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Abstract 

Two-equation turbulent models are widely used in finite element analysis of fluid flow. The 

PAK program package was upgraded from the classical laminar flow to the turbulent k-omega 

model. The turbulence model was validated using the case of fluid flow in a backward-facing 

step channel. The analysis results show good agreement with experimental data reported in the 

literature. The code was subsequently tested on a case of fluid flow in a coronary artery 

bifurcation, with particular emphasis on the stenosis resulting from the patient’s disease. 
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1. Introduction 

Turbulence in viscous fluid dynamics plays a key role in many engineering applications, as it 

significantly affects the distribution of pressure, velocity, and shear in fluid systems. When a 

fluid becomes turbulent, the flow is no longer laminar (regular and smooth), but rather chaotic, 

swirling flows that generate large fluctuations in their magnitudes occur. This flow is often the 

result of an increase in fluid velocity or when the fluid passes past solid bodies, such as pipes or 

surfaces. Turbulent flow is characterized by high energy being transferred from the large-scale 

flow to the smaller scales (microflows), which leads to higher energy losses and higher friction 

forces on the surfaces through which the fluid flows (Nikolić, 2018). 

There are several approaches to describing and studying turbulent fluid flow. The most common 

approach is statistical turbulence modeling. This approach relies on the approximation that the 

fluid velocity can be expressed as the sum of the mean velocity and the fluctuating component 

around that mean (McDonough, 2007). Applying this decomposition to the Navier–Stokes 

equations results in the Reynolds-Averaged Navier–Stokes (RANS) equations (Wilcox, 1988). 

These equations contain mean values of velocity and pressure instead of instantaneous 

quantities, but also introduce additional terms known as turbulent stresses or Reynolds stresses. 

The k −  model has been successfully applied to predict turbulent flows in the works of 
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(Wilcox, 1994), (Wilcox, 2006) and (Bassi et al., 2014), (Bassi et al., 2014). However, its 

application in biomechanical and medical research remains relatively limited. 

The development of the turbulence module for fluid flow calculations in this paper is based on 

the finite element method (FEM) (Bathe, 2006). An implicit integration scheme was employed 

for solving the governing equations of the problem. The fluid velocity, pressure, turbulence 

kinetic energy, and turbulence dissipation rate were determined at the finite element nodes 

through an incremental–iterative procedure, following the approach of (Kojić et al., 2008). 

In biomedical research, arteries with narrowing of the cross-section (stenosis) are particularly 

interesting to study (Shi et al., 2011). Blood flow in arteries is usually characterized as laminar 

before stenosis, while after stenosis, a vortex flow occurs that can best be characterized as 

turbulent flow. The study of this phenomenon is also interesting from a medical perspective. 

After each narrowing and sudden expansion of the cross-section of the artery, there is an 

accumulation of bad cholesterol that can further develop into atherosclerotic plaque that leads to 

a heart attack. To accelerate the process of model generation, the STL2FEM software was 

developed (Blagojević et al., 2013), based on volumetric models obtained from radiological 

imaging. 

A verification example of turbulent flow in a channel with a backward-facing step is presented. 

Comparison with experimental results from the literature (Jovic, 1994) shows that the FEM 

analysis corresponds well with the measurements. 

2. Methodology 

2.1 RANS equations and k-ω model 

The Reynolds-Averaged Navier–Stokes (RANS) equations represent the first step in the 

statistical modeling of turbulence. They are derived from the Navier–Stokes equations and the 

continuity equation (Kojić et al. 2008): 
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where eff T  = +  is the effective dynamic viscosity, defined as the sum of the molecular 

dynamic viscosity and the turbulent (eddy) viscosity. 

Equations (1) and (2) represent the Reynolds-Averaged Navier–Stokes (RANS) equations. In 

the k − , the turbulent (eddy) viscosity is calculated as the ratio of the turbulence kinetic 

energy to the specific dissipation rate of turbulence kinetic energy: 

 
*

T

k
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
=  (3) 

The turbulence kinetic energy can be expressed, following (McDonough, 2007), by the 

equation: 
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where 
kP  denotes the effect of turbulence kinetic energy and is defined as: 
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The specific dissipation rate of turbulence kinetic energy,  , is a variable that characterizes the 

turbulence scale and is calculated using the following equation: 
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In equations (4) and (6) contants 
* ,  ,  , 

k ,   and 
* are defined following (Wilcox, 

1994) and (Wilcox, 2006) as: 
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2.2 Finite element formulation of RANS equations and k-ω model 

The basic idea of finite element analysis is to discretize the spatial domain into subdomains 

called finite elements. Figure 1 schematically illustrates this process using the example of the 

carotid artery, where the fluid (blood) domain is explicitly modeled. Both domains are 

subdivided into finite elements, within which the fundamental physical quantities are computed. 

In the previous chapter, we presented the governing equations for turbulent fluid flow, namely 

the RANS equations, given by expressions (1) and (2). 

 

Fig. 1. Discretization of the carotid artery into fluid and solid domains using finite elements 
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The velocity field within each finite element (Fig. 1) can be approximated by a velocity vector 

(x, y,z)v , defined in terms of the local coordinates , ,r s t  of the finite element (Kojić et al., 

2008). The finite element velocity is expressed as a function of the nodal velocity vector v at 

each node of the element: 

 

1
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where kh  are the interpolation (shape) functions, I

iV are the components ( , ,x y z ) of the 

velocity vector at node I and N  is the total number of nodes in the finite element. 

The governing equations for the [model name] (5–7) can be transformed into finite element 

balance equations for a single element by applying the standard Galerkin weighting method 

(Milošević et al., 2018). Specifically, the Galerkin method is applied to equations (1), (2), (5), 

and (7), using interpolation functions for the fluid velocity, pressure, turbulence kinetic energy, 

and the specific dissipation rate of turbulence kinetic energy, as described in (Kojić et al., 2008) 

and (Bathe, 2006): 
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The application of this procedure yields the following system of equations in matrix form: 
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In previous system submatrices and subvectors are: 
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For the turbulence model k − , the finite element equations are derived from equations (4) and 

(6), and can be formulated as: 
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In previous equation (20) submatrices and subvectors are: 
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In previous equation (21) submatrices and subvectors are: 
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By coupling the Reynolds equations (13) with equations (20) and (21), the following system of 

matrix equations is obtained, based on the works of (Nikolić, 2018) and (Nikolić et al., 2021): 
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All of above procedures and equations are implemented in software PAK-F, part of software 

package PAK (M. Kojić et al. 1998-2010), which is called PAK-F turbulent. 

2.3 Incremental-iterative method for solving equations 

The system of equations (13) is nonlinear due to the velocity terms appearing in the convection 

component. To solve these equations, an incremental–iterative procedure is employed (Kojić et 

al., 2008). The turbulence kinetic energy, the specific dissipation rate of turbulence kinetic 

energy, and the fluid velocity at the end of a time step ( t t+ ) bare calculated as the sum of the 

values from the previous iteration ( 1i − ) and the corresponding increment from the current 

iteration ( i ). This yields the following iterative equations: 
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Equations (20) and (21) in incremental-iterative matrix expressions can be written as: 
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3. Verification and examples of turbulent fluid flow with k-omega model 

3.1 Example with backward-facing step 

The turbulence module was validated using a widely adopted benchmark problem—the flow 

over a backward-facing step. The geometry of the problem, given in (Jović et al., 1994), is 

shown in Fig. 2. 

 

Fig. 2. Geometry of a backward-facing step model 

In this model, the sudden expansion of the tunnel cross-section generates a vortex behind the 

step, as illustrated in Fig. 2. The upstream section of the tunnel, which serves to establish a 

laminar flow regime prior to the step, is not included in the analysis. Owing to symmetry 
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conditions, only half of the tunnel with the step, highlighted by the red rectangle in Fig. 2, is 

modeled. 

The step has a relative height H, and its relative length is 4H. The total length of the modeled 

tunnel section is 20H. The result considered in this problem is the distance after which the fluid 

falls to the bottom of the channel, denoted by Xr on Fig. 2. Dimension 
rX  has been 

experimentally determined as 6H. Inside the tunnel is a Newtonian fluid of density 
3 31 /e g mm −=  with dynamic viscosity 

21 /e g mms −= . The problem is simulated with 

multiple inlet velocities, with emphasis on velocities where the Reynolds number is greater than 

2300 and turbulent flow occurs. At an inlet average fluid velocity of 16666 /inletv mm s=  a 

Reynolds number of 5000 is obtained. 

The boundary conditions in the model prescribe a no-slip condition (v=0) on the channel walls, 

while zero surface forces are imposed at the channel outlet. The upper boundary of the model is 

simulated as symmetrical because the model practically represents half of the tunnel. A model 

with 28,000 four-node elements was used for the calculation, as represented in Fig. 3. 

Fig. 3. Finite element model of the 2D backward-facing step channel with a 28,000-element 

mesh 

The inlet boundary conditions were defined by the average velocity inletv , turbulence kinetic 

energy 0k  and specific dissipation rate of turbulence kinetic energy 0 , calculated following 

(Nikolić, 2018) and (Nikolić et al., 2021). Wall boundary conditions for the turbulence 

quantities k  and   were imposed according to the formulations given in (Nikolić, 2018). At 

the outlet, the pressure was set to zero. The FEM simulation of fluid flow in the stepped channel 

using the k-ω turbulence model was implemented as a transient (non-stationary) analysis. The 

computation was carried out over 200 time steps of 0.5 seconds each, using a mesh of 28,000 

elements. The results obtained with the PAK-F Turbulent software were compared with 

available experimental data for the characteristic reattachment lengths 
rX (2H,4H and 6H), as 

shown in Fig. 5. 

The length 0rX =  corresponds to the end of the step. At a distance 6H downstream of the 

step, the fluid velocity becomes positive, whereas immediately behind the step the velocity in 

the lower part of the channel is negative (Figure 2). This behavior is caused by the vortex that 

forms just after the step, where the fluid locally flows in the direction opposite to the inlet 

velocity. The results in Fig. 4 show the calculated flow field represented by streamlines, 

obtained with the PAK-F Turbulent program at the beginning of the simulation (t=1s), when the 

vortex is formed behind the step. 
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Fig. 4. Streamlines of velocity calculated in software PAK-F Turbulent 

In the diagrams, the fluid velocity is normalized such that U denotes the local velocity at the 

observed point, while U0 represents the average inlet velocity. The computed velocities are thus 

expressed in dimensionless form relative to the inlet velocity, and the Y-coordinate of each 

observation point is normalized by the step height H. 

 

Fig. 5. Results of the 2D backward-facing step analysis at characteristic lengths 2H, 4H and 

6H 
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3.2 Numerical simulation of turbulent flow on the example of a coronary artery bifurcation with 

large stenosis 

The turbulent blood flow was simulated in a coronary artery bifurcation model to investigate 

hemodynamic conditions under pathological stenosis. A large stenosis model was performed 

using the real geometry of a selected patient. The FEM model of the fluid domain was modeled 

with 22674 3D elements, (Fig. 6). The maximum time-averaged inlet blood flow velocity in the 

coronary artery is 3000 /srv mm s= . The simulation incorporated one full cardiac cycle (systole 

and diastole) of an adult human, prescribed as a time-dependent boundary condition (Nikolić et 

al., 2021). 

 

Fig. 6. Finite element model of the coronary artery bifurcation with large stenosis 
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The boundary conditions for the simulation were defined as follows: zero velocity at the vessel 

walls (no-slip condition), and resistive boundary conditions at the outlets of the branches to 

account for the continuation of blood flow into downstream vascular beds. The calculation was 

performed as an unsteady flow simulation over 200 time steps of 0.005 s each. The results of 

the blood flow simulation are presented in terms of the velocity field (Figs.7 and 8) and the wall 

shear stress distribution (Figs. 9 and 10) at several time steps, with particular emphasis on step 

20, corresponding to peak systole. The velocity distribution is visualized using streamlines to 

highlight flow disturbances. The results demonstrate a significant reduction in blood flow 

velocity within the bifurcation, caused by the severe stenosis located on the main branch of the 

right coronary bifurcation. In this region, the velocity drops below 1000 /v mm s= . The wall 

shear stress results confirm this behavior, showing stress levels between 800Pa  and 900Pa . In 

practice, the shear stress in the stenotic region is up to an order of magnitude higher than in 

regions without stenosis. 

 

Fig 7. Velocity field in the coronary bifurcation at step 20, illustrating flow during peak systole, 

(front view). 

 

Fig 8. Velocity field in the coronary bifurcation at step 20, illustrating flow during peak systole 

(back view). 
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Fig 9. Distribution of wall shear stress the stenosis of coronary artery bifurcation for step 20, 

(front view). 

 

Fig 10. Distribution of wall shear stress in the stenosis of coronary artery bifurcation for step 

20, (zoomed view). 

4. Conclusions 

The sudden narrowing of an artery caused by atherosclerotic plaques triggers biological and 

mechanical processes that influence the progression of atherosclerosis. Turbulent flow that 

develops downstream of a stenosis disrupts normal hemodynamics and promotes the 

accumulation of low-density lipoprotein (LDL) cholesterol and other lipids on the arterial walls. 

In addition to impairing efficient blood transport, turbulence alters the balance between lipid 

deposition and removal, accelerating plaque formation. Over time, cholesterol, calcium, and 
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connective tissue accumulate, producing rigid plaques that further narrow the arteries and 

obstruct blood flow. In advanced stages, plaque rupture or erosion can occur, leading to 

thrombus formation, arterial occlusion, and acute cardiovascular events such as myocardial 

infarction or stroke. 

The study of arterial blood flow, particularly transitions from laminar to turbulent regimes, is 

therefore of great clinical relevance. Flow disturbances caused by stenosis and turbulence can 

serve as indicators of atherosclerosis and other cardiovascular diseases. Early detection of these 

changes provides an opportunity to prevent severe outcomes, including heart attack and stroke. 
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