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Abstract 

A water supply system with radial wells (RWs) extends usually over tens of kilometers 

horizontally and tens of meters deep within the soil. Water flows through the soil and then 

through several lateral screens to the vertical shaft. Lateral screens represent perforated pipes 

with lengths in meters and diameters measured in centimeters. A common approach in 

modeling the water flow is to use governing equations based on the Darcy law and transform 

them to the finite element form. The 3D finite element mesh follows the anisotropy of the space 

and the elements are dimensionally large. It would be impractical, inefficient, and complex to 

model lateral screens by 3D elements, and, additionally, to include colmated layers with a 

thickness of small size (measured in centimeters) around the screens. Therefore, this is 

dimensionally a multiscale modeling problem. We have resolved this task by modeling the 

screens by 1D finite elements aligned to the 3D mesh, with the flow according to the Hagen-

Poiseuille law. The 1D and 3D element nodes are connected by fictitious (connectivity) 1D 

elements where a radial flow from the soil to the internal space of the screens is assumed.  

We have implemented the multiscale model to our code PAK (Kojic et al., version in 2013) and 

applied it to the calibration of an RW of the Belgrade Groundwater Source 

Keywords: groundwater flow, radial wells, multiscale finite element modeling 

1. Introduction 

Radial wells (RWs) installed by directional drilling significantly enhance the efficiency of water 

supply systems by facilitating groundwater abstraction in high-conductivity sand and gravel 

sediments beneath rivers. These wells allow water to flow from the river through the 

surrounding porous media, reducing the concentration of suspended solids and dissolved 

micropollutants through natural filtration and dilution (Ray, 2002). This filtration process 
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minimizes the need for intensive post-treatment, ultimately lowering operational costs and 

improving water quality.  

The uniqueness of RWs lies in their design, comprising a vertical caisson connected to multiple 

lateral screens that extend radially into the aquifer. These lateral screens, typically perforated 

pipes, introduce highly localized flow gradients that complicate numerical modeling. Over time, 

well ageing occurs due to the formation of low-conductivity deposits around the screens, 

reducing infiltration rates and necessitating periodic well maintenance or redevelopment. 

Various methods, including screen cleaning, sealing and replacing old screens, or constructing 

new RWs, have been employed to restore system performance. 

The effectiveness of RWs, however, depends on accurate modeling and prediction of available 

flow rates under varying hydrogeological conditions. Groundwater flow modeling for RWs is 

inherently complex due to the three-dimensional nature of the flow field, the presence of 

multiple heterogeneous soil layers, and dynamic boundary conditions such as fluctuating water 

tables and river interactions (Dimkic, et al, 2013). Darcy’s law is commonly employed as the 

fundamental principle governing flow in porous media, and when coupled with the continuity 

equation, it forms the basis for both steady-state and transient groundwater flow models. The 

challenge is further compounded by the anisotropy of the subsurface, where soil layers exhibit 

varying conductivities that can differ by several orders of magnitude. 

The need for robust numerical and analytical models to simulate RW hydraulics has led to 

extensive research in this domain. Early studies by Huisman (1972) and Strack (1989) 

developed analytical solutions for two-dimensional (2D) flow to radial collector wells. Bischoff 

(1981) extended this work by employing boundary integral equation methods to model three-

dimensional (3D) flow in confined aquifers with multiple lateral arms. Steward and Jin (2001) 

formulated a 3D analytical solution for horizontal wells, which are functionally equivalent to 

individual arms of a radial well. Further refinements were introduced by Zhan and Zlotnik 

(2002) and Zhan and Park (2003), who applied semi-analytical Laplace-transform-based 

solutions for flow into horizontal wells under unconfined and leaky aquifer conditions. 

Ophori and Farvolden (1985) pioneered numerical modeling approaches by developing a finite 

element model for collector wells. Their initial implementation utilized a single-layer model 

before transitioning to a more advanced multi-layer representation incorporating point sinks. 

Subsequent improvements by Eberts and Bair (1990) involved applying the MODFLOW finite-

difference model to simulate regional flow in a network of collector wells in Columbus, Ohio. 

These models were further refined by Chen et al. (2003), who introduced a polygonal finite-

difference approach to simulate horizontal well performance, treating flow inside the screen as 

an equivalent porous medium with variable hydraulic conductivity. Later, Chen and Zhang 

(2009) expanded numerical well modeling by implementing various numerical schemes, 

including standard finite element method, control volume finite element method, and mixed 

finite element method. These approaches have improved the accuracy of groundwater flow 

simulations while maintaining computational efficiency. Recently, Perdikaki et al. (2022) 

analyzed the application of a modeling tool, for the simulation of the relative hydrologic 

processes between the open filter pipe of the injection well and the surrounding aquifer material 

with the finite difference method. The authors simulated groundwater flow in vicinity of 

horizontal direction injection well by using the Conduit Flow Process (CFP) of MODFLOW-

2005 code. 

Given the complex geometry of RW lateral screens and their interactions with the surrounding 

soil, finite element modeling (FEM) provides a viable framework for representing groundwater 

flow behavior. A highly refined 3D mesh can be used to explicitly model the lateral screens, but 

this approach is computationally expensive and challenging to implement due to mesh 

compatibility constraints. The generation of detailed 3D models requires substantial manual 
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effort, as each screen must be precisely meshed, significantly increasing computational time and 

complexity. 

To overcome these limitations, alternative modeling techniques have been proposed. Luther and 

Haitjema (2000) introduced a single-layer Dupuit-Forchheimer analytic element model to 

represent RW laterals without requiring a computational grid. This method directly simulates 

laterals as line-sinks while enforcing boundary conditions on the phreatic surface and seepage 

faces. Bakker et al. (2005) developed a multi-layer analytic element model to extend this 

concept to fully 3D systems, treating aquifers as horizontal layers with vertical flow resistance. 

Further refinement by Haitjema et al. (2010) incorporated a Cauchy boundary condition to 

simulate horizontal well screens in a regional Dupuit-Forchheimer model. By applying 

equivalent fictitious streams, their approach enables a more realistic representation of lateral 

screen flow interactions within the broader groundwater system.  

A significant advantage would be achieved if the lateral screens could be represented using line 

finite elements with nodes aligned to the 3D mesh of the entire flow domain. This study 

presents a 3D-1D finite element coupling model, where 1D elements effectively replace the 

need for a fully detailed 3D representation of RW lateral screens, ensuring computational 

efficiency while maintaining accuracy (according to Dimkic et al., 2013). 

The paper is structured as follows: Section 2 outlines the fundamental principles of the 

multiscale finite element model, detailing its formulation and methodology. Section 3 

demonstrates the application of the proposed model to a real-world problem, specifically the 

calibration of a radial well in the Belgrade Groundwater Source. Finally, Section 4 presents the 

conclusion and summary, highlighting key findings and the broader implications of the study. 

2. Multiscale finite element model 

We here first present the theoretical basis of the finite element formulation, and then describe 

the connection between the 3D large domain with the screens as the lower-scale domain. The 

fundamental relations for water flow within the soil are represented by Darcy’s law, 

 𝑞𝑖 = −𝑘𝑖𝑗
𝜕𝜙

𝜕𝑥𝑗
 (1) 

where qi is water velocity in the xi direction, kij is the conductivity tensor, and   is the potential 

defined as (Dimkic, et al., 2013) 

  𝜙 =
𝑝

𝛾
+ ℎ (2) 

with p being the fluid pressure,   is specific weight, and h is the height with respect to a 

reference plane. The tensor kij is defined by non-zero diagonal terms kxx, kyy and kzz, so that the 

governing equation of the water flow, which relies on the mass balance, can be written as 

  𝑘𝑥𝑥
𝜕2𝜙

𝜕𝑥2 + 𝑘𝑦𝑦
𝜕2𝜙

𝜕𝑦2 + 𝑘𝑦𝑦
𝜕2𝜙

𝜕𝑧2 + 𝑞𝑉 = 𝑆
𝜕𝜙

𝜕𝑡
 (3) 

where qV is the source term, and S is storage.  

Using the standard procedure (Kojic et al. 2008), we obtain the incremental balance equation of 

a 3D finite element for a time step t , as 

  (
1

Δ𝑡
𝑀𝐼𝐽 + 𝐾𝐼𝐽) Δ𝜙𝐽 = 𝑄𝐼

𝑒𝑥𝑡 + 𝑄𝐼
𝑉 − (

1

Δ𝑡
𝑀𝐼𝐽 + 𝐾𝐼𝐽) 𝜙𝐽 +

1

Δ𝑡
𝑀𝐼𝐽𝜙𝐽

𝑡 (4) 
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where J  and 
t

J  are nodal values of the potential at the last equilibrium iteration and at the 

start of the time step, respectively; 
ext

IQ and 
V

IQ are external and volumetric fluxes, 

respectively; and the matrices are: 

   
𝐾𝐼𝐽 = ∫ 𝑘𝑖𝑖𝑁𝐼,𝑖𝑁𝐽,𝑖𝑑𝑉,  𝑠𝑢𝑚 𝑜𝑛 𝑖: 𝑖 = 1,2,3

𝑉

𝑀𝐼𝐽 = ∫ 𝑆𝑁𝐼𝑁𝐽𝑑𝑉
𝑉

 (5) 

We need the balance equation for a 1D finite element to model fluid flow within screens. Then, 

the Hagen-Poiseuille law can be applied (Kojic et al., 2022), 

  𝑄𝑥 = −
𝑑4𝜋

128𝜇
𝑑𝑝/𝑑𝑥 = −𝑘𝑥𝑑𝑝/𝑑𝑥 = −𝑘𝑥𝛾𝑑𝜙/𝑑𝑥 (6) 

where μ is the fluid viscosity coefficient, d is the screen internal diameter, and Qx is the flux 

along the screen. The balance equation has the same form (4) , with the matrices: 

 

   
𝐾𝐼𝐽 = ∫ 𝑘𝑥𝛾𝑁𝐼,𝑥𝑁𝐽,𝑥𝑑𝑥

𝐿

𝑀𝐼𝐽 = 𝐴𝜌 ∫ 𝑁𝐼𝑁𝐽𝑑𝑥
𝐿

 (7) 

where A is the cross-sectional area and L is the length of the finite element; ρ is the fluid 

density. 

Figure 1 shows a lateral screen aligned with the 3D mesh.  

 

Fig. 1 Schematics of connection between large soil domain and the RW screens. a) 

Connectivity elements between 3D mesh for soil and 1D elements for screens. b) Doubled FE 

nodes with for the connectivity elements: J node belongs to 3D mesh, and K is the internal node 

at the same spatial position as node J. (according to Dimkic, et al, 2013) 

As can be seen from Fig. 1b, we have two nodes at the same spatial position – one belonging to 

the soil and 3D mesh (external node of the connectivity element) and another representing the 

screen interior (internal node). The colmated layer thickness is δ as shown in Fig. 1a. It is 

assumed that the flow within the colmated layer is radial, hence we have the relation, 

  𝑞𝑟 = −𝑘𝑐𝑜𝑙
𝑑𝜙

𝑑𝑟
 (8) 

where kcol is the conductivity of the colmated layer, and r is the radial coordinate. This relation 

can further be expressed as 



Journal of the Serbian Society for Computational Mechanics / Vol. 19 / No. 1, 2025                                                    143 

 

  

  𝑞𝑟 = 𝑘𝑐𝑜𝑙
𝜙𝑒𝑥𝑡−𝜙𝑖𝑛𝑡

𝛿
 (9) 

Then, we can write the incremental balance equation for the connectivity element, for iteration 

i, as: 

  𝐾𝑐𝑜𝑙 [
1 −1

−1 1
] [

Δ𝜙𝑒𝑥𝑡(𝑖)

Δ𝜙𝑖𝑛𝑡(𝑖)
] = −𝐾𝑐𝑜𝑙 [

1 −1
−1 1

] [
𝜙𝑒𝑥𝑡(𝑖−1)

𝜙𝑖𝑛𝑡(𝑖−1)
] (10) 

where 

  𝐾𝑐𝑜𝑙 =
𝑘𝑐𝑜𝑙

𝛿
𝐴𝑐𝑜𝑛 (11) 

Here Acon is the surface that belongs to the connectivity element, corresponding to a screen node 

I, 

  𝐴𝑐𝑜𝑛 = 0.5(𝑑0 + 𝛿)𝜋(𝐿𝐼−1 + 𝐿𝐼+1) (12) 

where LI-1 and LI+1 are lengths of 1D elements with common node I. 

We note that the flux to the screen at node I is 

  𝑄𝐼 = 𝐾𝑐𝑜𝑙(𝜙𝑒𝑥𝑡 − 𝜙𝑖𝑛𝑡) (13) 

Of course, the total flux to the radial well is the sum of fluxes through all screens.  

It is further straightforward to include flow through the screens into the entire model of the 

underground flow. The potentials at internal connectivity nodes are coupled to the potentials at 

3D mesh. Then the potential at the RW bottom represents the boundary condition.  

The finite element balance equations for 1D elements are of the form (4), with the matrices (7). 

3. Application: Model calibration for a radial well of the Belgrade Groundwater Source 

We here apply our multiscale mode to the calibration of one of the RWs used in the Belgrade 

Groundwater Source, Fig. 2. The goal of the model is to numerically determine conductivities 

of the colmated layers which fit the groundwater potential measured by piezometers and the 

RW flow rate. This procedure is called model calibration (Dimkic et al., 2013). 

 

Fig. 2 One of the RWs within Belgrade Groundwater Source. Enlarged are shown horizontal 

screens and positions of piezometers P-1 and P-2. (according to Dimkic et al., 2013) 
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In Fig. 3 and Fig. 4 are shown the results of our model and the measurements, demonstrating 

the applicability of our finite element model and the software package PAK (Kojic et al., 

version in 2013). 

 

Fig. 3 Measured and calculated potentials at two piezometers shown in Fig. 2. a) Piezometer P-

1; b) Piezometer P-2. (according to Dimkic et al., 2013). 

 

Fig. 4 Calculated and measured flow rate for the RW shown in Fig. 2. (according to Dimkic et 

al., 2013). 

4. Summary and concluding remarks  

We have presented in this short review our formulation of the dimensionally multiscale finite 

element model by directly coupling the underground water flow within two domains - different 

in size by orders of magnitude. Water flows through the soil with various conductivity layers 

and kilometer sizes and then is collected through RW screens of centimeters in diameter and 

meters in length. The FE model is composed of dimensionally large 3D finite elements for the 

soil and 1D elements for the screens, aligned to the 3D FE mesh. The 1D and 3D models are 

coupled by the connectivity (fictitious) 1D elements. A 2-node connectivity element contains 

one node (external) of the 3D mesh and another, at the same spatial position, representing the 

screen interior. The conductivity of a connectivity element is specified by the characteristic of 

the colmated layer, while the cross-section is determined by the external surface of the colmated 
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layer associated with the external connectivity node. Our model is accurate, efficient and simple 

for generation. It can be used in engineering practice, as is shown in our example.  

This paper is devoted to the memory of our great friend Professor Dr. Milan Dimkic, who was 

leading this exciting research as the director of the Institute “Jaroslav Cerni”. 
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