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Abstract 

Cardiovascular diseases are among the leading causes of mortality worldwide, necessitating 

advanced computational modeling to study their underlying mechanisms and explore potential 

treatments. In this paper, we present a multiphysics computational model that integrates cardiac 

mechanics, electrophysiology, and mass transport, implemented within the PAKFIS version of 

the PAK finite element (FE) code. Our model employs state-of-the-art FE techniques for 

macroscale fluid-structure interactions in the left ventricle, capturing the complex 

biomechanical behavior of the heart. For cardiac mechanics, we introduced a FE methodology 

incorporating standard 3D models and an original shell/membrane FE formulation tailored to 

the heart's tissue structure. A nonlinear, orthotropic material model for the human heart wall is 

developed based on experimental investigations of passive myocardium properties. The 

constitutive behavior is described using Cauchy stress-stretch and shear stress-shear amount 

relations derived from biaxial extension and triaxial shear experiments. The computational 

framework determines stresses at FE integration points under various loading conditions. 

Cardiac contractions are driven by electrical signals propagating through the Purkinje network 

and myocardial tissue. To model electrophysiology, we apply the smeared physical field 

methodology (Kojic Transport Model, KTM) to solve electrostatic problems related to cardiac 

excitation. By coupling cardiac mechanics and electrophysiology, our model provides a 

comprehensive tool for simulating heart function under physiological and pathological 

conditions. These advancements contribute to a deeper understanding of cardiac behavior and 

offer a foundation for future research in cardiovascular disease treatment and prevention. 
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Transport Model (KTM) 

mailto:miljan.m@kg.ac.rs
mailto:vsimic@kg.ac.rs
mailto:bogdan.milicevic@uni.kg.ac.rs
mailto:fica@kg.ac.rs
mailto:mkojic42@gmail.com


Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    297 

 

  

1. Introduction 

Cardiovascular diseases are among the most prevalent and life-threatening conditions 

worldwide. Extensive efforts have been directed toward the development of new drugs, medical 

research, and computational models that can simulate the cardiac cycle and assess the effects of 

various factors and therapeutic interventions. Among computational approaches, the finite 

element method (FEM) has been widely used due to its ability to model complex biomechanical 

phenomena. A comprehensive cardiac FEM model typically integrates electrophysiology, 

electro-mechanical coupling, and fluid dynamics to accurately capture the heart’s function 

under both physiological and pathological conditions. 

The fundamental processes in the human body are driven and regulated by the nervous 

system, with electrical signal generation and propagation playing a critical role. In the heart, 

contractions are initiated by an electrical signal originating from the sinoatrial node (SAN), 

which propagates through the atria and reaches the atrioventricular node (AVN). The AVN 

introduces a delay in signal transmission to ensure the sequential contraction of the atria and 

ventricles. From there, the electrical impulse travels through the Bundle of His, the bundle 

branches, and the Purkinje fiber network, rapidly distributing excitation signals across the 

ventricular myocardium. The role of this network is to transfer the electrical signal with high 

speed to the muscle cells (Zipes et al., 2018). This excitation triggers a change in membrane 

potential, known as the action potential, which subsequently initiates intracellular calcium 

signaling and ultimately leads to muscle contraction. The conduction process in Purkinje fibers 

can be effectively modeled as a 1D phenomenon, embedded in a 3D finite element framework 

to capture the coupling between electrophysiology and mechanics. 

To accurately model heart function, both active and passive stresses must be considered. 

Active stresses arise from electrical excitation and intracellular calcium dynamics, leading to 

muscle contraction, while passive stresses depend on the mechanical properties of the 

myocardium. Mechanical models for muscles rely on the calcium concentration changes within 

cells (Lafortune et al., 2012; Kim et al., 2010; Hunter et al., 1998; Mijailovich et al., 2010).  The 

structural complexity of the left ventricle, with its helicoidal fiber arrangement, requires an 

advanced material model capable of capturing orthotropic behavior. Experimental studies, 

particularly those conducted by Holzapfel and colleagues (Sommer et al., 2015, Holzapfel and 

Ogden, 2009; McEvoy et al., 2018), have provided valuable insights into the biomechanical 

properties of the myocardium through biaxial extension and triaxial shear testing. These studies 

serve as a foundation for constructing a nonlinear, orthotropic material model that characterizes 

the stress-strain response of cardiac tissue under various loading conditions. 

This paper presents a multiphysics computational model integrating electrophysiology, 

cardiac mechanics, and fluid-structure interaction within the PAKFIS finite element framework. 

The structure of the paper is as follows: Section 2 introduces the computational modeling of 

electrophysiology, detailing the mathematical framework for electrical signal propagation 

through the Purkinje fiber network and extracellular space. Section 3 focuses on the 

computational modeling of heart mechanics, describing the finite element methodology and the 

nonlinear material model used for myocardium simulation. Section 4 presents the coupled 

electro-mechanical model, emphasizing the interaction between electrical excitation, calcium 

dynamics, and muscle contraction. Finally, Section 5 addresses the coupling of heart wall 

motion with blood flow, integrating fluid-structure interaction techniques to simulate the left 

ventricle's biomechanical behavior. 
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2. Computational modeling of electrophysiology 

The finite element (FE) modeling of electrophysiology in the PAK FE code is based on 

fundamental principles from electrostatics, specifically Ohm’s law and the continuity equation 

for current flux density. These principles serve as the foundation for simulating electrical 

conduction within cardiac tissue. Ohm’s law, first formulated by Georg Ohm in 1827, describes 

the relationship between voltage, current, and resistance, making it one of the essential laws in 

physics. The continuity equation for current density, derived from Maxwell’s Equations (1873), 

is incorporated into the finite element framework through an incremental iterative scheme. 

In complex biological structures, different tissue domains, such as muscle cells, are often 

separated by membranes. In the case of 1D domains, such as neural fibers or Purkinje networks, 

electrical conduction across walls is modeled using cable theory, as described by Winslow 

(1992). The electrical flux across these walls can be mathematically expressed as: 

 ( ) in out

m m in out m

V V
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where Gm represents membrane conductivity and Cm denotes the specific membrane 

capacitance. This formulation reduces the problem of electrical conduction in a continuum to 

determining a scalar-valued electrical potential function Ve(x,y,z,t), subject to the necessary 

boundary and initial conditions. In the Purkinje fiber network, signal propagation occurs along 

cable-like structures, reducing the electrical conduction problem to one dimension. The 

governing equation for this scenario is derived under the assumption of 1D conduction along 

the cable, leading to the following transport equations (Kojic et al., 2019): 
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where in

eV and ext

eV represent electrical potentials within the cable and its surrounding medium, 

respectively; Ga and Gm correspond to conductivities along and across the cable wall; and Cm is 

the membrane capacitance [Fm-2]. This equation, rooted in the cable theory developed by 

William Thomson in the 1850s for telegraphic signal decay, forms the basis for electrical 

conduction modeling in neural fibers and Purkinje networks. The first implementation of this 

model for simulating electrical transport in neural fibers was introduced in (Kojic et al., 2019), 

incorporating axial and lateral currents through a composite cable finite element (CCFE) 

formulation. Axial conduction is modeled using standard 1D finite elements, while electrical 

transport through cell membranes is captured via a connectivity element. Lateral electrical flow, 

representing transmission across the surface of the element, is also accounted for. 

To validate this methodology, several representative examples were developed. The first 

case involved a composite 1D FE model for electrical conduction (CCFE), where numerical 

results were successfully compared against analytical solutions, confirming the model’s 

accuracy. Additionally, a neural network embedded within tissue was simulated (Figure 1a). In 

this scenario, a square tissue domain (10 × 10 mm) containing a neural fiber network (depicted 

in red) was considered. A constant electrical potential was prescribed at two boundaries, while 

the lateral boundaries were treated as impermeable. The temporal evolution of mean potential in 

neural fibers and the surrounding tissue showed slight variations between detailed and smeared  

models (KTM), attributed to potential gradients in both domains. 
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Fig. 1. (a) Square tissue domain (10 × 10 mm) with neural network (red) interacting with 

surrounding tissue. Constant electrical potential is prescribed at two boundaries. (b) Tissue 

domain (50 × 50 μm) with neural fibers (N1 to N6) oriented perpendicular to the plane. Left: 

Detailed model with 2D elements. Right: Smeared model (KTM) (according to Kojic et al., 

2019). 

In a second example (Figure 1b), electrical conduction was coupled with ionic transport, 

where transported ions generated an electric charge within the tissue. This multiscale modeling 

approach considered the tissue as a composite medium consisting of neural fibers, different 

continuum domains, and cell membranes. The computational model included ionic currents 

across membranes and an isolated 2D tissue region composed of multiple cell groups, each 

containing three organelles with distinct material properties and volumetric fractions. The 

detailed model utilized 2D elements to represent both the continuum domains and cellular 

membranes, while the smeared model incorporated neural fibers, cell domains, and membranes 

as a unified entity with nodal potentials. Selected scenarios included cases with: constant 

potential in fibers, a bolus function for fiber potential, an excitation pattern resembling Purkinje 

fiber activity, and models incorporating potassium and sodium currents. For all investigated 

cases, the evolution of electric potential over time exhibited a strong correlation between 

detailed and smeared models across different domains. 

 

Fig. 2. (a) Electrical potential fields in the presence of ionic currents (potassium and sodium). 

Left: Detailed model for cell group 2. Right: Smeared model (KTM) (b) Coupled electrical 

conduction and diffusion. Left: Ionic concentration field at t=1s. Right: Electrical potential 

distribution (according to Kojic et al., 2019). 

Three tissue models with varying fiber alignments were developed (Figure 3a–c): (a) 

parallel-aligned fibers, (b) orthogonally arranged fibers, and (c) a combination of orthogonal 

and diagonal fiber orientations. The mean electrical potential evolution within the tissue showed 

consistent results for both detailed and smeared models, reinforcing the accuracy of the smeared 

approach. A 2D heart wall tissue model incorporating Purkinje fibers was also analyzed (Figure 

3e, f), further confirming the feasibility of this methodology. 
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Fig. 3. (a–c) Tissue models with different fiber orientations. (d) Electrical potential in fibers at 

inlet boundary corresponding to heart cycles, with zero potential at the opposite boundary. (e) 

Purkinje fiber branching into tissue with prescribed potential . Left: Detailed FE model. (f) 

Corresponding smeared FE model (KTM) (according to Geroski et al., 2020). 

Finally, a 3D biventricular heart model was developed to assess the feasibility of applying 

the smeared approach to whole-heart simulations (Figure 4). The 3D heart geometry was 

reconstructed from CT imaging data, and Purkinje fibers were manually embedded as a network 

of 1D lines on the inner surfaces of the left and right ventricles. The resulting model, which 

combines a full 1D Purkinje network with a 3D tissue mesh, serves as the detailed 

representation. To generate a smeared equivalent, an equivalent continuum layer was introduced 

to replace the explicit 1D Purkinje network. Electrical excitation was initiated at the 

atrioventricular node (AVN) using a prescribed potential function Vin(t). The resulting 

electrical potential fields at t=0.75s for both detailed and smeared models are shown in Figures 

4c and 4d, respectively. 

 

Fig. 4. (a) Detailed model with 1D Purkinje fibers network; (b) Smeared model with Purkinje 

fibers layer and the surrounding tissue layer. c) Electrical potential field in tissue for the 

detailed model, d)  Electrical potential field in tissue for smeared model (KTM) (according to 

Kojic et al., 2022.). 
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These examples highlight the robustness of the proposed finite element methodology, 

demonstrating its applicability for simulating electrophysiology in cardiac tissue. The accuracy 

and efficiency of the smeared model make it a promising tool for practical applications in 

cardiac electrophysiology. 

3. Computational modeling of heart mechanics 

Key continuum mechanics and finite element principles, which incorporate experimental 

findings, have been implemented in the PAK finite element code and are detailed in (Kojic et 

al., 2021). The formulation employs velocities as nodal variables, making them particularly 

suitable for coupling heart wall motion with blood flow. The force-balance equations for a finite 

element per unit volume are expressed in an incremental-iterative form. Additionally, a 

computational procedure for stress evaluation, based on Kojic and Bathe (2005) and Bathe 

(1996), has been developed. Normal stress interpolation is conducted within a local material 

coordinate system, accounting for different loading conditions. Specifically, interpolation is 

performed for (A) fiber direction and (B) sheet direction. For the normal direction, experimental 

sheet stress-strain curves from Stevens et al. (2003) are used, with strain scaling factors applied 

to accommodate differences between the sheet-normal and sheet curves. Shear stresses are 

determined through interpolation across six shear components, which are treated as 

independent, simplifying the process. These stresses and the constitutive matrix (C) contribute 

to a decoupled mechanical response, ensuring that loading in one material direction does not 

induce deformation in the other two directions. To handle incompressibility, a penalty method is 

integrated, allowing for coupling effects. Several numerical simulations were performed using a 

3D finite element under various loading conditions to validate the computational model before 

applying it to left ventricle deformation.  

 

Fig. 5. (a) A 3D finite element with applied displacements, used for modeling material stretch. 

Fibers align with the x-axis (MFD), while the y and z axes represent the sheet (CFD) and 

normal directions, respectively. The element dimensions are standardized. (b) Comparison of 

computed and experimental stress-stretch curves, with loading conditions corresponding to 

strain ratios e2/e1 = 1 and e2/e1 = 2, as used in experiments. (c) Computed constitutive relations 

demonstrating reduced hysteresis effects (according to Kojic et al., 2021). 

The first computational experiment involved biaxial loading, where prescribed stretches 

were applied. The numerical results were obtained using a simplified 3D element with 

constrained displacements in the x and y directions (Figure 5a), ensuring a consistent strain ratio 

throughout the cycle. Solutions were derived through a penalty formulation, with all tested 

cases demonstrating a close match between numerical results and experimental stress-strain 

curves. As shown in Kojic et al. (2018), the implemented numerical procedure within the PAK 

code yields strong agreement with measured constitutive curves. The second example examined 
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biaxial loading conditions, but with stretches reaching only 75% of the maximum experimental 

curve values. This simulation specifically analyzed the case of e2/e1 = 2, applying controlled 

stretch levels. In a third scenario, shear deformations were introduced, replicating FS mode 

conditions from Holzapfel’s experiments. The reverse loading followed the last unloading curve 

reached during the loading regime, employing a scaling factor akin to the approach used in the 

stretch-based simulations (Kojic et al., 2021, Figure 5c). Another key investigation involved 

comparing 3D finite element models with shell/membrane models to assess the consistency of 

tissue deformation characteristics. The analysis revealed strong agreement between the two 

modeling approaches, offering further insights into heart tissue behavior (Kojic et al., 2022, 

Figure 7.4.3). 

4. Coupled electro-mechanical computational model 

This example demonstrates the application of our KTM (smeared model) in simulating both the 

electrical potential and mechanical response of heart tissue. Calcium plays a critical role in 

facilitating the biochemical cycle responsible for conformational changes in muscle fiber 

molecules, ultimately converting chemical energy into mechanical force. Therefore, any 

computational model of muscle mechanics must incorporate calcium concentration variations 

within muscle cells over time. Our model is based on a well-established relationship from 

Hunter et al. (1998), which has been widely adopted (e.g., Lafortune et al., 2012; Kojic et al., 

2021): 

 ( )
2
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2
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1 1

n
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n

Ca
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where act   represents active stress along the fiber, 2Ca +  denotes calcium concentration,  
max

corresponds to the maximum isometric stress,  
50

nC  is the calcium concentration required for 

50% of actin sites to be available for crossbridge binding, and  is a parameter influencing the 

muscle fiber deformation rate. The fiber stretch is denoted as  . To assess the accuracy of our 

CSFE model, we selected a small sample of heart wall tissue based on available data (Santiago, 

2018; Blausen Medical, 2014). 
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Fig. 6. (a) A detailed heart wall model including muscle cells and a Purkinje fiber network. (b) 

A smeared model incorporating both tissue and cells, with Purkinje fibers linked to CSFE 

nodes. (c) The distribution of electric potential in the detailed model and within the extracellular 

space of the smeared model. (d) The distribution at t = 0.8s.  (e) Effective contractions 

(displacements) derived from both the detailed and smeared models. (f) The displacement field 

at t = 0.9s (according to Kojic et al., 2019) 

For further analysis, we extracted the outermost myocardial muscle layer near the sub-

endocardium—an area containing Purkinje fibers. Based on available imaging data, we 

constructed a high-resolution 2D model consisting of a 1D mesh of Purkinje fibers and a grid of 

25 cells, Figure 6a. A smeared model was then developed from this detailed representation to 

compute electrical potential, calcium current, and concentration following (O’Hara et al., 2011), 

Figure 6b. The governing function for the electric potential was derived from (Noble, 1962) and 

consists of two identical cycles prescribed at the Purkinje mesh’s inlet nodes (Ve(t) in Figure 8). 

A fixed cell potential of Ve = -20 mV was assumed. The accumulated membrane current density 

(IORd) was computed based on the ORd model (O’Hara et al., 2011) and incorporated into finite 

element solution procedure. Under these conditions, the temporal variation of the mean electric 

potential in the tissue is depicted in Figure 6c and 6d, with near-identical results for both 

detailed and smeared models. Key currents from the ORd model affecting intracellular calcium 
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(Ca2+) concentration include: sarcolemmal Ca2+ pump current 
pCaI , background Ca2+ current

CabI , Na+/Ca2+ exchange current
,NaCa iI  while those influencing subspace calcium Ca2+ levels 

include L-type Ca2+ current
CaLI and Na+/Ca2+ exchange current 

,NaCa ssI . The mean current 

CaI  governing calcium Ca2+  ion transport is computed as follows (O’Hara et al., 2011):  

 ( ) ( ), ,2 2
myo ss

Ca pCa Cab NaCa i CaL NaCa ss

myo ss myo ss

V V
I I I I I I

V V V V
= − + −  − − 

+ +
 (4) 

where 
myoV and 

ssV denote the myoplasmic and subspace compartment volumes, respectively. 

The mean intracellular calcium concentration, 2

mean
Ca +  

, is determined as the average across 

four compartments: myoplasmic (i), subspace (ss), network sarcoplasmic reticulum (nsr), and 

junctional sarcoplasmic reticulum (jsr), using the relation from (O’Hara et al., 2011): 

 ( )2 2 2 2 2 /myo ss nsr jsr cellmean i ss nsr jsr
Ca Ca V Ca V Ca V Ca V V+ + + + +         =  +  +  +          

 (5) 

where 0.68myo cellV V= , 0.02ss cellV V= , 0.0552nsr cellV V=  and 0.048jsr cellV V=  represent 

respective compartmental concentrations. The detailed calculations for individual compartments 

follow equations provided in the Supplementary material of (O’Hara et al., 2011). Figures 6c 

and 6d depict the extracellular electric field potential at t = 0.8s for both models, while Figures 

6e and 6f show the effective contraction (magnitude of displacement vector) at t = 0.9s for the 

first cycle of the applied electric potential. The ability to compute membrane potential from the 

electric field potential within the Purkinje network, extracellular space, and cellular interior 

enables the simulation of calcium concentration variations in muscle cells. 

4. Coupling wall motion and blood flow 

To accurately model heart mechanics, it is essential to couple the solid domain of the heart wall 

with the surrounding blood flow. The finite element balance equations for the solid domain, 

expressed in terms of velocity, are detailed in (Kojic et al., 2022), along with corresponding 

equations for the fluid domain. The fundamental coupling condition ensures that velocities at 

the shared boundary (between the heart wall and the blood domain) remain consistent. Two 

computational models were developed using this methodology: a simplified parametric model 

of the left ventricle and a model reconstructed from echocardiographic data. The first model 

represents a parametric parabolic left ventricle (LV), illustrated in Figure 7a, incorporating 

distinct anatomical regions such as the base, mitral valve, aortic valve, and connecting 

segments. Fluid-structure interaction within the PAK software is managed using a strong 

coupling technique. The LV wall is constrained at the base to prevent displacement and 

rotation, while a prescribed velocity profile is applied at the mitral valve during diastole. Figure 

7b shows velocity fields at two distinct time points: 0.1s after diastole onset and 0.8s during 

mid-systole. The comparison of 3D and shell/membrane models demonstrates minimal 

discrepancy in the computed solutions.   
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Fig. 7. (a) Geometric representation of the simplified left ventricle model with key structural 

components. (b) Velocity fields of the blood flow at 0.1s (early diastole) and 0.8s (mid-systole), 

comparing results obtained from shell/membrane and 3D models (according to Kojic et al., 

2021). 

The second model is based on real physiological data obtained from echocardiographic 

imaging, as shown in Figure 8. The finite element model was generated from echocardiographic 

recordings collected in a clinical setting, offering a more accurate representation of LV 

mechanics during a cardiac cycle (Kojic et al., 2021). The 3D LV wall model was created by 

extracting the internal surface geometry following the procedure described in (Kojic et al., 

2021). The myocardial fiber architecture was represented using a helicoidal distribution, with 

fiber angles ranging from -60° at the epicardium to +60° at the endocardium relative to the 

circumferential direction. Figure 8b presents displacement fields and stress distributions along a 

selected external wall segment at the end of diastole when LV volume reaches its maximum. 

Finally, fluid flow patterns were computed based on echocardiographic recordings, further 

validating the methodology and offering valuable insights into LV mechanics (Kojic et al., 

2021). 

 

Fig. 8. a) Stepwise reconstruction of the left ventricle model from echocardiographic data. (1a, 

1b, 1c) Extraction of contour lines from cross-sectional images at 90°, 150°, and 210°. (2) 3D 

spatial reconstruction of the contours. (3) Point distribution at the epicardium and endocardium. 

(4) Formation of surface elements. (5) Finite element mesh generation for the ventricular wall in 

its initial configuration. (6) Fiber orientation mapping. a) Displacement field on the outer 

ventricular wall at t = 0.6s, marking the end of diastole (according to Kojic et al., 2021). 
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4. Summary and concluding remarks 

This paper has been dedicated to computational modeling of the heart. An overview of cardiac 

physiology was first provided to establish a foundation for the presented models. The 

electrophysiology section outlined fundamental principles followed by a discussion on 

traditional computational methods. We then presented our smeared field methodology (KTM) 

for electrostatics problems, comparing its effectiveness with conventional approaches through 

numerical simulations. The section on heart mechanics introduced finite element modeling 

approaches, covering both standard 3D models and a specialized shell/membrane-based FE 

model tailored to the unique structural properties of cardiac tissue. A finite element 

computational framework for modeling the mechanical behavior of the left ventricular wall by 

incorporating experimentally derived constitutive relationships is described in detail. One 

critical aspect was the coupling of stress-strain relationships for normal components, which we 

handled by either enforcing material incompressibility through a penalty method or 

incorporating a compressibility law derived from experimental observations. The accuracy of 

the proposed computational approach was validated through a series of test cases. Another key 

aspect was the development of a procedure to generate a 3D finite element mesh of the left 

ventricle wall using echocardiographic data. The proposed methodology was tested on 

representative numerical examples and applied to both a simplified parametric left ventricle 

model and a more physiologically accurate model reconstructed from echocardiographic data. 

The findings presented in this study demonstrate the potential of integrating experimental data 

with advanced computational models to improve the accuracy of cardiac simulations. Future 

work will focus on refining these models to enhance patient-specific simulations and further 

investigating the interplay between electrophysiology and mechanical behavior in the heart. 

These advancements will contribute to the development of more precise diagnostic and 

therapeutic tools in cardiovascular medicine. 

This paper represents a summary of our research in this field in the last few years and is 

devoted to the celebration of 50 years of the development and application of the FE software 

PAK. 
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