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Abstract 

The interaction between the Finite Element Method (FEM) and Smoothed Particle 

Hydrodynamics (SPH) is crucial in multiphysics simulations of granular–structure systems, 

impacts, and material behavior. This paper presents a penalty-based contact algorithm with 

Coulomb friction for FEM–SPH coupling. The method accounts for static and dynamic friction 

and ensures stable force transfer between SPH particles and FEM nodes. A numerical example 

of granular pile sliding on a steel plate demonstrates the approach. The results confirm that the 

proposed algorithm provides an efficient and robust framework for FEM–SPH interaction, 

improving the applicability of SPH in structural, geomechanical, and fluid–structure 

simulations. 

Keywords: Smoothed Particle Hydrodynamics, Finite Element Method, Contact Algorithm, 

Multiphysics Simulation, PAK (Program za Analizu Konstrukcija) 

1. Introduction 

The Finite Element Method (Kojić, Slavković, Živković, & Grujović, 1998), with the acronym 

FEM, which will be used hereinafter, is a numerical method based on the approximation of the 

real world into a continuum representation (Kojić & Bathe, 2005). FEM can be used for solving 

problems of solid mechanics (Holzapfel, 2000), and fluid mechanics (Filipovic, Ivanovic, & 

Kojic, 2009).  

Within the PAK-Multiphysics, the PAKS solver is used for solid analysis, while the PAKF 

solver is used for fluid analysis. Integrating both the fluid and solid solvers into the same 

executable program and using a parallel programming technique allows for the most efficient 

FSI simulations (Lv, Zhao, Huang, Xia, & Wang, 2006). This approach was also used in the 

program PAK-Multiphysics, and in this paper, we will showcase the coupling of PAKS solver 

used for solids, with MCM (Meshless Continuum Mechanics) solver (De Vuyst, Vignjević, & 

Campbell, 2005), which is based on SPH (Liu & Liu, 2003). Coupling between PAKS with 

MCM is very similar to the coupling between PAKS and PAKF because MCM is also written in 
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FORTRAN. Although PAKF is better suited than MCM for fluid simulation (Topalovic et al., 

2022), FSI can also be simulated using PAKS-MCM coupling. However, the main reason for 

this coupling was the development of a robust solution for modelling of the interaction of 

granular materials with steel structures.   

The rest of the paper is divided into sections in which the coupling of FEM nodes and SPH 

pseudo-particles is described, with the description of the treatment of friction in contact. Results 

presented in this paper showcase a simple example of a granular pile placed on a steel plate, 

which is fixed on one side while the other is lifted until the granular pile slides over and falls 

off. Finally, the Conclusion section summarizes the presented procedures and outlines future 

work showcasing the advantages and limitations of the presented methodology.  

2. Coupling FEM nodes and SPH pseudo-particles 

Modelling the interaction of bodies discretized using FEM and SPH relies on the master/slave 

principle, in which control is unidirectional i.e. the master controls the slave while the reverse is 

not possible (De Vuyst, Vignjević, & Campbell, 2005). In the case of coupling FEM and SPH 

programs, the FEM program plays the role of master while the SPH program is the slave. This 

coupling method allows for the analysis of fluid-solid interaction as well as the modeling of 

ballistic impact and penetration. (De Vuyst, Vignjević, & Campbell, 2005). The original 

implementation of the master/slave principle was based on the predictor-corrector algorithm, in 

which the positions of the master surfaces and slave pseudo-particles were calculated in the 

predictor phase as if there was no contact, and then the penetration depth of the slave pseudo-

particles into the master surface was calculated in the corrector phase (Attaway, Heinstein, & 

Swegle, 1994). Based on the calculated penetration, the contact force acting on the master 

surface and the slave pseudo-particle is calculated, which separates the contact in the next time 

step.   

The master/slave algorithms used to connect SPH and FEM are based on two approaches: the 

attached particle approach and the sliding contact approach (Johnson, 1994). In the first 

approach, the nodes of the elements participating in the contact also represent the contact layer 

of SPH particles, as can be seen from Fig. 1.  

 

Fig. 1. SPH attachment to FEM according to Johnson (1994) 
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The size of the contact particles corresponds to the size of the contact elements as can be seen 

from Fig. 1. The mass of the contact particles originates exclusively from the material modeled 

by SPH particles, so the mass of all contact particles is the same (Johnson, 1994). For the 

observed particle i, the influence domain is represented by a dashed line, as can be seen from 

Fig. 1. Although in the given influence domain, in addition to SPH particles, there are also 

standard FEM nodes, the deformations and deformation rates are calculated only based on the 

common nodes. The forces in the particle i originate from these nodes and elements B and C, 

while the standard FEM nodes do not participate directly, but through elements B and C. 

The sliding contact approach implies that the SPH particles and the FEM nodes are not rigidly 

connected, but rather contact is established between the SPH particles and the edges/faces of the 

finite elements as can be seen from Fig. 2. 

 

Fig. 2. Sliding contact approach according to Johnson (1994) 

Similar to the case of attached particles, in the case of sliding contact, standard FEM nodes 

2 3 6, ,m m n  do not participate in the calculation of deformations, deformation rates and forces in 

the observed SPH particle i (Johnson, 1994). The maximum allowed overlap of the slave SPH 

particle i with the host FEM surface 2 3m m−  is denoted by 0  and in the case of classically 

generated SPH particles it is equal to zero, while in the case of SPH particles obtained by 

erosion of FEM elements, it can have a small value representing a fraction of the interparticle 

distance (Johnson & Stryk, 2003). If there is a partial overlap of the slave particle i with the 

master segment 2 3m m−  which is denoted as ( )0  , the normal velocities of particle i and 

nodes 2m  and 3m  must be updated so that the law of conservation of momentum holds and the 

normal velocity of particle i corresponds to the velocity of the segment 2 3m m− . 

The sliding contact approach implies that the SPH particles and the FEM nodes are not rigidly 

connected, but rather contact is established between the SPH particles and the edges/faces of the 

finite elements as can be seen from Fig. 2. 

In addition to the aforementioned interfaces with attached particles and with sliding contact 

(which arise from connecting SPH with FEM), boundary SPH particles can be on a free surface, 

in contact with another material, they can be assigned essential (geometric) boundary conditions 

(displacement) or natural boundary conditions (forces or stresses) as can be seen from Fig. 3. 
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Fig. 3. Possible boundaries of SPH particle (Johnson 1994): a) free surface, b) contact with 

another material, c) geometric boundary conditions, d) natural boundary conditions 

In the case of a free surface, the boundary layer of particles has an incomplete set of 

neighboring particles (since the boundary surface intersects the influence domain), so if one 

wants to avoid this drawback, it is possible to add virtual particles. If two different materials are 

in contact, an error occurs in the calculation of the rate of change of deformation and the 

rotation tensor, because when summing over all neighboring particles, particles of different 

materials with different material characteristics enter the sum (Johnson, Beissel, & Stryk, 2002). 

The smaller the difference in material characteristics, the smaller the error, so if the contact of 

two bodies made of the same material is modeled, there is no error in the contact layers. In the 

case of different materials, it comes from some penetration and mixing at the contact surface, 

since SPH does not need that the velocity field has a unique value (Campbell, Vignjević, & 

Libersky, 2000). The solution was to introduce a penalty force within the pinball algorithm 

(Belytschko & Yeh, 1993), which acts between particles in contact and whose intensity depends 

on the overlap and the rate of change of the overlap, and which is calculated based on the 

following expressions:  
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In the previous expressions, for particles in contact defined by coordinates ix  and jx , the 

smoothing lengths are denoted by ih  and jh , their overlap is denoted by p , while i  and j  

are their densities, iR  and jR  are their radii, with iG  and jG representing the shear moduli for 

the given materials (Belytschko & Yeh, 1993). The force calculated in this way can be corrected 

by a certain scaling factor pK  (Campbell, Vignjević, & Libersky, 2000).  

The contact between two different materials in the SPH method can be viewed as contact 

between a particle and a surface, or as contact between particles, as can be seen from Fig. 4. 
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Fig. 4. Contact determination: (a) Particle and surface; (b) Contact between particles. 

Contact between particles is more convenient for application and is more consistent with the 

meshless character of the SPH method, but there is an issue with determining the direction of 

action of the contact force since normals in the contacting particles do not generally coincide 

(Campbell, Vignjević, & Libersky, 2000). If the contact forces are defined along the vector 

connecting the centers of the particles in contact (as is the case with the pinball algorithm), the 

contact forces have a normal and a tangent component. If it is necessary to avoid the tangent 

component of the contact forces, it is necessary to calculate the average normal between the 

particles and define the contact forces along it (Campbell, Vignjević, & Libersky, 2000). After 

the pinball algorithm (Belytschko & Yeh, 1993), more complex algorithms for the calculation 

of penalty force were developed (Campbell, Vignjević, & Libersky, 2000) among which is the 

contact potential algorithm which will be modified and used in this paper (De Vuyst, Vignjević, 

& Campbell, 2005). The contact potential algorithm is based on Monaghan's idea of introducing 

a repulsive term ij
nRf  to mitigate tension instability into an expression for the law of 

conservation of momentum (Monaghan, 2000), which now reads: 
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where R  is the coefficient that depends on pressure and density, and the repulsive force ij
nf  is 

given with: 

 
( )

( )

ij

ij
n

avg

W r
f

W p
=


, (6) 

where 
ij i jr = −x x  is the distance between particles i and j, while avgp  is the average 

interparticle distance in the vicinity of the observed particle i. As the distance 
ijr  decreases, the 

repulsive force increases (Monaghan, 2000). 

The contact potential is given by the expression: 
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where c  represents the intersection of the influence domain of the observed particle and the 

neighboring body with which the observed particle is in contact, while K  and n  are user-

defined parameters that regulate the intensity of the potential (De Vuyst, Vignjević, & 
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Campbell, 2005). Based on equation (7), it can be concluded that the value of the contact 

potential is always greater than or equal to zero within the domain to which the contacting 

particle belongs and that, similarly to Monaghan's repulsive force (6), it increases as the 

distance between the particles in contact decreases (De Vuyst, Vignjević, & Campbell, 2005).  

Using the particle approximation, the expression for the contact potential (7) becomes: 
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Volume force ( )i
cb x  is calculated as the contact potential gradient (De Vuyst, Vignjević, & 

Campbell, 2005): 
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The contact force vector ( )i
cf x  is obtained by integrating the volume force vector ( )i

cb x : 
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where N  is a normalized matrix of weighting or interpolation functions, whose members are: 
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where SS  is a set of neighboring particles, the normalized kernel is denoted by ( )i jW −x x . 

Substituting (11) and (9) in (10), after integration, taking into account that the member 

i

i

m


 

constant and based on the conditions of division of the unity (Liu & Liu, 2003), we obtain the 

final form of the expression for the contact force vector: 
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When the acceleration due to the contact force 
( )i

c

i

f

m

x
 is added to the (12) the final form of the 

momentum balance law for the contact potential algorithm is obtained (De Vuyst, Vignjević, & 

Campbell, 2005): 
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3. Treatment of friction contact 

Whether the contact between materials in the SPH method is modeled using the contact 

potential algorithm, or by including particles of both materials in the summation within the 

influence domain 2h, friction as a fundamental characteristic of granular materials has not been 

given adequate attention. In order to model the interaction of granular materials with devices for 

their transport, processing and storage, which is based on the connection of FEM with SPH, a 

few important assumptions should be highlighted: 

- FEM shell elements are used to model the aforementioned devices, which are characterized by 

the property that one dimension is significantly smaller than the other two. When connecting the 

FEM and SPH methods, SPH particles are generated from the nodes of these elements. Unlike 

the original fixed particle approach from Fig. 1. in which all SPH particles (including contact 

ones) are made of the same material, in this case, the particles generated from the FEM nodes 

are assigned the material characteristics of the corresponding elements.  

- The displacements of the nodes are calculated in FEM, while the corresponding generated 

SPH particles are fixed during the SPH calculation. The forces acting on the generated contact 

particles are transferred from SPH to FEM (according to the same principle as the fluid-

structure interaction in FEM), where the displacements and stresses are calculated based on 

them. 

- The contact forces are decomposed into normal and tangential components, after which the 

friction condition is checked, i.e. whether the friction is static or dynamic. In the case of static 

friction, there is no sliding of the granular material on the contact surface, while in the case of 

dynamic friction, there is sliding, and the friction force opposes this sliding. 

Since the contact surface may be irregularly shaped, it is first necessary to find the normal to the 

contact surface in the observed particle i. Whether a particle belongs to the boundary layer can 

be determined by performing a kernel approximation of some characteristic "color" scalar 

function   (Randles & Libersky, 1996) so that for the boundary particle i it holds: 
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i j i j

j
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m
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since in summation over all neighboring particles SS ,  particles of "other colors" are also 

included. 

The material identification is used as the "color" function. Determining the normal based on the 

"color" function was originally used in FEM analysis of the contact of two fluids in the Euler 

spatial formulation (Brackbill, Kothe, & Zemach, 1992). Subsequently, Randles and Libersky 

applied this principle in the SPH method (Randles & Libersky, 1996). A schematic 

representation of two fluids in contact can be seen in Fig. 5. 
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Fig. 5. Normal to the contact surface at point i 

Here, computational details are given, following (Randles & Libersky, 1996). The normal in the 

observed contact particle is calculated based on the following expression: 

 
i i= n  (15) 

where 
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The sign in equation (15) is always minus if all neighboring particles are of the same material as 

the observed particle i (Randles & Libersky, 1996). 

After determining the normal, it is possible to decompose the contact force given by expression 

(11) into a normal and tangential component as can be seen from Fig. 6. 

 

Fig. 6. Components of the contact force in a boundary particle 

The normal component is a projection of a vector based on the following expression: 
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while the tangent component is given by the equation: 
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Now it is necessary to check whether it is static or dynamic friction based on Coulomb's law of 

friction. In the case of static friction, there is no movement between the contacting surfaces, 

because the intensity of the tangential component of the contact force is less than the critical 

value, which is mathematically represented by the inequality: 

 
i T i N i
fs c s c= − f f f , (19) 

where s  represents the static coefficient of friction. 

In the case of static friction, the friction force 
i
fsf  is of the same intensity and opposite direction 

to the tangential component of the contact force T i
cf  and can have a value between 0 and 

N i
s c f . If the tangent component T i

cf  is greater than N i
s c f , there is movement between the 

contact surfaces, and the sliding friction force is given by: 

 
i N i
fk k c=f f , (20) 

where k s   represents the kinematic coefficient of friction. 

Regardless of whether it is static or dynamic friction, the expression for the law of conservation 

of momentum is given by the expression (13) should be corrected by including the friction 

force: 
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where the friction force 
i

ff  can be static or dynamic based on condition (20)  
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4. Results 

Adequate modeling of the interactions of granular materials with devices used for their storage, 

transport, and processing requires a combination of FEM and SPH methods, where the granular 

material is modeled by SPH particles, while the elastoplastic material, from which these devices 

are made, is modeled by finite elements. This combination adds complexity to multiphysics 

simulations, representing a significant improvement over the prescription of analytically 

calculated forces as loads at nodes (Petrović et al., 2015).  

In the test example, a gravel cone with a diameter of 123 mm and a height of 27.5 mm was 

modeled with 478 SPH particles. The plate was modeled with 289 elements and 324 nodes that 

are copied into an additional 324 SPH particles during the calculation. The maximum 

displacement at the edge of the plate is 50 mm. Schematic representation of the tipping model 

can be seen in Fig. 7. 
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Fig. 7. Components of the contact force in a boundary particle 

The cone angle is slightly smaller than the angle of internal friction. The initial state of the 

model can be seen from Fig. 8. 

 

Fig. 8. Components of the contact force in a boundary particle 

When the plate is at an angle equal to the angle of internal friction, the entire cone begins to 

slide along the plate as can be seen from Fig. 9. 

 

Fig. 9. Components of the contact force in a boundary particle 

This time period is characterized by a transition from static to kinematic friction previously 

described by Eq. (20). Sliding and stretching continue and accelerate with increasing plate 

angle, and at time t=0.5s, the plate motion stops. After 0.6s, a significant portion of the granular 

material is in a state of free fall, and the remainder of the cone is located near the fixed edge of 

the plate, as can be seen from Fig. 10. 
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Fig. 10. Components of the contact force in a boundary particle 

5. Conclusions 

The tipping of a cone made of granular material demonstrated that the proposed FEM–SPH 

coupling can reproduce realistic granular behavior. However, all FEM nodes need to be copied 

into SPH, and contact is calculated exclusively in the MCM solver, which increases 

computational cost. Our future work will focus on a more efficient solution that will involve 

generating a reduced list of contact nodes within the PAK input file, which would be later 

transferred to MCM. Further progress also requires implementation of the sliding contact 

approach, which would broaden the applicability of the framework within various multiphysics 

fields. 

The showcased methodology is simple to implement because PAK already supports nodal force 

transfer, and MCM includes contact handling. Also, the presented penalty-based algorithm is 

enhanced with static and dynamic Coulomb friction, a critical factor in capturing granular flow, 

shear resistance, and energy dissipation. The approach is therefore well-suited for multiphysics 

simulations such as granular transport, soil–structure interaction, and impact dynamics. 
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