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Abstract 

This paper contains two parts – the first is related to the mechanics of lung microstructure, and 

the second is a formulation of a multiscale-multiphysics model of the lung. The second part 

considers the entire lung that relies on the mechanics of the microstructure and recently 

developed a multiscale composite finite element of the lung tissue (MSCL). The MSCL is 

further extended to include airflow, blood flow, and mass transport by diffusion, as a General 

Lung Finite Element (GLFE). The microstructural mechanics relies on the generally accepted 

Wilson-Bachofen model of balance between internal and external forces of the lung supporting 

system. Besides the stresses in the tissue, the effects of the surfactant play an important role in 

the alveolated microstructural system, vital for lung functioning. Our microstructural model 

demonstrates a geometric hysteresis within a duct. The multiscale-multiphysics model for 

airflow and blood flow is based on our smeared concept (Kojic Transport Model, KTM) where 

the subdomains within our Composite Smeared Finite Element (CSFE) represent the airway 

generations; and capillary, extracellular space and cells for blood flow and mass transport by 

blood. This computational methodology is built into our finite element code PAK. 

Keywords: Multiscale composite finite element of the lung tissue, Kojic Transport Model, PAK 

finite element program 

1. Introduction 

Our computational model relies on the lung morphology. The lung airway structure is shown in 

Fig. 1. The air flows from the surrounding to the trachea, and further through two bronchi, 

smaller bronchi, and bronchioles. Small airways, of size 5mm to 0,5mm in diameter, form the 

bronchial tree, with classification as airway 23 generations. The smallest, the terminal 

bronchioles, are connected to the lung alveolar system, which consists of the alveolar ducts and 

sacs. The airway system is huge, with a length of around 2,400 kilometers.  There are 300 to 

500 million alveoli where the gas (nitrogen and oxygen) exchange occurs. 
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Fig. 1 Lung morphology. The airway system starts from the trachea and ends in the lung 

microstructure with alveolar ducts and sacs. 

  Regarding the mechanics of the lung microstructure, we rely on the Wilson and Bachofen 

seminal work (Wilson and Bachofen, 1982a) where it was shown that the acinar airway 

architecture is maintained by a balance between forces pulling the alveolar duct radially inward 

(hoop stresses associated with tension borne in the connective tissue and smooth muscle in the 

alveolar entrance ring), and forces retracting the duct radially outward (primarily associated 

with alveolar septal surface tension at the air-liquid interface, but which may also include septal 

tissue tension). The microstructural model of Weibel (1986) is shown in Fig. 2 where we have a 

duct with the internal system of fibers which is stretched by the connection with the external 

system. 

 

Fig. 2 Microstructural model of Weibel (1986).  a) Scanning electron micrographs of a rabbit 

lung - duct and alveoli with forces acting on the internal fibers. b) Fibers and alveoli in the duct, 

according to (Wilson and Bachofen 1982a), and the duct entrance ring as simplification used in 

our model. (according to Kojic,  2020). 
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Another duct model, important for the insight into forces within the microstructure, is 

shown in Fig. 3. A schematic of the duct model is displayed in Fig. 3a, while forces are shown 

in Fig. 3b, according to (Greaves et al. 2010). It is important to notice that the forces produced 

by the deformation of external tissue and surfactant (
ext

AtF and 
ext
AF   ), and by alveolar septa and 

surfactant (
int

BtF and 
int

BF   ), are acting in parallel. On the other hand, 
int

BtF  and 
int

BF   forces, and 

force in the tissue of rings (
int

CtF ), act as forces in series. Practically, forces (
ext
AtF and 

ext
AF  ) vs. 

(
int

BtF and 
int

BF   ) are in balance, stretching the alveolar septa tissue.  

 

Fig. 3. Alveolar duct model according to Greaves et al. (2010). a) Schematic of the duct 

structure which includes external tissue (A) connected to alveoli, with alveolar septa (B) and 

entrance rings, and duct entrance ring (C); b) Forces generated by structural deformation: 
ext
AtF

and 
ext
AF   - external connective tissue and surfactant, 

int
BtF and 

int
BF   - alveolar tissue and 

surfactant, and 
int

CtF  - alveolar and entrance rings. (according to Kojic, 2020) 

Deformation of the lung internal geometry induces a change in the volume of the air space 

and air pressure distribution within the lung, which altogether produces the airflow deep in the 

lung. The airflow is conditioned by the microstructure deformation. Coupling mechanical 

deformation with airflow is the ultimate goal of modeling a lung. 

In the next section, we shortly present our model of the mechanics of the microstructure to 

demonstrate a geometric hysteresis deep in the lung that affects the airflow and physical mixing 

important for gas exchange. Then, in the next section, a multiscale-multiphysics model of the 

lung is formulated according to our recent studies. 
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1. A mechanical model of the duct 

The model of the alveolar duct is shown in Fig. 4, according to (Kojic, et al., 2011). The model 

consists of alveolar septa and entrance rings which deform due to radial cyclic displacement of 

the outer boundary, as schematically shown in the figure. The entire tissue is covered by a 

surfactant. The alveolar septa are modeled by an axisymmetric membrane, while 1D 

axisymmetric finite elements are used for the rings. It is assumed that the ring tissue consists  of 

muscle tissue with hysteretic characteristics (Fig. 5c), and connective tissue without hysteresis 

(Fig. 5a); the volumetric ratio between the muscle and connective tissue is denoted by m. 

Material model for the alveolar septa is represented by two curves – one according to uniaxial 

loading, and another corresponding to biaxial loading (Fig. 5b). The model for surfactant is 

shown in Fig. 5d, by a hysteretic curve which relates the area ratio and surface tension. 

 
Fig. 4 a) Duct model for the FE analysis. b) Morfology of the lung lveolar space according to 

(Gill, et al., 1979) and schematics of the computational model. (according to (Kojic, et al., 

2011). 

 

Fig. 5. Material models used in the FE model of the duct. a) Model of the connective tissue 

within the alveolar ring. b) Biaxial model for the alveolar septa. c) Muscle model for the 

alveolar ring. d) Model for surfactant. (according to Kojic, et al., 2011) 
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It was found that the ratio of the internal surface and volume of the space bounded by two 

alveolar septa and external boundary, has a hysteretic character, which is termed geometrical 

hysteresis, Fig. 6. This finding is important to understanding the physiological conditions 

leading to the airflow patterns that enhance gas exchange in the lung. Detailed description of the 

model and computational results are given in our reference (Kojic, et al., 2011). 

 

Fig. 6 Geometric hysteresis in the alveolar space within the lung. Relations between volume 

and surface of the space bounded by two alveolar septa and external boundary; m is the ratio of 

muscle and connective tissue volumes within the entrance ring. (according to Kojic, et al., 

2011). 

2. Multiscale-multiphysics lung model 

In this section, we present a multiscale-multiphysics model for the lung which includes 

mechanics, airflow, blood flow, and diffusion. The model represents a summary of our papers 

(Kojic, 2020) and (Kojic, 2023), with the addition of the formulation for blood flow.  

 

Fig. 7 Mechanical model of the duct structure with geometry and stresses. a) Axial view; b) 

Axonometric view. (according to Kojic,2023) 
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Regarding mechanics, we use the above model in Fig. 4a and extend it to include alveoli around 

the circular rings as shown in Fig. 7a and assume a cylindrical external surface with connective 

tissue according to Fig. 7a,b.  As in section 2, we assume that all solid surfaces (excluding the 

entrance rings) are covered by surfactant. Deformation of the internal structure occurs under the 

condition that forces at the ring cross-section (with stresses R ) and radial forces according to 

the stress  A , are in balance during the radial displacements of the external tissue.  Hence, the 

balance equation can be written as, 

                                       ( ) ( )22 1 2mus ct a a a aR Rr m m R n      
 

+ − = +                      (1) 

where rR and Ra are radii of the ring and alveoli (alveoli are represented as semispheres), 

respectively; a  is the alveolar thickness;  nR is the number of alveoli belonging to one ring; 

a  and a are the stresses within the alveolar tissue and due to surfactant, respectively; and 

mus  and ct  are the stresses in the muscle fraction and connective tissue fraction of the ring.  

The stress σγ
tiss acting on the external connective tissue can be expressed by the following 

relation. 

 
( )

( )

2

2

a a atiss
R

a

n
R R





  


+
=

+
                                              (2) 

Additionally, the stress coming from the surfactant covering the external duct surface can be 

expressed as 

 
( )

2
1

Va
atissue

Va a

r

r R R

 
 =

− +
                                                (3) 

where rVa is the air volumetric fraction. We can now formulate a multiscale-multiphysics 

finite element for the lung - a General Lung Finite Element (GLFE), shown in Fig.8. This 

element represents an extension of the previous finite element for lung mechanics (MSCL), 

(Kojic, 2020).  

 

Fig. 8  General finite element for lung (GLFE) as a multiscale-multiphysic finite element which 

includes mechanics, airflow, and mass transport. (according to Kojic, 2023) 
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We further give details on mechanics, followed by airflow, blood flow, and mass transport. 

Mechanics. The balance equation for a finite element has a standard form (Kojic et al., 2022). 

 

( 1)
( 1)( ) ( 1) int( 1) ( 1)1 1

i
ii ext i i i t

V
t t

−
−− − − 

+  = + − + 
  

M K V F F F M V              (4) 

This equation corresponds to a time step Δt and equilibrium iteration i. The notation in this 

equation is as follows:  M and K are mass and stiffness matrices, V are nodal velocities, Fext , 

FV , and Fint are external, volumetric, and internal forces; and Vt is the velocity at the start of a 

time step. The expressions for the matrices and nodal vectors are given elsewhere (e.g. Kojic et 

al., 2022). The difference with respect to the standard FE formulations is that the volumetric 

integration is performed over the volumetric fraction of the domain, for example, for the 

external connective tissue we have 

 
( 1)int( 1) ( 1)T ii itiss

V L

V

r dV−− −= F B σ                                       (5) 

Here, rV
tiss is the tissue volumetric fraction, which can be expressed in terms of the air 

volumetric fraction as rV
tiss= 1-rVa, BL is the strain-displacement matrix, and σ is the stress 

tensor within the connective tissue. Following the above description,  the stress in (5) can be 

expressed as 

 ,    1,2,3,    tiss tiss
ii ii atissue ii no sum on i

   = + + =                (6) 

where σii
tiss is stress due to the deformation of external connective tissue. 

In order to solve the balance equation (1), we use the following geometrical relations related to 

the duct radius R:   

 max 0min ,    oR R R R= =                                                 (7) 

Then, using a simple bisection procedure for the radius range Rmin -Rmax, we follow the 

computational steps: 

• Current R 

• Compute λR= R/R0 and stress in the ring from λR and constitutive curves in Fig. 5a,c. 

• Compute stretch of alveolus λa from Ra= λ (R0+Ra0)-R, λa= Ra/Ra0 and stress σa form 

constitutive curves in Fig. 5b. 

• Alveolar area ratio is 2 2
0/a a aR R =  and surface tension   compute using the 

constitutive curve in Fig. 5d, so that we have the stress /a a  =               .  

• Compute the external surface area ratio  ( ) ( )
22

0 0/ext a aR R R R = + +  , surface 

tension according to the constitutive curve in Fig. 5d, and  external stress atissue
  from 

(3) 
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• Update the air volumetric fraction as 0Va Var r= , where 

 
( )

( )

( )

( )

2 2

3

2 2

0 0 0 0 0

a duct a

a duct a

R R L R R

R R L R R


  



+ +
= = =

+ +
                        (8) 

Here, Lduct and Lduct0, are current and initial duct lengths, and with the isotropy assumption

0/duct ductL L = . 

Airflow. We have implemented two models for the incompressible fluid flow in blood vessels: 

a)  3D or axisymmetric 2D Navier-Stokes equations, or b) the approximate 1D Hagen-Poiseuille 

model. In our mixed formulation, the finite element balance equations for the Navier-Stokes 

model, the balance incremental-iterative equations for a finite element can be written in the 

form (e.g. Kojic et al., 2022), 

 

( 1)

( 1)

( 1) ( 1)( ) ( 1)

( )

1 1 1i

i

i ii ti
vv vp vv vpext

i
T T
vp vp

t t t

−

−

− −−
      + +              = − +           

                   

M K K M K KV V MVF

0P P 0K 0 K 0

 (9) 

The detailed description of the element matrices in the reference (Kojic et al. 2022). The 

nodal variables are velocities V and pressures P. The nodal variable in the case the Hagen-

Poiseuille flow model is  the fluid pressure only, and  the FE balance equations are 

 ( 1) ( ) ( 1) ( 1) ( 1)i i ext i i i
p p p

− − − − = −K P Q K P                                   (10) 

Here, Qp
ext is the external nodal fluid flux (which cancels at the internal FE nodes). The 2x2 

transport matrix is 

 
4

11 22 12 21
128

p p p p

d
K K KK




= = − = − =                                   (11) 

where d is the airway diameter and µ is air viscosity. 

We implement the Kojic Transport Model (KTM), (Kojic et al., 2022) as the equivalent 

continuum model for small airways within the lung parenchyma. The flow domains within our 

composite smeared finite element consist of the selected groups of small airways within the 

airway generation tree. The domains are specified according to the size of the airways. The 3D 

continuum balance equations have the form (10),  with the equivalent Darcy transport tensor, 

 
4

128
Dij J Ji Jj

tot J

k d
A




=                                        (12) 

where dJ are airway diameters, and lJi are directional cosines of small airways in the 

vicinity of the considered point J within the parenchyma. The connection between 1D (pipe) 

elements when the pipe elements have permeable walls, or in the case of branching into smaller 

airways, is achieved by the corresponding 1D connectivity elements. The connectivity elements 

are also used for the coupling between the domains of the composite finite elements, according 
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to the KTM methodology. The 2-node transport matrix for the connectivity elements has the 

form (11), so that, for a node J, we have 

 11 22 12 21J J J J pJ JK K K h VK = = − = − =                          (13) 

Here, we have that hpJ is the permeability (resistance) coefficient, and VJ is the volume of 

the continuum belonging to the node. We use the permeability coefficient to be proportional to 

the mean value of the diagonal terms of the transport tensor and inversely proportional to the 

airway diameter at the node. We include the alveolar sacs in the model in the form of a source 

within the last domain of the KTM, as 

 /V Vsacq r dV dt=                                                      (14) 

where rVsac is the sac volumetric fraction, while dV/dt represents the rate of the volume change 

evaluated in the mechanical model (pass 1 in the computational procedure described below). 

Blood flow. The model for blood flow is analogous to the airflow. For large blood vessels, 

equation (9) is applicable, with the appropriate material parameters – density and viscous 

coefficient. Regarding the flow within capillaries, we can apply the KTM, where the capillary 

volumetric fraction can be expressed as 

     ( )1rcap
V

cap
V

r Var r= −                                            (15) 

where rcap
Vr is capillary density with respect to lung tissue volume. 

The Dracy tensor has the form (12). The flow within extracellular space occurs according 

to equation (10) – for 3D conditions and with the Darcy coefficient of the extracellular space 

(Kojic, et al. 2022); the volumetric fraction is 

                                   ( )( )1 1rcapex rcell
V VV Var r r r= − − −                                        (16) 

where 
rcell

Vr is cell density relative to the lung tissue. The connectivity elements are as in 

the case of the air, with using the appropriate hydraulic coefficients. Also, instead of the volume 

VJ, the area AJ belonging to the node must be used: AJ=rAVVJ, where rAV is the area-to-volume 

ratio of the capillary. 

The blood flow model which includes large vessels, capillaries, and extracellular space is 

illustrated in Fig. 10. 

Mass Transport (Diffusion). Particulate (molecular) transport within the air is modeled as a 

diffusion with convection. The mass balance equation for a finite element and a domain K can 

be written as (Kojic et al., 2022)  

( )1 ( ) ( 1) ( ) ( 1) ( 1)1 1 1K iv K i KS i KV i v K i K i K Kt

t t t

− − − −   
+ +  = + − + + +   

     
M K K C Q Q M K K C M C  (17) 
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The expressions for the matrices are given in (Kojic et al. 2022), and C is the nodal 

concentration 1D matrix. This form of the balance equation applies to large airways and the 

Navier-Stokes equations. Additionally, we here include the alveolar sacs as a domain according 

to their diffusive characteristics. The air velocities are included in the balance equations through 

the convection matrix Kv, with the velocities obtained from the airflow. The diffusion tensor for 

the parenchyma subdomains has the form analogous to (12), i.e., 

 
1

J Jij Ji Jj
Jtot

DD A
A

=                                             (18) 

where AJ and DJ are cross-sectional areas and diffusion coefficients, respectively. The 

connectivity elements are defined as in the case of airflow, with diffusion coefficients to be 

used in (13) instead of the hydraulic resistance coefficients hpJ.  

We can also consider diffusion within blood, which is governed by equations analogous to those 

within the air. Here, we need to use the appropriate diffusion coefficients within capillaries, 

extracellular space, and cells (Kojic et al.,2022). 

In this section, we summarize the concept of the entire lung model by using the above 

description of finite elements for mechanics, airflow, and diffusion. This general lung model is 

shown in Fig. 9. Note that large airways have the same equation numbers for velocities with the 

surrounding continuum. In the case of airflow and diffusion, large airways are not connected to 

the surrounding continuum, while smaller airways modeled by 1D pipe elements may have a 

connection (connectivity elements) with the first domain of the composite smeared 3D finite 

elements (GLFEs). 

 

Fig. 9. Finite element model for the entire lung. The model includes mechanics, airflow, and 

diffusion. Connectivities between domains are shown in the model. (according to Kojic, 2023). 

These finite elements and computational procedure according to details given in Fig.9 are built 

in our finite element code PAK-BIO, a modulus of PAK (Kojic et al., 2024). The following 

computational steps (passes) are implemented into the code for each time step: (according to 

Kojic, 2023) 

• Pass 1 – Mechanics. Velocities and displacements of the solid are determined. In the 

case of blood flow, the time step corresponding to blood should be used (which is 

smaller than needed for the airflow).   
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• Pass 2 – Airflow. Geometry and velocity field of the solid are used from Pass 1. 

Airflow is determined by computing the pressure field. In the case of coupling 2D or 

3D models with the pipe 1D elements, two separate FE meshes are generated and two 

systems of equations are successively solved within iterations until convergence is 

reached for both systems. 

• Pass 3 –Diffusion. Geometry and velocity field of the air are used from passes 1 and 2. 

In the case of coupling a 2D or 3D model with the pipe elements, one finite element 

mesh is generated and one system of equations is solved until convergence criteria are 

satisfied. 

In case of diffusion within the blood, we need a pass 4 using large blood vessels and the same 

mesh in the parenchyma (Fig. 10) and the corresponding time step. This model provides a basis 

for extension to include gas exchange. 

 

Fig. 10. Computational model for blood flow that includes 3D Navier-Stokes, 1D Hagen-

Poisseule, and KTM formulations. 

3. Examples 

Here,  we present two simple examples, according to (Kojic, 2023), to illustrate the 

methodology built into our code PAK. They demonstrate the main characteristics of our 

theoretical formulations and characteristics that are in agreement with the mechanical behavior 

of the lung parenchyma, which is dominant for lung function.  We put in quotes the entire 

section, since it is borrowed from the reference (Kojic, 2023). 

4.1 Three-axial stretch 

One element is subjected to high stretches in all directions, as shown in Fig. 11. The stretch 

increases up to the value of displacements 1 [mm] and then decreases to zero, simulating a lung 

cycle, as shown in the figure; hence doubling the element size. We impose these high stretching 

to emphasize the character of the deformation of microstructural elements.  The goal of the 

example is to gain insight into these deformations which are of vital importance for lung 

function (Kojic et al., 2011). Regarding the microstructural data, we have used (lengths in 
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[mm]): entrance ring radius R= 0.1, entrance ring cross-section radius rR =0.05, alveolus radius 

Ra= 0.2, alveolus thickness δa= 0.01; ratio muscle/connective tissue in entrance ring m=0.2; 

radial alveolar density nR=6. 

 

 

Fig.11. Three-axial stretch of the General Lung Finite Element (GLFE). (according to Kojic, 

2023). 

Figure. 12 shows a change of the duct volume (relative to the initial) and internal ring size over 

a cycle. It can be seen that the volume changes nonlinearly without hysteresis since the change 

of the external boundary does not have hysteretic character (Fig. 11). On the other hand, due to 

the hysteresis of surfactant and internal ring (Figs. 5c,d) the internal ring radius displays 

hysteresis – with the size larger in the unloading (lung expiration), Fig.12b. 

 

Fig.12. Change of the duct volume a), and internal ring size b), over a lung cycle (time during 

unloading-expiation goes from 10 to 0). (according to Kojic, 2023) 

4.2 Example 2 – Coupling between large and small vessels 

In a simple example shown in Fig. 13, we illustrate the coupling between two domains 

according to the procedure following from the presentation here and in (Kojic, 2023). As shown 

in Fig. 13, we consider a fluid domain (3D or axisymmetric, boundary elements 1-5) – on the 

left, coupled to four 1D pipe elements with boundary nodes 3,4,19,22. The parenchyma is 
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modeled by two 3D GLFEs. The length of each fluid element is 2 [mm] while the length of each 

of the GLFEs is equal to 1 [mm]. Axial symmetry is assumed for fluid, with an approximately 

parabolic profile at the entering left surface, and velocity at the symmetry line equal to 1 

[mm/s]. It is taken that fluid density is equal to 0.001 [g/mm3] and viscosity 0.001 [Pas]. 

Constant concentration is prescribed at the left entrance equal to 1 [M]. It is assumed that the 

prescribed velocity increases linearly during the inspiration period of 10s and linearly decreases 

to zero at time 20s (time function shown in Fig. 11); the diffusion coefficient is D=10 [mm2s-1]. 

The fluid domain is connected to the parenchyma through four pipes with boundary nodes 

3,4,19,22. The diameters of pipes are taken to be 2 [mm]. We have used a very small elasticity 

modulus for pipes (E=0.001Pa) to emphasize the mechanical response of the lung parenchyma. 

It can be seen that connectivity elements between pipes and GLFEs are 3-11, 4-9, 19-1,.., 24-14. 

The hydraulic proportionality coefficient is 0.7. Pressure and concentration at the pipe end 

nodes are imposed to be zero. It is adopted that there are 4 groups of small airways 

(generations) with diameters (in [mm]): 2, 1.5. 1, 0.5, and equal volumetric fractions rV=0.1. 

The last domain represents the alveolar sacs.  The solid is subjected to three-axial uniform 

mechanical loads, with fixed left and back surfaces with sliding conditions on these surfaces. 

Maximum force at nodes is 3x10-4 [N] for nodes at edges and 6x10-4 [N] for other nodes. 

 

Fig.13. Two models coupled. 3D or axisymmetric fluid domain (left) coupled to 1D (pipe) 

model within a 3D parenchyma model (3D GLFE elements). Boundary fluid elements 5-8 are 

connected to boundary pipe nodes 3,4,19,22. (according to Kojic, 2023). 

The goal of this example is to show a mechanical hysteretic character of the overall solid 

continuum and to illustrate airflow from the continuum fluid to the pipe structure. Fig. 14 shows 

the normal displacement of the right surface over a cycle, with a hysteresis. In Fig. 15, the 

pressures within the pipe and subdomains are shown.. Pressures increase linearly at inspiration 

and then decrease during expiration. 



Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    223 

 

  

 

Fig.14. Displacement of the right solid surface over a cycle (time during unloading goes from 

10 to 0). (according to Kojic, 2023). 

There is no hysteresis in pressure. It can be seen that pressure decreases over domains, with the 

decrease becoming smaller from the first to the last domain. 

 

Fig.15. Pressure within pipe connections with fluid and for a point within small airway domains 

over time. There is no notable hysteresis over the cycle. (according to Kojic, 2023). 

4. Conclusions 

We have briefly summarized our research, which started in 2001. and ending in 2024. The 

formulations and implementation into the PAK (Kojic et al., 2024) code belong mainly to the 

first author, but they were supported by important contributions of the other authors.  

This development represents a solid basis for further modeling of the real physiological 

conditions and implementations, supported by modern methodologies in imaging, model 

generation, and the today attractive artificial intelligence. We believe that this methodology and 

software will serve as a useful tool in the medical practice. 
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