac muscle simulations serve as a powerful tool for clinicians, enabling the assessment of 

both real-world and hypothetical physiological scenarios. The foundation of these computations 

lies in current understanding of the molecular mechanisms that regulate muscle contractions, 

leading to the formulation of biophysical muscle models. Among these, Huxley-type models are 

particularly valuable due to their strong physiological basis, making them well-suited for 

capturing the complex and non-uniform nature of muscle contractions. Additionally, these 

models facilitate the study of genetic influences on muscle function, as mutations can alter 

cross-bridge kinetics and contractile properties, contributing to cardiomyopathies. 
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A multiscale finite element simulation approach that employs the Huxley muscle model 

was introduced to analyze muscle behavior across different spatial and temporal scales as 

shown in Stojanović (2020), Stojanović (2015). Their methodology integrated continuum 

mechanics through the finite element method while defining material properties at the 

microscopic scale using the Huxley model. By incorporating this model into transient finite 

element simulations, they could compute stress and instantaneous stiffness based on factors 

such as muscle activation, deformation, and other material properties. However, the microscale 

computations required for these simulations proved computationally demanding, with single-

time step calculations taking thousands of seconds. To address these bottlenecks, the 

researchers implemented hybrid MPI-GPU parallelization techniques for simulating a two-

dimensional tongue model as shown in Ivanović (2015), Ivanović (2019). Despite these 

optimizations, even with high-performance computing clusters, executing multiscale finite 

element simulations remained time-intensive. 

To mitigate these computational burdens, the development of a surrogate model that could 

replace the original Huxley muscle model became essential. The concept of surrogate modeling 

has been successfully applied in fields such as progressive damage modeling in composite 

materials as shown in Yan (2020) and micro-level nonlinear material modeling as shown in 

Ghavamian (2019), achieving strong agreement with the original models. However, muscle 

modeling presents additional challenges due to its dependence on multiple input features and 

complex learning mechanisms. Prior to our work Milićević (2022), no surrogate model had 

been specifically designed to replicate the Huxley muscle model within a multiscale simulation 

framework. 

Physics-informed neural networks (PINNs) present a cutting-edge approach to supervised 

learning tasks while enforcing fundamental physical laws, often expressed through nonlinear 

partial differential equations as presented by Raissi (2017a), Raissi (2017b) and Raissi (2019). 

Unlike conventional neural networks, PINNs inherently embed these governing equations as 

prior knowledge, functioning as universal function approximators with built-in physics 

constraints as presented by Raissi (2017a), Raissi (2017b) and Raissi (2019). A crucial 

innovation in PINNs is the inclusion of a residual network, which represents the underlying 

physics equations and computes residual errors as described by Markidis (2021). Training a 

PINN involves minimizing these residuals, ensuring that the neural network’s output satisfies 

the governing differential equations. A distinctive advantage of PINNs is their ability to learn 

without reliance on labeled data, precomputed simulations, or experimental results, instead, they 

primarily depend on evaluating residual functions. However, in certain cases, such as inverse 

problems, supplementary simulation or experimental data can be incorporated for supervised 

training. This is particularly useful when critical information, such as boundary conditions or an 

equation of state, is missing from a system of equations. Once trained, a PINN can serve as a 

highly efficient replacement for conventional numerical solvers in scientific computing as stated 

in Markidis (2021). One of the standout features of PINNs is their grid-free nature, allowing 

them to accept any point within the domain as input without requiring a predefined 

computational mesh. Additionally, a trained PINN can predict values across different grid 

resolutions without the need for retraining as stated in Markidis (2021). Their ability to treat 

time as a standard input variable makes them especially effective for time-dependent problems. 

Unlike traditional computational approaches, which require solving previous time steps 

sequentially, PINNs can directly predict outputs for any desired time point, avoiding the 

computational costs associated with time-stepping. These attributes make PINNs particularly 

advantageous for solving a wide range of equations, including Burgers' equation, the Navier–

Stokes equations, and the Schrödinger equation as shown in Raissi (2017a), Raissi (2017b), 

Raissi (2019) and Markidis (2021). 
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Previous work (Milićević et al., 2022) introduced a surrogate representation of the Huxley 

muscle model based on a fixed subset of parameters, while allowing variations in muscle 

stretch, activation, and external loading. Within the finite element framework, stretch was 

supplied as input to the material model, with stress and instantaneous stiffness obtained as 

outputs. Because muscle behavior is history-dependent, it was shown that time-series data 

incorporating not only the current values of activation and stretch but also their previous states, 

together with past stress and stiffness values, were required for accurate prediction. Recurrent 

and convolutional neural networks were therefore employed and integrated into the finite 

element analysis environment. Numerical experiments demonstrated that these surrogates 

closely replicated the original Huxley model while providing a substantial computational speed-

up, thereby enhancing the feasibility of large-scale simulations of left ventricular mechanics. In 

the present article, we revisit and contextualize these results as part of a broader overview of 

surrogate modeling strategies for Huxley-type simulations. Previous studies, including our own 

implementations demonstrated that PINNs can approximate solutions of Huxley’s cross-bridge 

dynamics for both isometric and isotonic contractions with good agreement to conventional 

numerical solvers. These results highlighted the ability of PINNs to embed physics constraints 

without relying on large labeled datasets. 

2. Methodology 

This section provides a concise overview of the finite element method applied at the 

macroscopic scale, alongside the Huxley muscle model, which governs microscale muscle 

behavior within the simulation. Additionally, we outline the neural network architectures 

employed in constructing the data-driven surrogate model. A more detailed discussion follows, 

covering the step-by-step process of developing the surrogate model and its seamless 

integration into the finite element framework. Furthermore, we overview physics-informed 

neural networks (PINNs) and explain the methodology used to incorporate them into the finite 

element solver. 

2.1 Finite element method 

From a mechanical perspective, muscle can be interpreted as a dynamic mechanical system. The 

finite element method (FEM) is the most widely used technique for solving complex structural 

problems that involve both material and geometric nonlinearities. Within an incremental-

iterative framework, a muscle's equilibrium state can be established by modeling it as a 

structure composed of fiber components. Activation triggers fiber contraction within the 

compliant connective tissue, as described by Kojic (2005) and Bathe (1996). The equilibrium 

equation governing a finite element structure in its deformed state at a given time step (t) and 

iteration (i) is expressed as:  
( ) ( ) ( ) ( )1 1 1Δ Δ Δ Δ Δ(   )            
i i i it t t t t t t t t t

pass act ext pass actK K U F F F
− − −+ + + + ++ = + +             (1) 

where 
( ) ( )i 1i 1t Δt t Δt t Δt

ext pass act  F ,   F ,   F
−−+ + + represent external loads, passive internal nodal forces, 

and active molecular forces incorporated into finite element nodal forces, respectively;

( )i 1t Δt
pass   K

−+
 is the stiffness matrix of passive muscle components and

( )i 1t Δt
act  K

−+  is the 

cumulative stiffness of actomyosin bonds; 
( )i

δU  represents increments of nodal displacements 

at iteration ( )i .     The development of active force
( )i 1t Δt
act  F

−+   and stiffness 
( )i 1t Δt
act  K

−+   is 
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governed by the deformation rate along the primary muscle fiber direction. The total stress mσ  

arises from both the contractile forces generated by the muscle and the passive elastic behavior 

of the surrounding connective tissue and non-contractile structures: 

( )1 E
m   = + −                                                     (2) 

where   is the fraction of muscle fibers in total muscle volume,   m  is the active stress 

generated in muscles and  E is the stress in the passive part of the muscle.  

2.2 Huxley’s muscle model  

Huxley’s research focused on understanding filament interactions within muscle tissue, 

particularly the probability of forming temporary molecular connections, known as cross-

bridges, between myosin heads and actin filaments inside sarcomeres as stated in Huxley 

(1957), Gordon (1966), Stojanović (2007), Mijailovich (2010). The function ( ),n x t  represents 

the fraction of cross-bridges formed at a given time, defined by the relative displacement x  of 

the nearest actin-binding site with respect to the myosin head’s equilibrium position. This 

relationship is governed by the following equation: 

( ) ( )
( ) ( ) ( ) ( )

, ,
1 , , , ,  

n x t n x t
v n x t f x a n x t g x x

t x

 
− = − −     

        () 

where f(x,a) and g(x) represent the cross-bridge attachment and detachment rates of cross-

bridges, respectively, while v denotes the filament sliding velocity, positive in the direction of 

contraction, and a corresponds to a muscle activation expressed as a time-dependent function as 

stated in Mijailovich (1996). The partial differential Equation (3) is typically solved using the 

method of characteristics with initial condition ( ),0 0n x = . After obtaining the ( ),n x t  values, 

the generated force F within the muscle fiber and stiffness K, can be computed using the 

following relations: 

( ) ( ),    F t k n x t xdx


−
=                                                   (4) 

( ) ( ),  K t k n x t dx


−
=                                                      (5)      

where k denotes the stiffness of the cross-bridges. The stress and instantaneous stiffness are 

calculated as: 

iso
m

iso

F
F


 =                                                                      (6) 

0
m iso

iso

L K
e F

 



=


                                                              (7) 

where   is stretch,  iso is maximal stress achieved during isometric conditions, 0  L is the 

initial length of sarcomere, and isoF  is a maximal force achieved during isometric conditions. 
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These stresses and stiffness values are subsequently incorporated into the finite element 

framework to yield 
( )1Δ   
it t

actF
−+

and
( )1Δ 
it t

actK
−+

.  

Muscle activation is derived from intracellular calcium concentration. The calcium profile 

is modeled using the parametric function proposed by Hunter (1998):  

( ) ( )
1

0 0  

t

Ca
i max

t
Ca t Ca Ca Ca e

Ca




−

= + −                             (8) 

where ( )iCa t  is intracellular 2Ca + concentration, starting from a resting value 0Ca  and 

reaches its maximum maxCa  at time t Ca= .  The calcium concentration is transformed into an 

activation   according to: 

( )

( ) ( )50

n

nn

Ca

Ca C
 =

+
                                                (9) 

where 50C  is the value required to achieve 50% availability of calcium, calculated using 

( )( )50 50 21 1refpC pC  = + − ; 506
50 10

pC
C

−
=  [µM], and n  is defined as  

( )( )11 1 refn n  = + −                                           (10) 

where   is stretch, 50  ,refpC  refn , 1   and 2  are constant coefficients. Values 5.2refn = , 

50 6.18refpC = , 1 1.95 =  and  2 0.31 =  were taken from Hunter (1998).  

2.3 Recurrent and convolutional neural networks 

Recurrent neural networks (RNNs) are widely utilized for analyzing time-dependent data, as 

they allow previous outputs to influence future inputs while preserving hidden state 

information. However, training RNNs presents significant challenges due to their tendency to 

suffer from exploding or vanishing gradients, which can hinder effective learning as stated in 

Jain (1999) and Pascanu (2012). Several advancements have been introduced to mitigate these 

issues in conventional RNN architectures.  

One of the most well-known improvements is the long short-term memory (LSTM) 

network, which combats the vanishing gradient problem by incorporating an internal memory 

mechanism that facilitates long-term retention of information as stated in Yu (2019) and 

Hochreiter (1997). Another widely used alternative is the gated recurrent unit (GRU), which 

simplifies the architecture by omitting internal memory, resulting in faster computations while 

maintaining performance comparable to LSTMs as stated in Dey (2017). A more recent variant, 

the nested long short-term memory (nested LSTM), extends the LSTM model by incorporating 

additional memory layers, aiming to enhance long-term information retention as stated in Moniz 

(2018) . The underlying premise is that increased memory capacity enables more effective 

learning of complex temporal dependencies.  Given their potential for improving muscle 
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surrogate modeling, we provide an overview of the GRU and nested LSTM architectures, 

emphasizing their advantages in capturing time-dependent muscle dynamics. 

 

Fig. 1. Gated recurrent unit (GRU) scheme (according to Milićević (2022)) 

The GRU cell is defined by two gating mechanisms: the update and reset gates. As 

presented in Fig. 1, the dynamic of the GRU cell is described by: 

( )1t rh t rx t rr W h W x b −= + +                                            (11) 

( )1t zh t zx t zz W h W x b −= + +                                            (12) 

( ) ( )( )1 11t t t t hh t t hx t zh z h z tanh W r h W x b− −= − + + +                      (13) 

where t denotes a time step, r denotes reset gate output, z denotes update gate output and h 

is the hidden state,   is sigmoid activation function, tanh  is a tangential hyperbolic function, 

W represents weights of appropriate GRU cell components, rb ,   zb  denote reset and update 

biases and x is an input vector. In an LSTM, the equations of updating the cell state and the 

gates are given by: 

( )1  t i t xi t hi ii x W h W b −= +                                           (14) 

( )1  t f t xf t hf if x W h W b −= + +                                        (15) 

( )1 1t t t t c t xc t hc cc f c i x W h W b− −= + + +                         (16) 

( )1  t o t xo t ho ox W h W b  −= + +                                        (17) 

( ) t i th tanh c=                                                (18) 

where the sigmoidal functions ,  , i f o    represent the activation functions for input (i), 

forget (f), and output gate (o) respectively; tanh  is a tangential hyperbolic function; c  denotes 

the cell value, h denotes the hidden state of the cell,  W  denotes weights, b denotes bias, and x  

is an input vector. The nested LSTM modifies the standard update rule for tc  by replacing the 

additive operation with a learned stateful function: ( )1, t t t t t tc m f c i g−= . The function tm  

is parameterized by an additional LSTM cell, which introduces an inner memory state, 

producing the nested LSTM architecture. The input and the hidden states of the memory 

function in a Nested LSTM are given by:  
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1 1t t th f c− −=                                                (19) 

( )1t t c t xc t hc cx i x W h W b −= + +                                   (20) 

Beyond recurrent networks, convolutional neural networks can also model sequential data 

as demonstrated by Bai (2018) and Van den Oord (2016). For a 1-D sequence input    nx and 

a filter  : 0, , 1f k − →  the dilated convolution operation F  on element  s  of the 

sequence is defined as: 

( ) ( )( ) ( )
1

0

*    

k

d s di

i

F s x f s f i x

−

−

=

= =                                        (21) 

where d  is the dilation factor, k  is the filter size, and  s di− accounts for the direction of 

the past. The scheme of TCN is shown in Fig. 2.  

 

Fig. 2. Temporal convolutional network scheme  (according to Milićević (2022)) 

2.4 Data-driven surrogate model   

To build the data-driven surrogate model, numerical experiments were generated to provide 

input data for finite element simulations. These experiments used a single 2D finite element 

model with varying boundary conditions depending on the experiment type. Four distinct 

numerical experiment types can be distinguished: 

1. Isotonic Contraction: Motion constraints were applied to specific nodes while 

activation or calcium concentration was varied. Upon deactivation, the muscle returned 

to its initial position. 

2. Quick Release: The muscle was fully activated with all nodes constrained until a set 

time step, at which point some constraints were lifted, leading to a force drop below 

25% of the maximum. 

3. Prescribed Force: External forces were applied at selected nodes, with constraints 

mirroring those in isotonic contraction experiments. 
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4. Prescribed Displacement: Specific displacements were assigned to nodes under 

similar constraints as isotonic contractions. 

Each experiment type introduced variations in activation functions, prescribed forces, or 

displacements, ensuring a diverse dataset for training. Once experiment data was generated, 

finite element simulations were conducted using the Huxley muscle model and recorded key 

parameters such as activation, stretch, stress, and stress derivatives. The raw data was then 

processed into a time-series format, forming a structured input tensor for the neural network. 

After model training, the same numerical experiments were re-run using the surrogate model to 

compare its performance against the original Huxley model. If discrepancies arose, model is 

iteratively refined and the dataset was expanded. Once the model demonstrated strong 

agreement, additional randomly generated experiments were introduced for further validation. 

The dataset used for training and validation comprised of 160 numerical experiments, divided 

into: 45 isotonic contraction experiments, 20 quick release experiments, 40 prescribed force 

experiments, 55 prescribed displacement experiments. Every fourth experiment was allocated 

for validation, while the remaining were used for training. An additional  eight experiments 

(two of each type) were used to assess model performance. 

The data-driven surrogate model was embedded into the finite element framework through 

a structured pipeline involving initialization, input updating, prediction, and result retrieval. 

During initialization the neural network architecture, trained weights, and preprocessing 

parameters were loaded. The input tensor was initialized, with stretch values set to one and all 

other values to zero. At each time step, activation and stretch values were updated at each 

integration point, the neural network predicted stress and stiffness increments and input tensor 

was shifted back in time to prepare for the next step. 

2.5 Physics-informed neural networks 

An alternative approach to surrogate modeling of muscle behavior is based on physics-informed 

neural networks (PINNs). These networks integrate deep learning with fundamental physical 

principles, particularly for solving partial differential equations (PDEs). Unlike purely data-

driven models, PINNs enforce compliance with governing physical laws by incorporating a 

physics-based loss function, which quantifies the deviation of the predicted solution from the 

PDE constraints. By minimizing this loss, the model inherently adheres to the fundamental 

physics of the system. 

A key innovation in PINNs is the use of residual networks, inspired by deep learning 

techniques in which residual connections facilitate training (Fig. 3). These networks encode the 

governing equations by calculating the residual error, which is the difference between the left-

hand and right-hand sides of the PDE. The objective is to drive this residual toward zero, 

ensuring the model's predictions are physically consistent. Another crucial component of PINNs 

is automatic differentiation, which enables precise computation of gradients needed to optimize 

network parameters during training. Standard optimization techniques, such as stochastic 

gradient descent (SGD) or the Adam optimizer, are commonly used to refine the model’s 

predictions. This automated approach ensures the network learns solutions that align with the 

underlying physics. 
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Fig. 3. Schematic of the Physics-informed neural network (PINN)  

2.6 Integration of PINN-Based Surrogate Model into Finite Element Analysis 

The process of integrating a PINN-based surrogate model into finite element analysis follows a 

structured sequence of steps, ensuring computational efficiency while maintaining the accuracy 

of muscle behavior simulations (Table 1). At the beginning of the simulation, the neural 

network is loaded from a pre-trained file. Several key parameters are defined, including the 

spatial region where myosin-actin interactions will be observed. This involves specifying the 

start and end positions of actin-binding sites, the number of spatial subdivisions, and essential 

model properties such as initial sarcomere length, cross-sectional area, and stiffness. 

Additionally, an input tensor is allocated, with its size determined by the number of spatial 

divisions, the number of input features, and the total number of integration points within the 

model. To ensure consistency, the tensor is populated with static spatial position values that 

remain unchanged throughout the simulation. As the finite element simulation progresses, 

certain attributes within the input tensor need to be updated dynamically. This is handled by a 

function that assigns new values for muscle activation, the current time step, and stretch values 

at both the current and previous time steps. Since each integration point in the finite element 

mesh requires multiple spatial subdivisions, these updated values are replicated across the 

corresponding segments of the input tensor to ensure proper data alignment. Once the input 

tensor has been populated with the latest values, it is fed into the neural network, which predicts 

the probability of myosin heads attaching to actin-binding sites. These probabilities serve as the 

foundation for stress and stiffness calculations in the muscle model. A separate function is then 

used to extract the predicted probabilities for each integration point, enabling the computation 

of stress and its derivatives. By embedding the PINN-based surrogate model into the finite 

element framework, the simulation gains a substantial computational advantage, reducing 

processing time while preserving the fidelity of muscle contraction mechanics. This integration 

allows for more efficient large-scale simulations, addressing the limitations associated with 

traditional muscle models. 

Input and output tensor description.  The input tensor is defined at every finite element 

integration point and contains the spatial coordinate of actin-binding site subdivisions (x), the 

current simulation time (t), the muscle activation level ( t ), the current stretch ( t ), and the 

previous stretch ( 1t − ). These values are replicated across all spatial subdivisions, resulting in a 

tensor of size          ip x inN N F   , where ipN  is the number of integration points, xN  the number 

of subdivisions, and inF  the number of input features. At each time step, only the time-
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dependent entries are updated, while the spatial coordinate remains fixed. The output tensor 

consists of the predicted probabilities of cross-bridge attachment (n) for each subdivision, which 

are subsequently reduced to compute stress and stress derivatives at every integration point. 

These quantities are then supplied back to the finite element solver to update the global system 

of equations. 

 

Pseudo code for finite element analysis with physics-informed neural 

network at microlevel as a replacement for Huxley’s muscle model 

1:  huxpinn_init(NQP, K, xstart, xend, xdiv, L0, A, modelfile) 

2:  loop over time steps: 

3:      while convergence criteria not met: 

4:          for ip in 0..NQP-1: 

5:              huxpinn_set_values(ip, time, activation, stretch, stretch_prev) 

6:          huxpinn_predict() 

7:          for ip in 0..NQP-1: 

8:              huxpinn_get_values(ip, stress, dstress) 

9:  huxpinn_destroy() 

Table 4 Pseudo code for PINN-based surrogate model integration into FEM framework 

3. Results 

This section presents the results obtained from the proposed data-driven surrogate models 

across various numerical simulations. The performance of these models is assessed in terms of 

both accuracy and computational efficiency, highlighting the achieved acceleration compared to 

the original Huxley model. Additionally, the outcomes of physics-informed surrogate models 

are demonstrated in cases of isometric and isotonic contractions. We also introduce multi-scale 

left ventricle model. In these simulations, the most effective surrogate model from our study is 

seamlessly integrated as a replacement for the Huxley model, functioning as the muscle 

material model within the finite element framework. 

3.1 Evaluation of Neural Network Architectures for Surrogate Modeling 

During the development of the surrogate model, multiple neural network architectures were 

explored. he selected neural network architectures for surrogate modeling varied in structure 

and complexity, each incorporating different configurations of hidden layers and parameter 

sizes. The Temporal Convolutional Network (TCN) consisted of 11 convolutional layers, each 

equipped with 192 filters. The dilation rates followed an exponential progression of 1, 2, 4, 8, 

and 16, with a kernel size of 4. This architecture was designed to capture temporal dependencies 

efficiently while maintaining a relatively compact model with 928,706 trainable parameters. 

The Nested Long Short-Term Memory (Nested LSTM) model featured a single nested 

layer with a depth of 8, where each depth level contained 128 neurons. This hierarchical 

structure allowed the model to process long-range dependencies in the data while maintaining a 

total of 992,002 trainable parameters. 

The Gated Recurrent Unit (GRU) network followed a multi-layered design, incorporating 

five stacked GRU layers. The first, fourth, and fifth layers contained 128 neurons, while the 

second and third layers were expanded to 256 neurons each, increasing the network’s capacity 

for learning temporal patterns. This architecture resulted in a total of 992,770 trainable 

parameters, making it one of the more complex models in the study. 
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A hybrid approach combining Nested LSTM and TCN was also explored, integrating a 

nested LSTM layer with a depth of 6, each containing 128 neurons, alongside a TCN structure 

comprising seven convolutional layers with 128 filters. The convolutional layers used dilation 

rates of 1, 2, and 4, with a kernel size of 4. This hybrid architecture slightly reduced the 

parameter count to 991,874 while leveraging the strengths of both recurrent and convolutional 

networks. 

Similarly, the GRU-TCN model integrated recurrent and convolutional layers, featuring a 

GRU architecture where the first and fourth layers contained 64 neurons, while the second and 

third layers expanded to 256 neurons. The TCN component consisted of seven convolutional 

layers, each with 128 filters, maintaining the same dilation structure as the Nested LSTM-TCN 

model. This hybrid design slightly reduced the overall parameter count to 974,978 while aiming 

to balance computational efficiency and predictive accuracy. 

Across all architectures, the Rectified Adam optimizer was employed with an initial 

learning rate 10-3, momentum parameters set to 1 0.99=β , 2 0.9999=β , and a gradient clipping 

norm of 10-4. The models were trained using the Huber loss function with a smoothing 

parameter of 58 =δ ×10-6. Training was conducted over a maximum of 50,000 epochs, with a 

batch size of 16,384. To prevent overfitting and optimize computational efficiency, an early 

stopping mechanism was implemented, halting training if no improvement was observed over 

500 consecutive epochs. 

The evaluation of the neural networks' predictive performance was based on the correlation 

between true and predicted stress values across different datasets and numerical simulations. 

The results indicated that all tested networks exhibited strong agreement with actual values 

when evaluated on training and validation data. However, their performance declined in 

numerical simulations due to the accumulation of small prediction errors over multiple time 

steps. Among the networks, GRU achieved the highest correlation coefficients, with values of 

0.99999972, 0.999999640, and 0.99999518 for training, validation, and test datasets, 

respectively. It also exhibited the most accurate behavior in numerical simulations, with 

correlation values of 0.99977, 0.99965, and 0.989 across training, validation, and test 

simulations. Furthermore, GRU had the lowest standard deviation in correlation coefficients, 

indicating stable performance across different experiments. 

The Nested LSTM-TCN hybrid demonstrated improved accuracy over its individual 

components, achieving correlation coefficients of 0.9999951, 0.9999956, and 0.999971 for 

training, validation, and test datasets. However, its simulation accuracy was lower than GRU, 

with correlation values of 0.981, 0.981, and 0.812 in training, validation, and test simulations. 

The GRU-TCN hybrid, on the other hand, failed to outperform the standalone GRU model, 

achieving a training data correlation of 0.99999972, but slightly lower scores of 0.9999984 and 

0.999959 in validation and test datasets. While it performed well in training simulations 

(0.9324) and validation simulations (0.998), its test simulation correlation was slightly lower at 

0.965. 

A notable trend was the decline in correlation values for all networks during test 

simulations, reflecting challenges in generalization. The GRU model exhibited the smallest drop 

in correlation coefficients, making it the most reliable option for muscle surrogate modeling. 

The GRU-TCN hybrid, despite strong performance in some areas, did not surpass the 

standalone GRU model in overall effectiveness. 

This section provides an analysis of the GRU-based surrogate model's performance against 

the original Huxley model across different numerical experiments. Stress-time diagrams 

generated from simulations with both models demonstrate their alignment, with instantaneous 

stiffness omitted for simplicity due to similar trends. The surrogate model was evaluated using 
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training, validation, and test datasets. Fig. 4 highlights the test cases, assessing the model’s 

ability to generalize beyond the training data. Across all test experiments, the surrogate model 

closely matched the original Huxley model, demonstrating its reliability in accurately 

replicating muscle contraction behavior. 

 

Fig. 4. Stresses obtained in numerical experiments used to test the neural network. a) Isotonic 

contraction), b) quick release, c) prescribed force, d) prescribed displacement  (according to 

Milićević (2022)) 

3.2 Enhancing Computational Efficiency Through  Data-driven Surrogate Modeling 

The primary goal of integrating a surrogate model is to significantly accelerate numerical 

simulations while maintaining accuracy. This section evaluates the computational speed-up 

achieved by replacing the original Huxley muscle model with the GRU-based surrogate model. 

A comparison of execution times between the traditional multiscale finite element simulation 

and its surrogate counterpart highlights the efficiency gains. The analysis includes both 

sequential and parallel implementations, with parallelization applied at the integration point 

level, utilizing four MPI processes corresponding to the four integration points present in all 

numerical experiments. 

The surrogate model demonstrated a dramatic reduction in computational time, achieving a 

speed-up of approximately 50 times for quick release, prescribed force, and prescribed 

displacement experiments. For isotonic contraction experiments, the speed-up was slightly 

lower but still substantial at around 25 times. These improvements translate to an order-of-

magnitude acceleration compared to the sequential execution of the original Huxley model. The 

ability to perform simulations at such high speeds makes the surrogate model a practical and 

scalable alternative, particularly when dealing with more complex simulations involving a 

larger number of finite elements. 
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3.3 Physics-informed neural network results 

This section reports the outcomes achieved through a physics-informed neural network (PINN) 

framework. To simulate isometric muscle contraction, we constructed a neural network 

comprising eight hidden layers with 20 neurons per layer, each activated by a hyperbolic 

tangent function. Training was performed by minimizing the residual of Huxley’s muscle 

contraction equation, while enforcing initial conditions to guarantee solution uniqueness. 

Accuracy was further improved by employing the neural tangent kernel (NTK) approach, which 

adaptively updated the weights to balance collocation points assigned to the PDE residual with 

those used for initial conditions. The training dataset consisted of a grid spanning displacement 

values (x) from –20.8 nm to 62.4 nm and time values (t) from 0 to 0.5 s. Following training, 

stress was computed from the obtained n values and benchmarked against results derived using 

the method of characteristics. As illustrated in Fig. 5, the PINN solutions closely match those 

from the method of characteristics, confirming the robustness and effectiveness of the physics-

informed approach. 

To investigate isotonic muscle contraction, we carried out a series of numerical simulations 

driven by randomly generated activation functions, producing contraction followed by 

relaxation to the initial state. These simulations were implemented using a single finite element, 

as shown in Fig. 6. The boundary conditions imposed were: full constraint at point A, vertical 

sliding permitted at point C, and free movement at points D and B. 

During the simulations, input variables—including displacement (x), time, activation, and 

stretch—were recorded together with the corresponding n values as outputs. This dataset was 

then used to train a neural network that embedded the Huxley equation with initial conditions. 

The network architecture comprised eight hidden layers with 200 neurons per layer, each 

employing a hyperbolic tangent activation. 

 

 
Fig. 5. Comparison of method of characteristics and PINN in the simulation of isometric 

contraction 
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Fig. 6. Comparison of method of characteristics and PINN in the simulation of isotonic 

contraction case 

Once trained, the neural network was incorporated as a constitutive material model within 

the finite element framework. At the macroscopic level, the finite element routine supplied the 

network with activation, time, and current stretch values. Using these inputs along with the x 

coordinates, the network predicted n values, which were subsequently employed to compute 

stress and its derivatives. As shown in Fig. 6, the stresses predicted by the PINN model closely 

matched those obtained through the method of characteristics.The isotonic case, characterized 

by variable muscle activation and nonzero contraction velocity, introduced additional 

complexity, leading to slightly reduced accuracy compared to the isometric scenario. However, 

despite these challenges, the stress values computed via the method of characteristics and PINN 

remained closely aligned, demonstrating the robustness of the physics-informed approach. 

Finally, we assessed the computational efficiency of multi-scale finite element simulations 

by comparing the performance of PINN with the method of characteristics at the microscopic 

scale. The results indicate that PINN achieves a fourfold improvement in computational speed 

relative to the method of characteristics. 

It should be emphasized, however, that the physics-informed and data-driven strategies are 

not strictly comparable, as they employ different input features and outputs. The key strength of 

the physics-informed framework lies in its explicit formulation for solving partial differential 

equations. Nonetheless, this approach requires larger input tensors, since it depends on the 

discretization of binding site positions. By contrast, the data-driven model is both more 

memory-efficient and computationally faster, making it the preferable option for large-scale 

simulations. 

In light of these findings, a GRU (Gated Recurrent Unit)–based data-driven surrogate 

model was adopted for simulating left ventricular mechanics. Looking ahead, further advances 

in physics-informed approaches may enhance their applicability, particularly in leveraging their 

inherent ability to resolve complex differential equations.  

The memory footprint of a PINN-augmented FE simulation scales approximately with 

input tensor size. By construction, PINNs require larger input tensors than purely data-driven 

surrogates because the binding-site coordinate x must be discretized and threaded through the 

network. In our experiments, this led to larger per-step tensors compared with RNN/GRU 

surrogates. At the whole-simulation level, prior measurements in a comparable multiscale set-

up show how memory scales with the microscopic solver choice: for ~4,000 integration points, 

the original Huxley micro-solver required ~23.96 GB, whereas a neural surrogate required ~812 

MB, illustrating the substantial savings available when replacing the classical micro-solver. 
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While these numbers come from a data-driven surrogate, they contextualize the expected order-

of-magnitude savings versus the full Huxley model; PINN tensors sit between these two 

extremes. 

Runtime scaling shows similar trends: replacing the method of characteristics with a PINN 

at the micro-scale yielded ≈4× speedup in multiscale FE tests (isometric/isotonic cases), with 

accuracy close to the reference solutions. 

3.4. Cardiac cycle with the left ventricle model  

Among the proposed surrogate models, the GRU-based network demonstrated the highest 

potential, making it the optimal choice for simulating the cardiac cycle using both a 

parameterized and an echocardiography-derived left ventricle model. 

The parametric left ventricle model integrates both fluid and solid wall components, with 

its structure designed to capture the biomechanical interactions within the heart. The simulation 

focused on half of the left ventricle, incorporating mitral and aortic branches at the top, which 

are connected to the base through a geometrically defined connective structure. The geometry 

of the fluid domain is determined by specifying the lengths and diameters of each component, 

along with parameters that control mesh density to ensure computational accuracy. 

The solid domain is seamlessly coupled with the fluid model, forming a cohesive 

representation of ventricular mechanics. The solid structure is defined by setting wall thickness 

and the number of layers composing the myocardial wall. Within this domain, muscle fiber 

orientation is represented by arrows, illustrating a helical pattern that transitions smoothly 

across the wall thickness. At the endocardium, fibers are aligned at approximately 60° 

(indicated by yellow arrows), while at the epicardium, they shift to -60° (represented by red 

arrows). The intermediate layers display a gradual linear shift in fiber direction, with fibers in 

the mid-wall appearing in pink. To ensure realistic mechanical behavior, the solid portion of the 

model includes around 4000 integration points, allowing for accurate stress and strain 

computations throughout the simulation. 

 

Fig. 7. Parametric left ventricle model consisting of fluid and solid domain with muscle fibers 

(according to Milićević (2022)) 



342                              B. Milićević et al.: Overview Of Surrogate Modeling For Huxley-Type Muscle Simulations… 

 

The transient simulation encompasses the full cardiac cycle, beginning with the initial 

geometry depicted in Fig. 7, which represents the onset of diastole. During this phase, blood 

enters the left ventricle at a steady velocity of 100 mm/s through the mitral valve, while the 

aortic valve remains closed. As diastole progresses, the velocity at the mitral valve gradually 

decreases until it reaches zero, at which point both valves shut simultaneously. This marks the 

isovolumetric contraction phase, where the volume of the ventricle remains constant while 

muscle activation begins, preparing for systole. 

At the onset of systole, the aortic valve opens, initiating blood ejection from the ventricle as 

the muscle fibers gradually deactivate. The contraction-driven forces propel blood through the 

aortic valve, completing the cardiac cycle. The Holzapfel material model is employed to 

simulate passive mechanical properties of the myocardial tissue, ensuring an accurate 

representation of the heart’s structural response. To model active stress generation, the GRU-

based surrogate model replaces the computationally demanding Huxley model, significantly 

improving simulation efficiency while maintaining physiological accuracy. 

The displacement fields within the solid ventricular wall at different phases of the cardiac 

cycle are illustrated at the onset of diastole (t = 0.1s, t = 0.2s, t = 0.3s) and during systole, 

including its initiation and midpoint (t = 0.6s, t = 0.7s, t = 0.8s) are shown in Fig. 8. The 

velocity field within the fluid domain is also analyzed at key moments, capturing flow dynamics 

at the beginning and midpoint of diastole, as well as at the midpoint of systole, is shown in Fig. 

9. These visualizations highlight the contraction of the ventricle, driven by muscle forces at the 

onset of systole, which facilitates blood ejection through the aortic valve. As the cardiac cycle 

progresses, muscle deactivation leads to a gradual return of the ventricle to its original 

geometry, preparing for the next cycle. The observed agreement between the surrogate model’s 

predictions and expected physiological behavior reinforces its viability for use in large-scale 

cardiac simulations, demonstrating its effectiveness in capturing the mechanics of left 

ventricular function. 

 

 

Fig. 8. Displacement field at start of the diastole (t=0.1s, t=0.2s, t=0.3s), and at the start and the 

middle of the systole (t=0.6s, t=0.7s, t=0.8s) within parametric LV model (according to 

Milićević (2022)) 
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Fig. 9. Left ventricle fluid velocity field at the start and the middle of the diastole, and the 

middle of the systole (according to Milićević (2022)) 

4. Conclusions 

The Huxley muscle model, grounded in fundamental muscle physiology, provides a highly 

accurate representation of muscle contraction dynamics but comes with significant 

computational demands. This complexity makes it impractical for large-scale multiscale 

simulations. To address this issue, surrogate modeling offers an alternative by approximating 

the original model with a computationally efficient representation. This paper explores the 

development of surrogate models for Huxley’s muscle behavior using artificial neural networks, 

enabling faster simulations while maintaining accuracy. 

Surrogate modeling can be approached in two ways: data-driven neural networks and 

physics-informed neural networks (PINNs). The first method involves generating numerical 

experiments, collecting data from finite element simulations, and training neural networks to 

replicate the behavior of the Huxley model. The second approach leverages PINNs to 

approximate the solutions to partial differential equations, ensuring that predictions adhere to 

physical constraints. 

4.1 Data-Driven Surrogate Modeling with Neural Networks 

To generate training data, a numerical experiment generator was developed to produce a variety 

of muscle contraction scenarios. These experiments included isotonic contractions, quick-

release scenarios, prescribed force applications, and prescribed displacements. The finite 

element simulations used the original Huxley model at the microscopic scale, providing detailed 

stress and stiffness responses based on muscle activation, stretch, and material properties. Since 

muscle behavior is history-dependent, the collected data was structured into time series, 

allowing the neural networks to learn from the sequence of events rather than isolated inputs. 

At each time step, the neural network received inputs representing muscle activation, 

stretch, stress values, and stress derivatives from both the current and previous time steps. 

Training these networks to mimic the finite element method’s accuracy posed a significant 

challenge, as even small deviations could compound over time and lead to unreliable results. 

Furthermore, ensuring that the neural network could generalize effectively to unseen scenarios 

was critical. Without sufficient generalization, the network could produce inconsistent stress 

predictions, destabilizing the overall simulation. 

Various neural network architectures were explored, including temporal convolutional 

networks (TCN), nested long short-term memory (Nested LSTM), gated recurrent units (GRU), 

and hybrid models combining recurrent and convolutional layers. To improve performance, 

several machine learning techniques were applied, such as gradient clipping and normalization. 
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One key strategy was reformulating the learning task so that the network predicted changes in 

stress rather than absolute values, preventing it from over-relying on high autocorrelation in 

stress sequences. Additionally, scaling factors were introduced to enhance numerical stability 

and improve predictive accuracy. 

After extensive testing, the GRU-based neural network emerged as the most effective 

surrogate model for muscle contraction, demonstrating both high accuracy and strong 

generalization across numerous numerical experiments. This model proved to be significantly 

more computationally efficient than the original Huxley model while preserving the key 

biomechanical properties necessary for realistic simulations. 

4.2 Physics-Informed Neural Networks for Surrogate Modeling 

A second approach to surrogate modeling involved the use of physics-informed neural networks 

(PINNs), which integrate deep learning with the mathematical principles governing muscle 

contraction. Unlike purely data-driven models, PINNs incorporate the governing equations 

directly into the network architecture, ensuring that predictions align with fundamental physical 

laws. 

The key innovation in this approach was the inclusion of an auxiliary neural network that 

encoded the partial differential equation governing muscle contraction, specifically the Huxley 

equation. Instead of relying solely on data, the PINN generated an approximate solution to this 

equation while minimizing the residual error, which quantified how well the predicted solution 

satisfied the governing physics. By leveraging automatic differentiation and optimization 

techniques, the model iteratively adjusted its parameters to reduce this residual error, effectively 

learning to solve the Huxley equation with high accuracy. 

This paper demonstrates the application of PINNs to approximate solutions for both 

isometric and isotonic contractions. The results showed a strong correlation between the 

solutions obtained through the traditional method of characteristics and those produced by the 

PINN-based approach. This similarity confirmed that PINNs could serve as a reliable 

alternative for modeling muscle contraction while significantly reducing computational 

overhead. 

4.3 Computational Efficiency and Real-World Applications 

The GRU-based surrogate model proved to be orders of magnitude faster than the original 

Huxley model, making it possible to simulate large-scale, computationally intensive scenarios 

that would otherwise be infeasible. This paper illustrates the application of this surrogate model 

in simulating the left ventricular cardiac cycle, a process that would be significantly more 

challenging with the full Huxley model due to the complexity of the micro-scale computations. 

Left ventricle were considered, and the simulation covered the entire cardiac cycle, 

beginning with diastolic expansion due to blood inflow, followed by systolic contraction 

triggered by muscle activation, leading to blood ejection from the ventricle. The ability to 

efficiently model these physiological processes using surrogate models represents a major 

advancement in computational cardiac biomechanics. 

Beyond the creation of surrogate models, this paper also discusses their integration into 

finite element software frameworks. The surrogate models presented here were developed for a 

specific set of Huxley model parameters, but future research could extend this approach to 

different parameter sets, accounting for genetic mutations that alter muscle protein behavior. 

Such developments would enable the study of how genetic variations influence the mechanical 

response of the left ventricle, providing valuable insights into the impact of muscle-related 

diseases on cardiac function. 
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