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Abstract 

This paper presents the integration of muscle fatigue modeling into the finite element solver 

PAK, based on an extended version of Hill’s phenomenological model. While traditional 

muscle models focus primarily on force generation, this study incorporates fatigue dynamics to 

provide a more realistic representation of muscle performance over time. By extending Hill’s 

three-component model to take into account different types of muscle fibers and their distinct 

fatigue characteristics, we improve the accuracy of computational muscle simulations. 

The proposed approach employs functionally graded materials (FGM) to model 

heterogeneous muscle structures and utilizes an incremental-iterative finite element scheme to 

calculate equilibrium configurations. The developed model is validated through comparisons 

with experimental data, demonstrating its ability to capture key aspects of muscle contraction, 

force production, fatigue progression, and recovery. 

The implementation of this model in PAK provides a powerful computational tool for 

biomechanical research, with potential applications in rehabilitation engineering, sports science, 

and musculoskeletal system simulations. Future work will focus on refining fatigue mechanisms 

and extending the model to simulate full musculoskeletal interactions. This study contributes to 

the advancement of computational biomechanics by enabling more accurate and physiologically 

relevant simulations of muscle function. 

Keywords: muscle, modeling, finite element, fatigue, functionally graded materials 

1. Introduction 

Muscle modeling plays a crucial role in biomechanics, enabling researchers and engineers to 

study muscle function, force generation, and fatigue under various physiological and 

pathological conditions. The complexity of muscle tissue, which exhibits both passive and 

active mechanical behavior, requires advanced computational methods to capture its nonlinear 
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and time-dependent properties. Among various modeling techniques, phenomenological 

approaches, such as Hill’s three-component model, have been widely used due to their ability to 

describe muscle contraction dynamics in a computationally efficient manner. 

The finite element method (FEM) has emerged as a powerful tool for simulating 

biomechanical systems, including skeletal muscles (Kojic et al. 2008). By discretizing muscle 

tissue into finite elements, FEM allows for detailed analysis of muscle deformation, force 

transmission, and interaction with surrounding structures. However, incorporating muscle-

specific constitutive laws and activation dynamics into FEM frameworks poses significant 

challenges, necessitating the development of specialized computational models and numerical 

schemes. 

PAK (Kojic et al. 1996), a finite element solver developed for complex engineering and 

biomechanical applications, has been extended to support advanced muscle modeling. In our 

research, we have implemented muscle constitutive models into PAK, incorporating Hill’s 

three-component model and its extensions to take into account different types of muscle fibers 

and fatigue effects. These enhancements allow for realistic simulations of muscle function 

under various loading and activation conditions, improving the accuracy of biomechanical 

predictions. 

This paper presents the implementation of muscle modeling in PAK, detailing the 

numerical formulations, subroutines, and computational strategies used to simulate skeletal 

muscle behavior. Additionally, we discuss the integration of fatigue modeling, verification 

through experimental data, and potential applications of the developed framework. By 

leveraging these advancements, PAK provides a robust platform for investigating muscle 

mechanics, contributing to the fields of biomechanics, rehabilitation engineering, and 

biomedical research. 

2. Overview of Muscle Modelling Approaches 

The study of muscle mechanics is essential for understanding the physiological behavior of 

muscles under various loading and activation conditions. Over the years, numerous 

mathematical models have been developed to describe muscle contraction, ranging from simple 

empirical models to complex multiscale approaches that account for molecular interactions. 

Among these, phenomenological models have gained widespread use due to their ability to 

capture essential mechanical properties of muscles with relatively low computational cost. 

2.1. Phenomenological Models of Muscle Contraction 

Phenomenological models describe muscle behavior using mathematical functions derived from 

experimental observations. These models do not explicitly consider the underlying molecular 

mechanisms of muscle contraction but instead provide macroscopic descriptions of force 

generation. One of the most well-known phenomenological models is Hill’s three-component 

model, which has been extensively used in muscle modeling due to its simplicity and 

effectiveness in simulating skeletal muscle mechanics. 

2.2. Hill’s Three-Component Model 

Hill’s model, originally proposed in 1938 (Hill, 1938), is based on experimental studies of 

tetanized frog muscles. 
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Fig. 1.  Hill’s mechanical representation of muscle components 

The model consists of three key elements: 

• Contractile Element (CE) represents the active force generation in muscle fibers due 

to the interaction of actin and myosin filaments. The force output of the CE is velocity-

dependent and follows the well-known Hill equation: 

 
( )( ) ( )0v b S a b S a+ + = +

 (1) 

The variable 𝑆 stands for the muscle tension, 𝑣 represents the contraction velocity, 

while 𝑎, and 𝑏 are parameters obtained from the experiment. The constant 0S  

represents the maximum isometric force. 

• Series Elastic Element (SEE) represents the elasticity of tendons and passive 

structural components within muscle fibers. This element accounts for the force-stretch 

relationship and is typically modeled using an exponential or linear function. 

• Parallel Elastic Element (PEE) represents the passive elastic behavior of muscle 

tissue, including the extracellular matrix and connective tissue. It contributes to muscle 

stiffness when the muscle is stretched beyond its resting length. 

Hill’s model has been successfully applied in various biomechanical studies due to its 

ability to describe the force-velocity and force-length relationships observed in muscle 

behavior. However, despite its effectiveness, the model has several limitations. It assumes 

homogeneous muscle properties and does not account for the physiological diversity of muscle 

fiber types or the effects of fatigue. 

2.3. Extensions of Hill’s Model 

To address the limitations of the classical Hill model, we have introduced several modifications 

and extensions. These include: 

• Multi-Fiber Hill Models: Instead of treating muscle as a uniform entity, these models 

consider different fiber types, such as slow-twitch and fast-twitch fibers, which exhibit 

distinct mechanical and metabolic characteristics. This way a more realistic simulation 

of muscle behavior under varying loading conditions is enabled. 

• Fatigue Modeling: Traditional Hill-based models do not account for muscle fatigue, 

which significantly affects force production over time. We have made extensions of the 

Hill model to incorporate fatigue effects by introducing time-dependent changes in 

force output, based on experimental fatigue curves. These modifications enable a more 

realistic simulation of prolonged or repetitive muscle contractions. 
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• Functionally Graded Material (FGM) Models: Since real muscles exhibit spatially 

varying properties due to fiber distribution and metabolic differences, we have 

introduced functionally graded material models. These models incorporate spatially 

dependent constitutive properties to more accurately represent muscle heterogeneity. 

2.4. Finite Element Implementation of Muscle Models 

The finite element method (FEM) provides a powerful computational framework for simulating 

muscle mechanics, particularly in complex geometries. In FEM-based muscle modeling, muscle 

tissue is discretized into finite elements, each assigned material properties corresponding to 

active and passive muscle components. The incorporation of Hill’s model and its extensions 

into FEM enables detailed analysis of muscle function under various loading and activation 

conditions. 

One of the key challenges in FEM-based muscle modeling is the integration of constitutive 

laws governing muscle contraction. This involves solving nonlinear equations that describe 

muscle activation, force generation, and interaction with surrounding tissues. The 

implementation of muscle models within PAK FEM solver allows for simulations that account 

for large deformations, anisotropic material properties, and realistic muscle activation 

dynamics. 

3. Implementation in PAK 

The finite element solver PAK has been extended to support muscle modeling by incorporating 

phenomenological muscle contraction models, particularly Hill’s three-component model and 

its advanced extensions. The implementation in PAK allows for the simulation of active and 

passive muscle mechanics, including force generation, fatigue effects, and heterogeneous 

muscle fiber composition. This section details the numerical formulation, integration of 

constitutive laws, and specific subroutines developed for muscle modeling in PAK. 

3.1. Finite Element Discretization of Muscle Tissue 

Muscle tissue is discretized using three-dimensional finite elements where each element is 

assigned material properties corresponding to both active (contractile) and passive (elastic) 

muscle components. The primary challenges in muscle modeling using FEM involve: 

• Large deformations and anisotropic behavior due to the fibrous structure of 

muscles. 

• Nonlinear force-stretch and force-velocity relationships, as described by Hill’s 

model. 

• Time-dependent effects, including fatigue and recovery. 

To accurately simulate muscle behavior, PAK employs functionally graded materials 

(FGMs) to represent heterogeneous muscle composition. Each finite element is assigned a 

distribution of fiber types (slow-twitch and fast-twitch), allowing for more precise modeling of 

muscle mechanics. 

3.2. Integration of Hill’s Model into PAK 

The Hill three-component model is incorporated into PAK through a combination of 

constitutive equations and incremental-iterative solution schemes. The governing equations for 
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the contractile element (CE), series elastic element (SEE), and parallel elastic element (PEE) are 

solved within the incremental-iterative framework of nonlinear FEM. 

The generation of active muscle force originates from the actomyosin enzymatic cycle, 

driven by the interactions between myosin molecules and actin filaments. Active tension and 

muscle stiffness are subsequently computed at each finite element integration (Gaussian) point 

(Fig. 2b). 

 

Fig. 2. Schematic representation of muscle finite element (FE) modeling, illustrating the 

transition from muscle as a deformable body to Hill’s model. a) Discretization of the muscle 

into finite elements; b) A three-dimensional finite element with integration points and 

embedded muscle fiber; c) Elongation of a muscle fiber under applied stress  ; d) Hill’s 

three-component model. 

At the time ( )t t+  , the equilibrium equation of a finite element structure in its deformed 

configuration is expressed as: 

 

( 1) ( ) ( 1) ( 1)( )        i i i i

pass act ext pass act

t t t t t t t t t t+ + +− −+ + −+ = + +K K U F F F
 (2) 

where  t t

ext

+
F , 

( 1)  i

pa

t

ss

t −+
F , and 

( 1)  i

ac

t

t

t −+
F  denote the vectors corresponding to external loads, 

passive internal nodal forces, and active molecular forces, each assembled into the finite 

element nodal force representation; 
( 1)  i

pa

t

ss

t −+
K  represents the stiffness matrix associated with 

the passive components of the muscle, while 
( 1)  i

ac

t

t

t −+
K  corresponds to the cumulative stiffness 

arising from actomyosin cross-bridge interactions; the nodal displacement increments at 

iteration ( )i  are represented by 
( )iU . At the macroscopic level, the discrete actin–myosin 

interactions are homogenized into a continuum description, where the resulting active stress is 

incorporated into the finite element nodal forces, 
( 1)  i

ac

t

t

t −+
F , and the active muscle stiffness is 

incorporated into the finite element nodal stiffness matrix, 
( 1)  i

ac

t

t

t −+
K . A detailed description of 

nodal force and stiffness matrix calculations within a standard finite element framework can be 

found in (Kojic et al. 2008, Stojanovic et al. 2007). For muscle modeling, however, the 

computation of element nodal forces—both passive and active—is carried out as follows: 
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where 
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L

+ −
B  denotes the transpose of the geometric linear strain–displacement matrix, 

( 1)  i

pass

−
σ  and 

( 1)  i

act

−
σ  represent the passive and active stress tensors in the form of the second 

Piola–Kirchhoff measure, and 
( 1) t t i+ −

V  is the finite element volume. The index ( 1)i −  

denotes the most recent muscle configuration obtained during the equilibrium iterations within a 

given time step.  

The material’s resistance to deformation is governed by the variable stiffness contributions 

of actomyosin cross-bridge bonds, 
( 1)  i
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t

t

t −+
K , as well as by the passive component associated 

with the connective tissue, 
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where 
t t

NL

+
B  denotes the nonlinear strain–displacement transformation matrix, 

t t+
C  

represents the constitutive matrix that defines the stress–strain relationship for both the passive 

and active components, and 
t t+

S  the assembled matrix of second Piola–Kirchhoff stress 

components accounting for passive and active parts. It should be emphasized that the 

formulation in Eq. (4) accounts for both material and geometric nonlinearities, which is crucial 

for accurately modeling muscle behavior characterized by large strains, displacements, and 

rotations. 

By introducing additional boundary conditions and constraints into the dynamic force 

equilibrium of Eq. (2), a unique prediction of the mechanical response of muscle tissue can be 

obtained. Once the element nodal forces and stiffness matrices are computed, the global system 

of equations (1) is assembled and solved for the entire muscle (Fig. 2a). In order to ensure the 

equilibrium of extF , 
passF , and actF  at the end of each time step, t t+  , the vector of 

displacements 
( )i

U  is iteratively incremented by 
( )i U , until the convergence criterion is 

satisfied (
( ) 0i U ) (Bathe 1996, Kojic and Bathe 2005). The active forces, 

( 1) t t i

act

+ −
F , and 

stiffness, 
( 1) t t i

act

+ −
K , are directly influenced by the deformation rate along the principal 

direction of the muscle fibers (Kojic et al. 2008, Mijailovich et al. 2010). Consequently, the 

solution of the above equation must account for the effects of shortening velocity on strain-

dependent cross-bridge state transitions at the microscale (McMahon, 1984, Smith and 

Mijailovich, 2008).   

The muscle stress 𝝈 is decomposed into: 

• Active stress  𝝈𝑎𝑐𝑡  is computed using Hill’s force-velocity and force-length 

relationships. 
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• Passive stress  𝝈𝑝𝑎𝑠𝑠 accounts for connective tissue elasticity, modeled using nonlinear 

hyperelastic material laws. 

Applying Hill’s equation we obtain active stress in the i-th fiber type as 

 

0
0

0

1 /

1 /

i i
t t i t i t t i m m

m a i i i

m mc

 
  

 

+ + +  
=

−  
 (5) 

where 
t t i

m+
 denotes the stress in the contractile element, 

i

m  and 
0

i

m  are the stretch 

increment and the stretch increment under maximal contraction velocity, and 𝑐𝑖 = 𝜎0
𝑖/𝛼𝑖. The 

activation function 
t t i

a+
 is introduced in order to enable simulate of submaximal fiber 

activation. 

The constitutive relation for the stress of serial elastic element of the i-th fiber type is 
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i i
st t i t i i i

s s e
    + = + −

 (6) 

where 
i  and 

i  are the material parameters of the fiber, and  
t i

s  is calculated as 

 

( )1
1

i t i
st i i

s e
 

 
− = − 

   (7) 

The stress within the parallel elastic element is determined as follows 

 
t t E E t t+ += C e  (8) 

where 
E

C  describing the constitutive elasticity matrix of the connective tissue, while 
t t+

e  

corresponds to the strain at a given material point, evaluated on the basis of the displacement 

field. 

3.3. Fatigue and Recovery Modeling in PAK 

Muscle fatigue may develop when the tissue is subjected to sustained loading, whether constant 

or varying. As the ability of the muscle to generate force diminishes, the tetanic stress of a 

fatigued muscle 0 ( , )f t   is consistently lower than that of an intact, non-fatigued muscle 

0 ( , )t  . Let ( )0 ,aF    denote the force produced by an intact muscle under activation a  

and total stretch  , while ( ), ,f aF t   represents the force generated by the fatigued muscle 

under the same activation a . These forces are associated with the tetanized stress states 

0 ( , )t   and 0 ( , )f t  , respectively. The fitness level may then be defined as follows 
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( )
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0 0

, , ( , )
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f a f
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F t t
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   
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 (9) 
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Accordingly, the fitness level is defined as the normalized maximal force output of the 

muscle, with values ranging between 0 and 1. For an intact muscle, the fitness level equals 1, 

whereas under sustained loading it progressively decreases over time. 

The stress generated within the contractile element of a fatigued muscle is expressed as 

 

( )

( )

1 1 0
0

0

1 0
0

0

1 /

1 /

1 /

1 /

n n n m m
m a f p

m m

n n n m m
a f p

m m

c

c

 
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 

 
   

 

+ +

+

+  
=

−  

+  
=

−  
 (10) 

Because the mechanisms underlying muscle fatigue remain insufficiently understood, no 

universally reliable model exists to predict the fitness level of a muscle subjected to arbitrary 

activation over prolonged periods. Nevertheless, several models reported in the cited literature 

provide approaches for estimating the fitness level ( ),...f t , which is influenced by time, 

activation, and a range of physiological and non-physiological factors. 

3.5. Verification and Validation 

To illustrate the key characteristics of the multi-fiber Hill’s muscle model, a simplified 

representation of the biceps brachii is adopted (Fig. 3). The muscle belly is discretized using 

three-dimensional eight-node hexahedral finite elements, with the fiber orientation aligned 

along the third local element axis. The tendons linking the muscle to the fixation points are 

represented by a layer of 3D elements in combination with a bundle of 1D truss elements 

assigned elastic material properties. The proximal tendon is anchored at the fixation point, 

whereas the distal tendon is connected to the constrained point via an elastic spring. 

 

Fig. 3.  Simplified finite element model of the human biceps brachii muscle 

Two numerical simulations were conducted to verify the correct implementation of the 

multi-fiber Hill’s model and the generalized isoparametric element formulation for functionally 
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graded materials within the finite element solver PAK. In the first case, Hill’s three-component 

muscle model was applied, with material properties and the activation function adopted from 

the literature. In the second case, Hill’s multi-fiber model was employed. The muscle was 

represented with two fiber types: type I (slow) and type II (fast), distributed such that type I 

fibers comprised 40% of the surface fibers of the biceps brachii and 60% of the deeper fibers, 

with a linear variation assumed across the cross-sectional radius. To ensure comparability 

between the two simulations, the properties of both fiber types in the second model were set 

equal to those used in the first simulation. The resulting muscle force as a function of time is 

presented in Fig. . 

 

Fig. 4. Comparison between the classical Hill’s model and its equivalent two-fiber formulation 

As can be seen from Fig. , when identical characteristics are assigned to both fiber types, 

the two-fiber Hill’s model yields results that are indistinguishable from those of the equivalent 

Hill model. This confirms the correct implementation of both the multi-fiber Hill’s formulation 

and the generalized isoparametric element approach for functionally graded materials. 

4. Application in Lingual Deformation Modeling 

The finite element solver PAK has been employed to model lingual deformation during 

swallowing, demonstrating its capability to simulate complex muscle mechanics. This 

application integrates Hill’s three-component phenomenological model into a finite element 

solver to capture the intricate interactions of intrinsic and extrinsic tongue muscles. By utilizing 

diffusion tensor imaging (DTI) and tractography, the model aligns finite element meshes with 

the principal directions of muscle fibers, ensuring anatomically accurate simulations of lingual 

motion. 
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Fig. 5. Finite element mesh generation from diffusion tensor MRI–based tractography of human 

lingual myofiber tracts. 

PAK facilitates a multiscale approach where the tongue is treated as a composite structure 

comprising anisotropic muscle fibers and isotropic connective tissue. The finite element 

formulation accounts for both passive and active muscle behaviors, enabling simulations of 

temporally patterned muscle activation during swallowing. The model incorporates both local 

and global mechanics by defining activation functions for different muscle groups, capturing the 

sequential engagement of genioglossus, hyoglossus, and styloglossus muscles in different 

phases of swallowing. 

A significant advancement in this modeling effort is the ability to integrate physiological 

constraints such as boundary conditions imposed by the hard palate, pharyngeal structures, and 

hyoid bone movements. This allows for precise simulation of lingual tip elevation, posterior 

displacement, and rotational deformation observed in normal swallowing. The computed 

displacement fields, muscle stress distributions, and strain rate evaluations provide valuable 

insights into both normal and pathological swallowing mechanics. 
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Fig. 6. Total muscle stress (MPa) along the fiber direction during swallowing.  

The application of PAK in lingual biomechanics extends beyond basic muscle mechanics. 

It has potential applications in medical research, particularly in diagnosing and treating 

swallowing disorders (dysphagia) and speech impairments. The framework also supports 

surgical planning for procedures affecting tongue mobility and rehabilitation strategies for 

patients with neuromuscular impairments. 

By leveraging the advanced muscle modeling capabilities of PAK, this study demonstrates 

its effectiveness in capturing the biomechanical complexity of the tongue. This work sets the 

stage for future research integrating neuromuscular control models and refining muscle 

activation patterns for improved therapeutic interventions. 

5. Conclusion 

This study presents a comprehensive computational approach to modeling muscle mechanics by 

incorporating muscle fatigue within the finite element solver PAK. By generalizing Hill’s 

phenomenological model and extending it to account for different muscle fiber types, we 

developed a robust framework that enables accurate simulation of muscle behavior under 

various activation and loading conditions. The integration of fatigue mechanisms into Hill’s 

model allows for a more realistic representation of muscle performance over time, particularly 

under prolonged or repeated contractions.  

The numerical results obtained using PAK demonstrate that the proposed model 

successfully captures key aspects of muscle contraction, including force generation, fatigue 

progression, and recovery dynamics. Validation against experimental data and literature 

confirms the model's accuracy and reliability. Furthermore, the use of functionally graded 
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material (FGM) formulations enables the modeling of heterogeneous muscle structures, 

enhancing the precision of finite element simulations. 

The developed model and its implementation in PAK provide a valuable computational tool 

for researchers and engineers working in the field of muscle mechanics. Future work may focus 

on further refining fatigue models by incorporating more detailed biochemical and metabolic 

aspects, as well as exploring the interactions between muscle fatigue and neuromuscular 

control.  
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