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Abstract 

This paper presents a method for improving the numerical analysis of contact problems using a 

penalty formulation. Since contact phenomena are inherently nonlinear, particularly in the case 

of large deformations, an incremental solution strategy is required. Conventional Newton-

Raphson algorithms often face convergence problems when many nodes make contact 

simultaneously. To overcome this limitation, we propose an automatic load step adjustment 

strategy based on a prediction-correction algorithm that limits the number of nodes that make 

contact per increment. The method is implemented in the finite element software PAK and 

tested on a reference pipe bending problem. The results show that the adaptive procedure 

reduces the number of increments required for convergence while maintaining the accuracy of 

the solution. This approach improves computational efficiency and robustness in finite element 

simulations of complex contact problems and provides a practical framework for addressing 

nonlinearities associated with friction and large deformations. 

Keywords: Finite Element Method, Contact Algorithm, PAK (Program za Analizu 

Konstrukcija) 

1. Introduction 

The successful application of finite element solvers for contact problems requires significant 

expertise, as their general robustness and stability cannot be guaranteed. Contact analysis plays 

a key role in understanding the mechanical behavior at interfaces, thereby contributing to the 

improvement of structural reliability and safety (Grujovic N. (1996)). The work presented here 

introduces a framework for treating contact with friction by employing the penalty formulation 

(Vulovic S. (2008), Wriggers P. (2002)). This approach is advantageous because it is entirely 

geometry-based, eliminating the need to activate or deactivate additional degrees of freedom. 

Since frictional forces are irreversible, contact problems depend on the load history, which 

complicates the numerical treatment. To address this challenge, an automatic incrementation 

technique for applied loads has been incorporated into the computational algorithm. The 

increment size is determined by both the characteristics of the problem and the discretization of 

the contacting bodies. 
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Within this framework, a load scaling factor is computed at each potential contact node 

pair, and only the change corresponding to the smallest scaling factor is realized during an 

iteration. This ensures controlled progression of contact events. Although mathematical proof of 

uniqueness for general frictional contact cases is still lacking, the proposed models have been 

successfully implemented into the finite element software PAK (Kojic et al.). A numerical 

example illustrates the applicability and effectiveness of the developed algorithm in practical 

contact simulations. 

2. Contact Kinematics  

Contact may arise between a deformable body and a rigid obstacle, between two deformable 

bodies, or as self-contact. This study focuses on the case of two deformable bodies, (1)
B  and 

(2)
B , Fig. 1. Since the exact configuration of the interacting bodies is not known beforehand, 

contact inherently introduces nonlinearity, even when the bulk material follows linear elastic 

behavior (Vulovic S., 2008). 

In standard contact mechanics notation, one surface is designated as the slave surface (
(1)C ) 

and the other as the master surface (
(2)C ). The non-penetration condition requires that no slave 

node may intrude into the master surface. The projection x  of a slave node x
k  onto the current 

position of the master surface 
(2)C , defined as: 
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where 1,2 =  and 
1 2( , )a    are the tangent covariant base vectors at the point x . These 

tangents are defined using the following relationships: 
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The relation (2) can be written as: 

 ( )1 2

, ,a x   = . (3) 

The definition of the projection point allows us to define the distance between any slave node 

and the master surface. The normal gap or the penetration Ng  for slave, node k is defined as the 

distance between the current positions of this node to the master surface 
(2)C : 

 ( )x x n= − k

Ng  (4) 

where n  refers to the normal to the master face 
(2)C at point x  (Fig. 1). Normal to be defined 

using tangent vectors at the point x  is: 

 1 2

1 2

a a
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This gap (4) gives the non-penetration conditions as follows:  
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 0   perfect contact;        0   no contact;        0   penetration=  N N Ng g g  (6) 

 

Fig. 1. Geometry of the 3D and 2D node-to-segment contact element 

For frictionless contact, this non-penetration condition fully characterizes the interaction.  

In the presence of friction, however, tangential relative displacements must also be considered. 

The sliding path of the slave node x
k  across the master surface 

(2)C  is expressed through the 

accumulated tangential relative displacement, in time interval from t0 to t, as: 

 

0 0 0

g a
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t t t

T T

t t t
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In the geometrically linear case, the relative tangential velocity at the contact point is:  

 g a a
 

 = =T Tg  (8) 

where is 

 x x a


    = −  = 
k

Ta g  (9) 

and a a  = a  is the metric tensor in point x  of the master surface 
(2)C .  

2.1 Adjustment of the load step 

When too many nodes establish contact within the same increment, numerical convergence 

becomes problematic. Ideally, only a limited number of nodes should enter contact at each load 

step. To achieve this, the proposed method adjusts the step size by introducing a prediction–

correction algorithm. 

The number of activated contact nodes cN  per step is defined by the user. The increase or 

the decrease of the load step is written as: 

  = cort t  (10) 

where   is a multiplicative factor which must be determined. A multiplicative correction factor 

is computed so that only the prescribed number of nodes is allowed to contact in the updated 

increment. With the goal to simplify and clearly describe the determination of   factor, we 

suppose that the reference face unchanged between times t  and +t t  and that node remains in 
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contact with the same face. The new load step is determined so that the considered node comes 

exactly into contact at time +  cort t . So, . For each node k , likely to come into 

contact, the factor  k
 is defined by: 

 
+

=
−

t k

k N

t k t t k

N N

g

g g
 (11) 

The scalar  k
 is calculated at the first Newton iteration of the time +t t  for a given node 

likely to come into contact. By considering all the nodes,   can be calculated. Then, the load 

step is corrected by use of   factor. The calculation is then taken again with this new load step 

 cort  and so the configuration at the time +  cort t is evaluated. All the coeficients  k
 are 

classified in an ascending order: 

 
1 2 ...     cN

 (12) 

The aim of the proposed method is to limit the number of nodes coming into contact to 
cN . So, 

the coefficient obtained by the relation (12) is: 

  = cN
 (13) 

3. Constitutive Equations for the Contact Interface  

The contact stress vector at the interface is decomposed into normal and tangential components.  

 = + = +N T N Tt t 

t t t n a  (14) 

where 
a  is a contravariant base vector. The stress acts on both surfaces according to the 

action-reaction principle: 
1 2( , ) = − t t  in the contact point x . The tangential stress Tt   is 

zero in the case of frictionless contact. In the frictionless case, tangential stress vanishes, while 

in frictional contact both components must satisfy the Kuhn–Tucker conditions: 

 0,      0,      0  =N N N Ng t t g  (15) 

Within the penalty method, the normal stress is expressed as the product of the penalty 

parameter and the penetration value 

  =N N Nt g  (16) 

In the tangential direction, two cases are distinguished: 

• Stick condition, where no relative sliding occurs, and a linear penalty model describes 

the tangential stress 

 =stick

T T Tt g   (17) 

• Slip condition, which arises once the tangential traction exceeds the frictional limit 

governed by Coulomb’s law. 

0


=cort k

Ng
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To identify whether stick or slip occurs, an indicator function f is evaluated at each step, with 

respect the Coulomb’s model for frictional interface law (Vulovic et al. 2007)  

 -  = T Nf tt  (19) 

In equation (19) the first term is =T T Tt a t

 t . 

A backward Euler integration scheme combined with a return-mapping procedure is applied to 

enforce the friction law. If a state of the stick is assumed, the trial values of the tangential 

contact pressure vector 
Tt  , and the indicator function f  at load step n+1 can be expressed in 

terms of their values at load step n as follows: 
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The return mapping is completed by: 
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with: 
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In physical terms, the penalty method can be interpreted as a system of elastic springs, which 

restore the bodies to the contact surface when overlap or sliding occurs. 

3.1 Algorithm for frictional contact 

For the solution a nonlinear equilibrium equation with inequality constraints (4) as a result of 

contact, we use a standard implicit method. In order to apply Newton’s method for the solution 

system of the equilibrium equation, a linearization of the contact contributions is necessary. 

Linearization of the contact contributions yields tangent stiffness matrices for the normal, stick, 

and slip cases.  

The algorithm of the automatic adjustment of load step for the frictional contact algorithm using 

the penalty method is shown in Table 1. At each iteration, penetration is evaluated, stick or slip 

conditions are determined through trial states, and the tangent matrices are updated accordingly. 

If excessive contact activations occur, the algorithm automatically reduces the step size and 

restarts the iteration. 
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Table 1. Algorithm of the automatic adjustment of load step for frictional contact algorithm 

using the penalty method  

The tangent stiffness matrix for the normal contact is: 

 = T

N NK NN  (24) 

The symmetric tangent stiffness matrix for stick condition is: 

 =stick T

T T a  

K D D  (25) 

The tangent stiffness matrix for slip condition is: 
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where   
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The linearization of  1+

trial

T nn   gives (for details see Kojić & Bathe, 2005): 
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Notably, the stiffness matrix under slip conditions becomes non-symmetric due to the non-

associative nature of Coulomb friction. 

6. Example  

A benchmark problem of tube bending is analyzed to demonstrate the performance of the 

method. A quarter of the tube is modeled using enhanced 4-node plane strain elements. The 

internal tube radius is r 100mm=  and thickness t 20mm= , elastic module E 400MPa=  and 

Poasson’s ratio 0.25 = . The tube is modeled with 1313 elements – plain strain. Banding of the 

tube is conducted using a rigid plate, Fig. 2. Penalty parameter is 
9

N 1 10 =  . The solution is 

obtained by 47 steps of displacement increments equal to 1.6 mm, Fig. 3.  

 

Fig. 2. Geometry of the model  
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Fig. 3. Total displacement field, deformed configuration  

The test is realized with automatic adjustment of the step in the case of contact. The data of this 

adjustment is 2cN = . This example illustrates the utility of the method when the load step 

proposed by the user is too small. Without adjustment, 47 steps are necessary to obtain the 

imposed load. With the presented method, one can note a very strong increase in the load step, 

and therefore the number of steps necessary is reduced to 32. Fig. 4 illustrates this phenomenon 

and emphasizes a non-linear evolution of the load step. 

 

Fig. 4. Evolution of load step 
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7. Conclusions 

This paper introduces a method for automatic adjustment of load increments in contact 

simulations based on the penalty formulation. By controlling the number of nodes that can 

change contact status in a single step, the approach improves convergence and efficiency of 

nonlinear finite element analyses. The numerical example demonstrates that the proposed 

algorithm can substantially reduce computational effort without compromising accuracy, 

making it a valuable tool for problems involving finite deformations and complex contact 

interactions. 
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