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Abstract 

Degradation of structural integrity and fatigue life estimation remain critical challenges in 

engineering, including biomedical applications. Fracture mechanics and crack propagation 

prediction are highly sensitive to material parameters, with the Stress Intensity Factor being the 

most significant physical parameter for the estimation of crack stress fields. This paper applies a 

fatigue crack growth model and structural integrity assessment using advanced numerical 

methods. The model calculates Stress Intensity Factor via the J-Equivalent Domain method, 

implemented in the in-house PAK software. Crack growth is simulated using the Extended 

Finite Element Method, incorporating discontinuous functions and asymptotic crack-tip 

displacement fields through Partition of Unity and Fast Marching-Level Set methods, which 

eliminates explicit crack meshing. The approach is validated through case studies from both 

classic engineering and biomedical structures. 

Keywords: Fatigue crack growth, Integrity assessment, Stress Intensity Factor, J-Equivalent 

Domain Integral, Extended Finite Element Method 

1. Introduction 

The Finite Element Method (FEM) has become the gold standard for structural analysis of 

engineering structures, including applications in the field of biomedical engineering. Today, 

there is no serious analysis of engineering structures that does not involve the application of 

FEM. Academician prof. Miloš Kojić and prof. Radovan Slavković, at the Faculty of 

Mechanical Engineering, University of Kragujevac, started the pioneering venture of 

developing in-house FEM based software PAK (Kojić et al., 1998, 2010), 50 years ago. During 

this time, a number of PhD and master's students have implemented specific modules within the 

in-house software PAK, including PAK – Multiphysics. Also, it should be emphasized that 
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PAK is the only FEM software in Serbia and more widely in the South East Europe that is 

open-source and allows young researchers to develop an original approach and produce a top 

quality research in applied mechanics. PAK-Multiphysics includes a wide range of solvers: 

PAK-S (for static analysis), PAK-F (for fluid dynamics), PAK-FM&F (for fracture mechanics 

and fatigue), etc. Special emphasis should be placed on the application of PAK in Biomedical 

Engineering, where academician Kojić and his research team produced pioneering work. The 

FEM has found a large area of application in the biomedical engineering, including both solid 

mechanics such as bone tissues, stents, etc., and in fluid mechanics for the simulation of blood 

flow. 

The advantage of PAK software is reflected in the implementation of the novel numerical 

methods that were not available at the time in other commercial software. Some examples 

include the implementation of Fast Marching-Level Set (FM&LS), Extended Finite Element 

Method (XFEM) and J-Equivalent Domain Integral (J-EDI) methods in PAK, as advanced 

numerical methods for simulating crack growth in the structure. Fatigue crack growth 

simulation as well as integrity assessment could be performed both by classical FEM and 

advanced computational techniques such as XFEM. The numerical methods mentioned above 

have proven to be the only reliable computational resource for simulating fatigue crack growth 

because analytical solutions for complex structures have not been available. At that time 

XFEM, was not available in any other commercial software. 

The essence of applying advanced FEM methods in the simulation of fatigue crack growth 

is to correctly predict the discontinuous physical fields around the crack. The first attempts to 

simulate discontinuities in the finite element method, the so-called "weak" discontinuities were 

published by researchers Ortiz et al. (1987) and Belytschko et al. (1988). They defined the 

discontinuity in the deformation field using the multi-field variational principle. Dworkin et al. 

(1990) developed "strong" discontinuity in the displacement field by modifying the principle of 

virtual work. In numerical modeling of strong discontinuity, the physical displacement field 

consists of normal and added components, where the added components in the displacement 

field arise from enrichment functions. Belytschko and Black (1999) introduced Near Tip (NT) 

functions into finite element (FE) approximation. These functions allowed for a jump of 

physical quantity near crack tip is achieved. The procedure for introducing additional functions 

into the finite element approximation is based on the Partition of Unity (PU) principle. NT 

functions were initially introduced by Belytschko et al. (1993) and Fleming et al. (1997) in the 

development of the Element Free Galerkin (EFG) method. An additional improvement of the 

"strong" discontinuity in the displacement field around the crack face was achieved by Moes et 

al. (1999) by introducing the Heaviside function in the FE interpolation while respecting the PU 

principle. So, by inserting additional enrichment functions (NT and Heaviside) into FEM, 

XFEM was created. 

However, this idea of inserting additional functions into XFEM is not new but is taken 

from the EFG method. A NT functions and the Heaviside function are used to enrich the finite 

element approximation in the XFEM. Combination of NT and Heaviside functions resulted in 

an extremely robust numerical method for simulating discontinuities in the physical fields on 

the crack faces as well as the "singular" stress field around the crack tip. The robustness of 

XFEM compared to other methods is reflected in the following: there is no scaling factor 

inherent in EFG, and it must be adopted empirically; or there is no remeshing of the mesh as 

with the classic FEM when simulating crack propagation. This XFEM methodology is 

implemented in the software PAK based on the standard finite element approximation. 

Structural integrity assessment of critiral engineering or biomedical devices is important to 

ensure the safety, durability and reliability. In that case, the assessment includes tasks in many 

areas, such as structural and failure analysis, non-destructive testing, structural monitoring and 



Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    169 

 

  

instrumentation, fatigue analysis, fatigue life assessment, safe-operation assessment, etc. From 

the mechanical aspect, the failure may occur due to a static load exceeding the material strength 

or due to damage accumulation caused by cyclic loading. Cyclic load causes stress changes 

which, over time, may cause degradation of mechanical properties (i.e. damage accumulation), 

initiation and growing of micro-cracks and, consequently fracture – fatigue failure. Material 

fatigue can cause the following processes in a structure: initial damage accumulation, damage 

growth caused crack initiation, crack propagation and total failure i.e., fracture.  

Structural damage is identified as the degradation of material stiffness and is very important 

as an inverse optimization problem for fatigue assessment and residual lifetime prediction. The 

first step in failure is localization of damage. The principal aim is to define and apply numerical 

preventing procedures to assess durability of engineering or biomedical structure based on the 

estimation of safety from fatigue to fracture. This procedure cosnsists of three phases: safe-

operation i.e., no-fatigue failure or fracture from failure; initial fatigue analysis i.e., stress-based 

fatigue estimation; fatigue lifetime assessment based on fatigue crack growth simulation using 

Paris-power law.  

It is well known that fracture mechanics alone may not predict the full scenario of the: 

degradation of mechanical properties, damage localization, crack initiation, stable crack growth 

and unstable crack propagation i.e., total failure. Crack initiation is based on accumulation of 

damage and requires damage mechanics to model the gradual loss of stiffness in a small area 

Moes et al. (2011). Damage localization was achieved by using a Level Set (LS) method, while 

planar damage propagation was simulated using Fast Marching Level Set (FM&LS) method. 

The LS method is a numerical scheme tailored, among others, to model arbitrary cracks, holes 

and material interfaces (inclusions), without meshing the internal boundaries. Osher and Sethian 

(1988) introduced the Level Set Method (LS method) to represent the interface as the zero level 

surface of a function of one dimension or higher. The LS method is established on Initial value 

formulation. This technique is based on the finite difference method for hyperbolic conservation 

laws enabling the accurate and stable evolution of sharp corners and cusps in interface. FM&LS 

methods are used to track the motion of an arbitrary monotonically advancing interface. 

This paper presents applications of these advanced numerical methods within PAK for 

fatigue crack growth modeling and integrity assessment, with case studies including assessment 

of stable crack growth in engineering and Fatigue to Fracture (FtF) assessment in biomedical 

engineering examples. 

2. Methods for fatigue to fracture crack growth and integrity assessment 

In the assessment of durability and reliability of the structures, there are two approaches that 

depend on the size of the structure and whether or not damage occurred in the form of an initial 

crack. In order to achieve appropriate and acceptable reliability in the framework of critical 

structures and to prevent FtF. Therefore, FtF is a process that can develop in structures 

subjected to cyclic loading without indications of an initial crack. The theory of small cracks is 

necessarily used in the FtF approach, and as such it should certainly be implemented if the 

structure is of small dimensions. In the case when a crack with dimensions larger than the initial 

one is observed in the structure, which is a frequent case in engineering, a stable crack growth 

simulation procedure and assessment of the residual life of such structure is carried out. 

2.1 Residual lifetime assessment in case of stable crack growth 

Determination of physical variables (displacements, deformations and stresses) using the XFEM 

or FEM method in a mechanical structure containing a crack is the starting point for assessing 



170                         G. Jovičić et al.: Fatigue to Fracture Integrity Assessment in Engineering and Biomedial Engineering 

 

the integrity of a structure. The assessment of the integrity of a structure that has a macro-crack 

is reflected in the definition of stress intensity factors (SIFs) as a basic parameter of fracture 

mechanics. In commercial software, there are different methods for defining SIFs, one being  

the Equivalent Domain Integral (EDI) method for evaluation of the J-integral. The J-EDI 

numerical method is very useful for defining the SIFs parameters. This method could also be 

applied for post-processing in the FE framework as well as in the XFEM approach in the PAK 

software. Integrity assessment of existing structures with an observed crack is based on defining 

SIFs, which is in turn calculated based on the stress field around the crack. This is followed by 

the simulation of crack growth and the calculation of the remaining life. In order to carry out the 

simulation of crack growth in an effective way, the application of FM&LS techniques for 

automatic identification of damage is required. 

2.1.1 Identification of the damage zone using FM&LS techniques 

FM&LS techniques were first introduced by Sethian (1998). The FM method is established on 

the Boundary value formulation, employs no time step, and is not subject to time step 

restriction, unlike LS methods. These techniques have been used in a large variety of 

applications, including fluid interface motion, two phase flow simulation, combustion, dendritic 

solidification, etching and deposition semi-conductor manufacturing, robotic navigation and the 

path planning, computation of seismic travel times, image segmentation in medical imaging 

scans, see (Sethian and Chopp, 1995; Sethian, 1999):. 

The model derivation is based on the assumption that the initial position of the damage 

front is the zero level set of a higher dimension LS function,  . Evolution of this function   is 

then associated with propagation of the damage front itself through a time dependent initial 

value problem. At any time instance, the front is given by the zero level set of the    in all 

points in the computational domain (Sethian and Chopp, 1995; Sukumur et al., 2002; Jovičić, 

2005). In order to derive an equation of motion for the LS-function  , the zero level set always 

matches the propagating hyper-surface. It means that: 

 ( ( ), ) 0t t =x  (1) 

In order to derive partial differential equation for the time evaluation of   one can use the 

chain rule: 

 ( ( ), ) ( ) 0t t t t  +  =x x  (2) 

where t  denotes a time derivative of the function and ( )tx  is partial derivative coordinates 

by time. It then follows that : 

 ( )t F  =x n  (3) 

In Eq. (3), F is a speed of interface propagation in the outward normal direction on damage 

interface, where the outward normal direction is obtained from the level set function , as: 

 





=n  (4) 

Equation (2) then becomes  
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where the right hand side in Equation 5b) is given. The term ( )d x  is the signed distance from 

x to the initial front. Eqn. (5b) is the level set equation introduced by Osher and Sethian (1988). 

This formulation can be applied for the arbitrary speed function F . As analyzed by Sethian 

(1998), the efficient solution of these front propagation problems requires the use of upwind 

difference schemes taken from the solution of hyperbolic conservation laws. 

Two LS functions are used for crack identification in the XFEM method, which fully define 

discontinuity across the sides of the crack as the position of the crack type and the area in front 

of the crack tip. Linear segments representation of the crack is shown in Fig. 1, by using Level 

Set functions: 

 
 ( ) ( ) min

c

sign


=  − −
CT CT

x
x n x X x X

, ( ) ( )
CT

 = − x x X t  (6) 

where are: n  is the unit normal to crack at crack tip; t  is the unit tangent to crack at the crack 

tip; 
CT

X are coordinates of the crack tip, x coordinate of the point around the crack. 

 

Fig. 1. Linear segments domain representation of the crack using Level Set functions. 

One way to characterize the position of this expanding front is to compute the arrival time 

( ),T x y  of the front as the crosses each point ( ),x y . The equation that describes arrival time 

surface ( ),T x y  is derived using: distance=rate*time, ( x F t =  ): 

 1
dT

F
dx

=  (7) 

In multi dimension, the spatial derivative of the solution surface ( ),T x y becomes the 

gradient, and hence we have: 

 
1

T
F

 =  (8) 

Eqn. (8) represents the boundary value partial differential equation describing the interface 

motion (Sethian, 1998). If the speed F depends only on position, then the equation reduces to 

the familiar Eikonal equation. If   is a signed distance function so that 

 1 =  (9) 

is one of Equation (8) solutions. The function   remains the signed distance function for all 

time in all regions where   and F are smooth if: 

 0F   =  (10) 
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Eqn. (10) assures that function   remains the signed distance function that satisfies Eqn 

(8) for all time. Solution of Eqn (10) gives the extension velocity F. Also, with (10) it is assured 

that F=const. along the normal direction of the damage front. The boundary value perspective is 

restricted to the front that always moves in the same direction, i.e. outward, because it requires 

crossing time (T= ) at the each grid point, and hence a point cannot be revisited. In the study 

(Sethian, 1998), the assumption was made that the front velocity F depends only on the front 

position. Solving equations (8) and (9) can be done by using the FM method which is the 

optimal technique for solving Eikonal equation, coupled with a bi-cubic interpolation scheme. 

2.1.2 Displacement approximation near a crack using XFEM 

The displacement approximation ( )u x in the X-FEM consists of  a continuous and an 

enrichment part: 

 ( ) ( ) ( )con enrh= +u x u x u x  (11) 

where: the continuous displacement approximation ( ) ( )h

con I IN= u x x u  is standard 

approximation in the FEM, and ( )enrhu x  is enrichment part of displacement approximation near 

the crack (Fig. 2). Therefore, in the XFEM, the enrichment functions are added to the finite 

element approximation to represent the intra-element discontinuous field. In particular instance 

of 2D crack modeling, the enriched displacement approximation is written as (Sukumur et al., 

2002; Jovičić, 2005): 

 ( ) ( ) ( ) ( ) ( ) , 1,4
a b

h

enrh I I I I

I I

N H N F 

 
 

= + = u x x x a x x b  (12) 

where 
IN , (1, )I N=  are the finite element shape functions; 

Ia  are additional degrees of 

freedom associated with the Heaviside (discontinuous) function; 
I


b  are additional degrees of 

freedom associated with the Westergaard asymptotic crack-tip functions; ( )H x  is the 

Heaviside function: 

 

*1 if ( ) 0
( )

*1 if ( ) 0

H
 −  

= 
 − −  

X X n
X

X X n

 (13) 

where X  is the sample (Gauss) point, *
X (lies on the crack) is the closest point to X , and n  is 

unit outward normal to crack at *
X . The ( )F x , (1,4) =  are Westergaard asymptotic Near-

Tip (NT) functions: 

1 2 3 4( ) { , , , } cos , sin , sin sin , cos sin
2 2 2 2

F F F F F r r r r
   

 
 

= =  
 

x  (14) 

where are: ( )r x  and ( ) x  polar coordinates of the point x . The polar coordinate system is 

attached to the crack tip, see Fig. 2. 
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Fig. 2. Enrichment nodes near the crack tip. 

In Fig. 2 the circle nodes are enriched by Heavisade function, the square nodes are enriched 

by NT functions, while the other nodes are not enriched. Enrichment by the H function is 

applied only behind the crack, hence discontinuity occurred. 

2.1.3 Determination of the SIFs using J-EDI method.  

The J-EDI numerical method is very useful for defining the SIFs parameters and can be applied 

for post-processing in both the FE and the XFEM framework. The EDI approach (Moes et al. 

(1999); Jovičić, (2005)) has the advantage that the effect of body forces can be easily included. 

Discretized form of the J-EDI integral is: 

 ( ) ( ), , ,
,

k ij i k kj j ij i k kj
A A j

J u W q dA u W qdA   = − + −   (15) 

where: W  is the strain energy density, ij  is stress tensor, 
iu  are components of the 

displacement vector, ,i ku is derivative of the displacement with respect to kx , , jq is derivate of 

the weight function with respect to coordinates jx . The present formulation is for a structure of 

homogeneous material in which no body forces are present. Once the numerical calculation of 

the kJ , the Stress Intensity Factors IK  and IIK  for modes I and II, respectively, can be 

obtained from the following equations: 

 

2 2

1
*

I IIK K
J

E

+
=

, 
2

2

*

I IIK K
J

E

−
=

 (16) 

where: *E E=  for plane strain, ( )2* / 1E E = −  for plane stress, E  is Young’s module,  is 

Poison’s ratio.  

2.1.4 Residual Lifetime Prediction for Fatigue Crack Growth  

Paris power law of fatigue crack growth is used for the crack growth prediction in this model. It 

is noteworthy that Paris power law cannot predict fracture, but gives good results in the region 

of stable crack growth. Since the pre-existing flaws are typically present in the structures, this 

approach is damage-tolerant for assessing fatigue life. Therefore, residual fatigue lifetime 

prediction is based on the simulation of fatigue crack growth and the Paris law in a conservative 

formulation: 
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( ) 1,

m

i i
da dN C dK i n=  =

 (17) 

where; C , m  are material fatigue parameters. 

In the case of a variable operating mode of the structure, it is necessary to take into account 

the influence of stress fluctuation on the remaining life of the structure by using the stress 

alternation factor. Consequently, the crack growth simulation is performed by applying the 

corrected Paris law: 

 ( ) ( )
0.5

1
m m

i i
da C R dK dN= −

 (18) 

When 0R →  the corrected Paris law (18) reduces to the Paris law in Eqn. (17). In the 

previous relations, the length of the crack in the i+1 iteration is defined based on the crack 

growth increment in the i-th iteration, i.e.: 
1i i i

a a da
+

= + . For the Theory of small cracks, the 

stress intensity range (in eq. (17)) is defined as 1/ 2( )  = K Y a , where; Y is a constant 

dependent upon the geometry, flaw size and shape; and   is far-field tensile stress range 

ahead the crack tip. For the small flaw, it is reasonable to assume that Y does not change during 

the crack growth.  

For the macro-crack theory, which is most common in engineering practice, SIFs is defined 

numerically based on Eqn. (16), and the range of the SIF for eq. (17) is determined based on the 

equivalent stress intensity factor: 

 

3 2cos 3 cos sin
2 2 2

c c c

Ieq I IIK K K
  

= −
 (19) 

where 
c  denotes the direction in which the crack is likely to propagate relative to the 

coordinate system attached to the crack tip ,see Fig. 3. 

 

Fig. 3. The crack growth angle in (n+1) step of the simulation. 

The crack growth angle in which the crack propagates is (Jovičić, 2005): 

 

2 2 2 2

1

2 2

3 8
cos

9

II I I II

c

I II

K K K K

K K
 −

 + +
 = 
 +
   (20) 

The above equation was developed in the numerical simulations of the crack growth in 

PAK-XFEM. The crack growth simulation in (n+1) step is calculated based on the SIFs value 

from the nth step. Also, the crack propagation angle in n+1 step, eq. (16), is performed based on 

the value of SIFs in the nth step. 
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Based on numerically calculated values of SIFs and simulation of crack growth, an R-curve 

can be formed, see Fig 4. This curve is useful in engineering practice because it defines the 

critical zone for the operation of the structure. 

 

Fig. 4. R-curve with specific values of crack size and stress intensity factor. 

The R-curve is the fracture resistance curve and defines the relationship between the stress 

intensity factor (or J-integral for nonlinear case) and the crack length. In the theory of macro 

cracks, it is considered that crack growth is stable in the zone between the threshold stress 

intensity factor and the fracture toughness. 

2.2 FtF approach of the integrity assessment  

The FtF approach for integrity assessment can be defined through several post-processing 

codes: safe operation assessment, stress-based fatigue estimation, and residual lifetime 

prediction for fatigue crack growth. Which of the approaches will be applied largely depends 

on: the size of the structure, the presence of damage in the form of a crack, crack size (micro or 

macro), significance of the component the integrity assessment is performed for. The safe-

operation assessment is based on the prediction of critical fatigue stress range in operation for 

structure with pre-existing flaws. This form of integrity assessment is necessary with structures 

of small dimensions, such as a cardiovascular stent. Safe-operation estimation is also necessary 

for high-responsibility engineering structures such as nuclear reactors. Stress-based fatigue 

estimation is used for structures without visible cracks that are exposed to monotonous or 

complex cyclic loading. Residual lifetime prediction is used in the numerical simulation of the 

growth of an existing crack. 

2.2.1 Safe-Operation Assessment in Theory of small crack  

Fatigue crack growth typically occurs in stages: crack initiation (small cracks) followed by long 

crack propagation until unstable propagation and failure. The theory of small cracks is crucial 

for the crack initiation stage, where conventional long-crack fracture mechanics does not fully 

apply. Small cracks, typically of microstructural size, can grow at stress levels that would not 

propagate larger cracks. The Kitagawa–Takahashi (K–T) diagram provides a framework to 

combine fatigue limit (endurance strength) with fracture mechanics, mapping regions of safe vs. 

unsafe crack growth behavior (Ritchie, 1999; Jovičić et al., 2014; Vukićević et al., 2015). Fig. 5 

schematically illustrates the K–T diagram, which defines a safe-fatigue zone by the line A–B–

C. 
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Below the A–B line in the K–T diagram, the crack is smaller than a certain transient crack 

size a0, meaning classical continuum fracture mechanics cannot be directly applied. This sub-

A–B region is essentially a no-fatigue-failure zone where very small cracks do not yet 

propagate in the conventional sense. Point B on the diagram corresponds to the crack reaching 

the transitional size a0, beyond which the material’s full long-crack threshold behavior is 

reached. The portion B–C represents the threshold stress intensity range (ΔK) required for a 

long crack to grow at the fatigue limit. Stresses or flaw sizes above line A–B–C will cause crack 

growth or even immediate fracture, whereas operating below that line ensures the crack remains 

dormant (non-propagating). 

The transient crack size a0 is a material-specific length that marks the boundary between 

small-crack behavior and long-crack behavior. If a flaw is smaller than a0, the effective fatigue 

threshold is lower and varies with crack length. In this regime, the threshold stress intensity 

factor range 
thK for crack growth increases as the crack grows. The transitional length a0 itself 

can be calculated from the intrinsic threshold ΔKth0 (the fatigue threshold for long cracks) and 

the material’s fatigue limit (Δσ) as: 

 

2
0

0

1 th

e

K
a

Y 

 
=  

   (21) 

where Y is a geometry factor for the crack. Above a0, the material’s threshold ΔKth0 is 

essentially constant, intrinsic to the material, independent of crack size. 

  

Fig. 5. KT diagram for safe-operation assessment. 

The previous procedure is extremely important for critical structures of small dimensions, 

which requires use the Theory of Small Cracks. 

3. Example of assessment of stable crack growth in engineering using FM&LS and XFEM 

In most engineering structures, fracture mechanics theory is generally used when the existence 

of an initial crack has already been observed. In that case, the stable growth of the crack and the 

remaining life span are assessed. The FM&LS method is used in the case of planar damage for 

tracking its propagation, . 
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3.1 Simulation of damage propagation using the FM&LS method 

To illustrate influence of the velocity function along the front on the propagation of damage in 

Eqn. (7), two cases of the planar damage growth are shown in Fig. (6): a) the propagation 

velocity along the front is constant and b) the velocity along the front is not constant. 

Figure 6a shows the results of a numerical simulation of the propagation of planar 

polygonal damage during 100 time steps. For the constant speed along the front, F const=  

shown in Fig. 6a, the crack retains its original shape during propagation. That is, the new 

positions of the crack are defined by lines of constant values of the transition time and those 

lines are equidistant. Figure 6b shows the propagation of a planar polygonal crack in the case 

where the velocity along the front depends on the location, which implies that the crack 

gradually changes its shape, i.e. it elongates in the direction of the highest SIFs value. 

  

Fig. 6. Propagation of planar damage. a) Constant speed along the front; b) Speed at the front 

that depends on the position of the front point. 

3.2 Simulation of crack growth in the steam turbine housing for cogeneration electricity 

production 

An example of the application of the XFEM method in engineering practice is illustrated for the 

case of stable crack growth in the steam turbine housing for cogeneration electricity production. 

As previously indicated, in order to evaluate stable macro-crack growth, it was necessary to 

experimentally determine fracture toughness. In the XFEM, four nodes linear elements are used 

and 6x6 Gauss quadrature only in the part of the domain enriched by NT and Heaviside 

functions. 

Effective stress for 2D turbine model without insulation, for a number of crack lengths is 

determined by using PAK-XFEM. The crack path is independent of the mesh structure, i.e. the 

crack overlaps the elements edges, and there is no physical separation of the joint sides of 

elements, see Fig. 7.  One of the critical parts of the turbine is a hole for the steam supply, with 

the sharp edges which cause stress concentration and where the cracks appear. 

Figure 8 shows crack growth in case of load fluctuation in the steam turbine casing. The 

load fluctuation in a steam turbine for cogeneration electricity production is defined through the 

stress alternation factor R by applying the corrected Paris law. Changing the level of load 

fluctuation in the turbine housing significantly affects the residual life. 
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Fig. 7. Effective stress field due to crack growth in the lower housing part without insulation 

(using PAK-XFEM). 

 

Fig. 8. Dependence of the crack length on the number of cycles obtained by applying the 

corrected Paris law of growth. 

Figure 9 shows the numerically obtained R-curve, i.e. the fracture resistance curve, for the 

casing of the cogeneration turbine housing, for a range of crack lengths between 20mm and 

70mm, by using classic FEM and XFEM implemented in PAK. The same mesh density was 

used in both models, where FEM result was obtained with eight node quadratic elements, whilst 

the XFEM solution was based on the linear four node elements.  In both numerical results 

shown in Figure 9, a sudden change in the growth rate occurs beyond the crack length of 60 

mm. The crack lengths below 20mm were not considered, as this is a typical crack length 

observed during standard turbine housing inspection. 

A slightly lower slope of the resistance curve up to the crack length of 60 mm was obtained 

by using PAK-XFEM, which is a consequence of the use of linear four-node finite elements. 
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Fig. 9. R-curves for the turbine housing obtained by PAK-FEM and PAK-XFEM. 

Essentially, both methods gave the same assessment of the change in crack growth rate, 

which in this case occurred at a crack length of 62 mm. The advantage of XFEM over FEM is 

reflected in the simulation of crack growth obtained on a fixed finite element mesh.  

3.3 FtF Assessment application on a high-pressure steam pipe in a thermal power plant 

In the case of high-responsibility engineering structures where one dimension is significantly 

smaller than the other two, the use of FtF tips is extremely justified. In order to simulate a stable 

operation of such structure using the FtF method, a previous simulation of crack growth is 

necessary. In this case, considered a is a pipe of a high-pressure steam pipeline, which is 

modeled using the XFEM method and the space is discretized with four-node finite elements, 

see Fig. 10. 
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a=15mm 

Fig. 10. Crack growth on high pressure steam pipe. 

In the case of crack growth simulation, the crack growth increment corresponding to the 

initial crack length is adopted. The crack growth simulation was performed in 16 steps. Stress 

intensity factors were numerically calculated using the J-EDI method. The simulation of crack 

growth was carried out on a fixed finite elements mesh in the PAK-XFEM, while remeshing 

was performed at each calculated step of the crack growth in the PAK-FEM. 

During the simulation of crack growth on a high-pressure pipe, due to the existence of axial 

symmetry, half of the steam pipe was modeled. Inside the tube, there is a pressure of 36 bar. Fig 

11 shows a magnified view of the area on the high-pressure pipe, where the crack is 

propagating, during the 1st and 15th increments of crack growth. 

Numerical results of KI SIF obtained by PAK-XFEM were compared with the analytical 

solution and numerical results obtained by PAK-FEM in Fig. 11.   

 

Fig. 11. Comparative view of KI obtained with PAK-XFEM, PAK-FEM and analytical. 
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PAK-XFEM solution for the crack growth agrees better with the analytical solution than 

PAK-FEM. Using PAK-FEM, further evaluation of the KI value beyond the crack length of 

15mm was not possible. 

4. Example FtF Assessment in Biomedical Engineering 

The structural evaluation of critical biomedical devices is essential to ensure their safety, 

durability, and reliability. To achieve the required reliability in biomedical devices and prevent 

fatigue to fracture, a thorough assessment must be carried out. A cardiovascular stent, as a 

representative biomedical implant, must be designed with a focus on failure prevention and 

structural integrity. The primary goal is to ensure that the stent remains fatigue-resistant for a 

lifespan of 10–15 years without failure. According to the ASTM F2477-06 standard (ASTM, 

2019), a cardiovascular implant must withstand at least 4 × 10⁸ loading cycles. 

The structural assessment of stents is performed using FEM (Jovičić et al., 2014; Jovičić et 

al, 2024). A 3D FEM simulation was carried out to analyze the durability of a coronary stent. 

The geometry of the 3D model is illustrated in Figure 12 (Jovičić et al., 2014). The stent is 

made of L-605 Co-Cr alloy, with a length of 7 mm, an initial internal diameter of 1.5 mm, and 

an outer diameter of approximately 1.65 mm before implantation. Mechanical properties of the 

high-quality L-605 Co-Cr alloy are detailed in Table 1. 
Young’s modulus  

𝐸 = 243𝐺𝑃𝑎 

Yield strength  

𝜎𝑌 = 547𝑀𝑃𝑎 

Endurance strength  

𝜎𝑒 = 207𝑀𝑃𝑎 

Ultimate tensile 

strength  

𝜎𝑢 = 1449𝑀𝑃𝑎 

Threshold range  

Δ𝐾𝑡ℎ
0 = 2.58𝑀𝑃𝑎√𝑚 

Fracture toughness 

Δ𝐾𝐶 = 60𝑀𝑃𝑎√𝑚 

Fatigue parameters 

𝐶 = 4.74 × 10−13 

𝑚 = 10.39 

Table 1. Material properties for L-605 Co-Cr 

 

Fig. 12. 3D model of coronary stent before and after expanding. 

The concepts of small-crack theory and fracture toughness were used in assessing a 

cardiovascular stent. Stents experience cyclic loads in service (pulsatile blood pressure) and 

may contain micro-scale manufacturing flaws. The analysis here considered a small surface 

flaw of about 
83 m

 depth in a stent structure and evaluated its behavior under physiological 

loading. The Kitagawa–Takahashi diagram was used to plot stress range versus crack length in 

relation to the material’s fatigue limit and threshold curves. Fig. 13 shows the K–T diagram 

with the stent’s operating stress range and the flaw size, along with numerical results of crack 

propagation analysis in the stent. 
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Fig. 13. KT-diagram and numerical values of flaw propagation in the stent. 

Using fracture mechanics, the stress intensity factor K for the flaw was calculated 

throughout the load cycle. The maximum K experienced at the flaw (Mode I) was about 18.08 

MPa•√m, which is approximately 3.3 times lower  than the alloy’s fracture toughness. In other 

words, Kmax ≈ 18.08MPa m  vs. KIC ≈ 60 MPa•√m, based on the material properties, see 

Table 1 for the exact fracture toughness value. This comparison indicates that an immediate 

fracture event is not likely for the given flaw size and loading – the crack simply cannot attain a 

critical stress intensity in service. Indeed, the analysis concluded that the stent will safely 

achieve its projected life without fracturing. 

Furthermore, the position of the flaw on the K–T diagram fell below the threshold line A–

B–C, but only slightly. This means the flaw is just at the margin of propagating. In the 

simulation, the crack did grow, but in a stable, sub-critical manner. The flaw did not remain 

entirely in the “no-fatigue-failure” zone, since some crack growth was observed, but it never 

entered the catastrophic fatigue failure zone. Instead, the crack growth rate corresponded to a 

steady, slow propagation consistent with life span. Both the very early stage (small crack 

regime) and later stage (larger crack) growth remained stable – the crack did not suddenly 

accelerate at any point, indicating that neither the endurance limit nor the fracture toughness 

was exceeded under the given loading. 

The stent case study illustrates the practical application of the fatigue-to-fracture approach. 

By comparing the flaw’s stress intensity to the fatigue threshold and to KIC, engineers can 

determine whether a flaw will grow and whether it poses a risk of fracture. In this example, the 

flaw’s K was below the critical toughness and near or below the threshold required for sustained 

growth, placing it in a safe regime for the device’s lifetime. Thus, neither immediate fracture 

nor runaway fatigue crack growth is expected.  

5. Conclusions 

This paper presents an extensive overview of the developed numerical code for simulating crack 

growth using the XFEM and FM&LS methods. The numerical code integrated in PAK is very 

complex and consists of pre-processing (based on FM&LS), processing (based on XFEM/or 

FEM) and post-processing. The post-processing phase enables structural integrity assessment 

through numerical computation of the J-integral and the resistance curve, with a broader 

evaluation based on the Fatigue-to-Fracture (FtF) approach. Integrity assessment in post-



Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    183 

 

  

processing code of the FEM was based on Fatigue to Fracture approach: Safe-Operation 

Assessment, Stress-Based Fatigue Estimation and Residual lifetime Prediction for Fatigue 

Crack Growth.  

The aim of this paper was to present developed numerical procedure for assessment of 

engineering or biomedical structures durability based on continuum mechanics. The 

methodology used depends on whether a crack is present, crack size (micro/macro), and the 

criticality of the structure. For structures where a macro-crack has been detected, fatigue 

lifetime assessment based on the crack growth simulation is applied. Safe-operation assessment 

is used to define three critical zones: (1) safe operation without fatigue damage, (2) fatigue 

failure onset, and (3) fracture due to fatigue damage. This approach was demonstrated in the 

case of a biomedical device—a cardiovascular stent.  

Further, the FtF-based residual lifetime prediction was applied to engineering structures, 

including a turbine for cogenerative electricity production and a high-pressure steam pipeline. 

In both cases, macro-cracks were present, and integrity assessment was performed using 

resistance curves derived from numerical (XFEM and FEM) and analytical methods. The 

robustness of XFEM was particularly evident in its ability to simulate crack growth on a fixed 

finite element mesh without remeshing, making it a reliable tool for structural integrity 

assessment. Furthermore, due to operational fluctuations in the turbine, a remaining life 

assessment was conducted via numerical crack growth simulation. The results confirmed that 

the proposed FtF post-processing algorithm provides a conservative and reliable estimation of 

structural durability, ensuring safety in critical applications. 
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