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Abstract 

The paper presents the procedure of implicit stress integration for constitutive models for soil 

and rock. The theoretical basis of Mohr-Coulomb, Matsuoka-Nakai, Hoek-Brown and 

Hyperbolic soil constitutive models are presented. Stress integration was performed using the 

theory of incremental plasticity. The general procedure of implicit stress integration of the 

mentioned constitutive models is shown, as well as the algorithm for their implementation. The 

presented constitutive models are implemented in the general-purpose program PAK intended 

for static and dynamic, linear and non-linear analysis of structures. Verification of the 

implemented algorithms are performed using test examples. 
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1. Introduction 

Modeling the mechanical behavior of soil and rock is one of the key tasks in the field of 

computational geomechanics, since these materials are highly nonlinear, heterogeneous and 

subject to complex deformation and fracture mechanisms. Constitutive models, which describe 

the relationship between stress and strain in a material, are necessary for reliable numerical 

analyzes in engineering practice. Depending on the type of material, loading conditions and 

accuracy requirements, different constitutive models are used such as Mohr-Coulomb, 

Matsuoka-Nakai, Hyperbolic soil model and Hoek-Brown (Balmer, 1952; Matsuoka, et al., 

1994; Maksimović, 2008; Hoek, et al., 2002), which cover a wide range of behavior, from 

granular soil types to massive rock masses. 

One of the key aspects in the numerical implementation of constitutive models is the stress 

integration procedure, that is, the way in which the state of stress is determined for a given 

strain increment. Implicit stresses integration, based on the incremental plasticity theory, 

enables stable and reliable solving of nonlinear problems, especially in cases where there is 

significant plastic yielding or when it is necessary to simulate the behavior of the material until 

failure. In contrast to explicit methods, implicit procedures provide greater numerical stability, 

especially for large time steps and complex shapes of yield surfaces. 

With the aim of practical application of these models, appropriate algorithms were developed 

for their implementation in the general program package PAK (Kojić, et al., 2011), intended for 

static and dynamic analysis of structures. The PAK program enables non-linear analysis of 

various types of structures and materials, including soil and rock. The implementation of 
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advanced constitutive models with implicit stress integration significantly expands the 

capabilities of the software package and enables its application in complex geotechnical 

analyses. 

The aim of this paper is to present the theoretical foundations and numerical implementation of 

selected constitutive models for soil and rock, with a focus on the implicit stress integration 

procedure. The paper is organized in such a way that the second chapter provides an overview 

of the theoretical foundations of the selected constitutive models, the third chapter presents the 

general implicit integration procedure, while the fourth chapter presents the numerical 

implementation of the presented algorithms in the PAK software. The fifth chapter contains the 

verification of the implemented models through the simulation of triaxial tests and direct shear 

tests, on one finite element model. 

2. Theoretical Background of Constitutive Models  

2.1 Mohr-Coulomb Model 

The Mohr-Coulomb constitutive model is one of the most commonly used models for the 

numerical simulation of soil mechanical behavior (Balmer, 1952; Smith & Griffiths, 2004). The 

model defines a direct dependence of the shear stress at failure 
f  on the normal stress  : 

 tanf c  = +  (1) 

using two material parameters: cohesion c  and angle of internal friction in the material  . 

The yield surface of the Mohr-Coulomb model in the principal stresses space has the shape of 

an irregular six-sided pyramid whose axis coincides with the hydrostatic axis, which is shown in 

Fig. 1. 

      

Fig. 1. Yield surface of the Mohr-Coulomb constitutive model 

The yield surface equation of this constitutive model is a function of the stress invariant i 

(Smith & Griffiths, 2004) and reads 
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In the case of a non-associative flow condition, the plastic potential function ( )g  differs from 

the yield function ( )f . These two functions have the same form, but the angle of dilatancy   
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is introduced instead of the angle of internal friction in the material  . The quantity   in 

equation  (2) represents the Lode angle (Balmer, 1952), which is defined by applying the stress 

invariant. 

1.1 Matsuoka-Nakai Model 

In the case of the Mohr-Coulomb yield surface, the numerical problem of determining the 

derivative of the yield function and the plastic potential function at the boundary values of the 

Lode’s angle ( 30 =  ) often arises. In order to avoid this problem, the smooth Matsuoka-

Nakai equation on the yield surface was introduced (Matsuoka & Nakai, 1974), which does not 

contain discontinuities in the yield surface, is a function of the stress invariant 
1 2 3, ,I I I  and 

reads 
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9 sin
f I I I


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−
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The yield surface of the Matsuoka-Nakai model in the space of principal stresses, in parallel 

with the yield surface of the Mohr-Coulomb model, is shown in Fig. 2. 

           

Fig. 2. Yield surface of the Matsuoka-Nakai constitutive model  

In the case of a non-associative yield condition, the equation of the plastic potential ( )g  differs 

from the equation of the yield surface ( )f , for the angle of dilatancy   instead of the angle of 

internal friction in the material  . 

The yield surface equation (3) does not contain material cohesion c , so in order to take it into 

account, it is necessary to correct the stress tensor (Matsuoka, et al., 1994), in accordance with 

the equation 

 
*

0ij ij ij   = −  (4) 

where ij  is the Kronecker operator, while 0 c ctg =  represents the maximum tensile stress. 

Generalized Hoek-Brown model 

The generalized Hoek-Brown constitutive model, intended for the simulation of the mechanical 

behavior of the rock mass, defines the dependence between the highest and the lowest principal 

stress (Hoek, et al., 2002; Hoek, 2007) 
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The equation of the yield surface is a function of the stress invariants 
1I  and 

2DJ   
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The yield surface of this model in the space of main stresses is shown in Fig. 3. 

  

Fig. 3. Yield surface of the Hoek-Brown constitutive model 

As in the previous two cases, the plastic potential equation ( )g  has the same form as the model 

yield function ( )f  and differs by the dilation parameter bdilm  instead of the parameter bm  

(Hoek, et al., 2002). 

The quantity 
ci  in equations (5) and (6) represents the uniaxial compressive strength of the 

rock mass, while 
bm , s  and a  are model parameters that are determined based on the intact 

rock parameters 
im  and GSI , as well as the rock mass disturbance factor D  (Hoek, et al., 

2002). 

Hyperbolic soil model 

Granular unbound materials, such as coarse-grained sand and stone rubble, do not possess 

cohesion ( )c , so the shear strength of the soil can be defined by applying effective stresses in 

the form of an equation that defines the dependence of the shear stress at failure on the normal 

stress (Maksimović, 2008) by an equation of the form 

 ( )tanf n n   =  (7) 

Unlike the Mohr-Coulomb and Matsuoka-Nakai models, where the angle of internal friction 

( )   is a material parameter, in this constitutive model the angle of internal friction in the 

material is a function of the normal effective stress (Maksimović, 2008) and is defined by the 

equation 
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Considering the equation (8), the shear strength of the material (7) is defined by the equation 
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The quantities 
B ,   and 

Np  in equations (8) and (9), represent the parameters of the 

constitutive model. The fracture surface of this constitutive model, in the stress space  − , is 

shown in Fig. 4. 

 

Fig. 4. Yield surface of the Hyperbolic soil model 

Based on the previous discussion, it can be concluded that the equation of the yield surface of 

the hyperbolic soil model (7) corresponds to the equation of the yield surface of the Mohr-

Coulomb model (1), with the fact that there is no material cohesion ( )c  and that the angle of 

internal friction ( )  is a function of stress. For this reason, the yield surface of this model can 

be expressed by using stress invariants, in a similar way as for the Mohr-Coulomb model, 

taking into account the previously mentioned specificities of the model, so that it reads 

 ( ) ( )1
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In the case of considering the associative flow condition, the equations of the yield surface ( )f  

and the plastic potential equation ( )g  differ, whereby the function of the Mohr-Coulomb model 

is most often used for the function of the plastic potential. 
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3. Implicit Stress Integration Procedure 

3.1 General Algorithm for Implicit Stress Integration 

Based on the incremental plasticity theory, if in the current configuration the stress point is 

below the yield surface, there is an increment of only elastic strain (Bathe, 1996). However, in 

the case when the stress point is located on the yield surface, in the current configuration, in 

addition to elastic strain, there is also an increase in plastic strain. In this case, the increment of 

the total strain can be represented as the sum of the elastic and plastic part of the strain, 

according to 

 
E Pd d d= +e e e  (11) 

The plastic strain increment vector has a direction normal to the surface of the plastic potential 

and is defined by the equation 

 
P g

d d


=


e
σ

 (12) 

where d  is the so-called plastic multiplier, which needs to be determined. According to the 

theory of incremental plasticity, a condition must be met in each configuration 

 0, 0, 0 and 0f d f d df    = =  (13) 

In order for relations (13) to be satisfied, in the case when the stress point is located below the 

yield surface, it is valid that 0f  , while in the case when the stress point is on the yield 

surface, the condition (13)3 is valid, from which it follows 

 0

T T
f f
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
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+ =

 
σ

σ
 (14) 

where   is the so-called internal variable (variable based on plastic deformation, strain like) 

that exists in the case of models with deformation reinforcement. 

As the stress is the result of purely elastic deformation, the stress increment in the current 

configuration can be calculated according to 

 ( )E Pd d d= −σ C e e  (15) 

where 
E

C  represents the elastic constitutive matrix (matrix of elastic coefficients). 

Substituting equation (12) into (15) and then substituting it into (14), it becomes 

 0

T
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where H  is the so-called hardening modulus. 

Now from equation (16) the plastic multiplier d  can be calculated according to 
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on the basis of which, by applying (12), the increase in plastic strain can be calculated, so it is 

subtracted from the total strain, which gives the elastic part of the strain, and it is possible to 

calculate the stress. 

Thus, the plastic strain increment direction is defined by the derivative of the plastic potential 

function with respect to stress, while the intensity of the plastic strain increment vector is 

defined by the plastic multiplier d . However, the plastic multiplier calculated in this way 

does not always ensure that the stress point is exactly on the yield surface, so it is necessary to 

slightly correct the value of the multiplier, for which the bisection method and Newton's method 

are most often used (De Souza Neto, et al., 2008; De Borst, et al., 2012). 

4. Implementation in PAK program 

The previously presented equations for the implicit integration of the stress of the constitutive 

models for soil and rock mass are summarized below in the form of a numerical algorithm 

shown in Table 1. The presented algorithm can be applied to all previously presented 

constitutive models, so this algorithm is implemented in the PAK program (Kojić, et al., 2011) 

in the form shown. 

Known quantities: 
t t+

e , 
t
e , 

t
σ , 

t p
e  

A. Trial (elastic) solution for stress: 

( )E E E t t td d += = −σ C e C e e , 
t t t d+ = +σ σ σ  

Yield function calculation: 

( )t tf f +=  

B. Checking yield condition: 

IF ( 0f  ) trial solutions are elastic (go to E) 

IF ( 0f  ) elastic-plastic solutions (continue) 

 Calculation the derivatives: 

f

σ
, 

g

σ
, 

Pd



 e
 

Plastic multiplier calculation 
T

E

T

E

f
d

d
f g

H





=
 

+
 

C e
σ

C
σ σ

 

C. Local iterations by dλ (using bisection method or Newton’s method): 

P g
d d


=


e

σ
, 

E Pd d d= −e e e ,  

E Ed d=σ C e , 
t t t d+ = +σ σ σ  

Yield function calculation: 

( )t tf f +=  

D. IF ( ( )abs f tol ) go to C with new d : 

t t P t P Pd+ = +e e e  

E. Quantities at the end of the step: 
t t+
σ ,

t t P+
e  

Table 1. Implicit stress integration algorithm 
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Verification and Test Examples 

Verification of the algorithm for the implicit stress integration of the presented constitutive 

models for soil and rock was performed through verification examples for each of the 

mentioned models. The results of numerical simulation of triaxial tests and direct shear tests on 

one hexahedral finite element of unit dimensions are presented below. Numerical simulations of 

the mentioned tests represent a simple way of verifying the constitutive models by comparing 

the results with analytical or experimental solutions of the given problem. 

Triaxial test 

The numerical model of the triaxial test on one finite element, with boundary conditions and 

loads, is shown in Fig. 5a. The load is given using the pressure on the free surfaces of the 

model, in all three coordinate directions. 

          

Fig. 5. Simulation of triaxial test and load functions 

The pressure is applied in two phases: in the first phase (confining phase) of loading, a 

hydrostatic stress state is established, while in the second phase, the pressure components in two 

directions remaining the same, while the third component increases until the failure, which is 

manifested by the impossibility of achieving convergence. The numerical test, like the 

experiment, was carried out for five different levels of the confining stress. 
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MC 100 0.25 0.20 7.0 - - - - - - - 

Hyp 100 0.25 - - 6.2 15.8 4.80 - - - - 

HB 300 0.25 - - - - - 23.0 0.481 2.0x10-4 0.532 

Table 2. Constitutive model parameters in triaxial test simulation 

The load functions used in the numerical simulation are shown in Fig. 5b, while the parameters 

of the constitutive models, obtained by identification, are given in Table 2. 

a) b) 
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Fig. 6. Yield surface and stress path: a) Mohr-Coulomb, b) Hyperbolic soil and c) Hoek-Brown 

model 

The results of the numerical simulation of the triaxial test are shown in Fig. 6. The figures show 

yield surfaces of different constitutive models and stress paths at different confining stress.  

Based on the results shown in Fig. 6, it can be concluded that the developed and implemented 

algorithms provide theoretical values of stress at fracture, for each of the analyzed constitutive 

models, that is, numerical solutions were obtained in accordance with theoretical values of 

stress at failure, for different values of confining stress. 

Direct shear test  

The numerical model of the direct shear test, on one finite element, with boundary conditions 

and loads is shown in Fig. 7a.  

        

Fig. 7. Numerical simulation model of direct shear test and load function 

The loading of the numerical model is given in two phases: in the first phase, the normal stress 

is given up to the stress level used in the experiment, after which shearing is performed, using 

the applied displacements. The load functions used in the numerical simulation are shown in 

Fig. 7b. The identification of the parameters of the constitutive models used in the numerical 

simulations was carried out by applying the results of material testing. The analyzed material is 

a rock pile, so constitutive models were used to simulate the mechanical behavior of granular 

materials, such as Mohr-Coulomb, Matsuoka-Nakai and the Hyperbolic soil model. 

Using the measured values (Jaroslav Černi Water Institute, 1995) of normal and shear stress 

shown in Fig. 8, the model parameters were identified. The normal stress values shown are for 

use in the numerical simulation of the shear test.  

a) b) c) 

a) b) 
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Fig. 8. Material parameter identification a) Mohr-Coulomb and b) Hyperbolic soil model 

The result of identification using Mohr-Coulomb and Hyperbolic soil model is shown Table 3. 

The identified parameters were then used in the numerical simulation of the direct shear test 

using the finite element model shown in Fig. 7a. 
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MC 100 0.30 72.6 26.2 - - - 

Hyp 100 0.30 - - 25.9 35.1 112.0 

Table 3. Constitutive model parameters in direct shear test simulation 

The results of the numerical simulation, together with the test results (Jaroslav Černi Water 

Institute, 1995), are shown in Fig. 9. By analyzing the results obtained by applying these 

models, a good agreement with the results of experimental tests of the samples can be observed, 

for all values of the normal stress.  

       

Fig. 9. Direct shear test using a) Mohr-Coulomb and b) Hyperbolic soil model 

This confirms that even on the basis of a relatively simple shear test, the parameters of the 

constitutive model can be identified for use in numerical simulations of real problems. It can 

also be concluded that the developed algorithms of the constitutive models describe well the 

mechanical behavior of the analyzed samples of granular materials, such as rock piles. 

In order to further increase the accuracy of numerical simulations, it is possible to additionally 

calibrate the parameters of the constitutive models thus adopted. In this way, the deviations of 

the mechanical behavior of numerical models from the behavior of real material samples can be 

minimized. 

a) b) 

a) b) 
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4. Conclusions 

This paper presents an implicit stress integration procedure for selected soil and rock 

constitutive models, including Mohr-Coulomb, Matsuoka-Nakai, Hyperbolic soil model, and 

Hoek-Brown model. Based on the theory of incremental plasticity, equations for implicit stress 

integration were derived. The implementation of the developed algorithm was carried out within 

the PAK software package, which gave it advanced possibilities of simulating the mechanical 

behavior of geomaterials. The verification of the implemented models was carried out through 

the simulation of triaxial tests and direct shear tests, and the obtained results showed a good 

agreement with theoretical and experimental values. This confirmed the accuracy and reliability 

of the developed numerical procedures, as well as their applicability in engineering practice. 

Further directions of development include expanding the library of constitutive models to 

models that include anisotropy, viscosity and damage, which would further increase the 

precision and universality of numerical analyzes in the PAK software package for the field of 

geotechnics. 
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