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Abstract 

In this paper, we give a short overview of the basic concept of stress integration for inelastic 

material models. This methodology was introduced by the author, initially for thermo-elastic-

plastic and creep deformation of metals, termed as ‘effective-stress-function’ (ESF), and then 

generalized to the ‘governing parameter method’. These formulations were further implemented 

in several geological material models.  The author built this methodology into the finite element 

program ADINA, while they were introduced into the PAK program by other PAK authors, 

after publications in the relevant journals given here in the list of references. This methodology 

has also been extended to other material models cited here in the references, and served as the 

basic concept for these models. Only a few simple examples are borrowed from our previous 

publications since numerous applications of the PAK code over decades to real engineering 

problems are available in references, in various journals, reports, and books; some of these are 

given in this monograph.    

Keywords: Materially nonlinear problems, implicit stress integration, governing parameter 

method, viscoplastic material model, PAK finite element program 

1. Introduction 

The main tasks in any nonlinear problem can be summarized as (Bathe, 1996; Kojic and Bathe, 

2005): generality, accuracy, and efficiency. We will refer in the presentation of our 

methodology to the generality and efficiency, while regarding the accuracy, it can be stated, 

following findings in numerous references, that it was concluded that the implicit stress 

integration is favorable with respect to the explicit or mixed formulations. Namely, the use of 

the parameters and variables at the end of time (load) steps gives not only the most accurate 

results but also provides the best convergence rate. This approach is implemented in all material 

models built within our FE code PAK. 

Our governing parameter method (GPM) assumes the condition that there is a parameter 

that governs the inelastic deformation within a time or load step during FE incremental-iterative 

computational procedure. This condition relies on the physical basis that there is positive power 

dissipation during inelastic material deformation; a detailed analysis of this is discussed in 

(Kojic and Bathe, 2005).  The GPM represents a generalization of the ‘Effective-Stress-

Function’ (ESF) introduced by the author in (Kojic and Bathe, 1987).  In the case of the time-
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independent plasticity with a general form of the yield condition, or metal plasticity, 

viscoplasticity, and thermo-plasticity and creep, the governing parameter is the increment of the 

modulus of the increment of plastic strain or the increment of the effective plastic strain. On the 

other hand, the governing parameter for geological materials, such as cap models or Cam-clay 

model, or generalized geological model, stress integration is achieved according to the GPM. 

Details are given in (Kojic and Bathe, 2005).  These models are built into our code PAK.  

For the efficiency and overall applicability of a nonlinear material model, one of the crucial 

elements is to have a consistent tangent constitutive matrix. As shown in our references, the 

GPM methodology provides the basis for the derivation of such a matrix. We will show here an 

example of the effects of the consistent tangent elastic-plastic matrix. 

A computational procedure is presented in the next section for a case of the elastic-plastic 

material model with a general form of yield condition, followed in the next section by the 

application of the GPM to the Cam-clay geological elastic-plastic model. We summarize in the 

final section the role of the GPM in the development of the PAK program for the analysis of 

inelastic material deformation. 

2.  A general form of time-independent plasticity material model 

According to (Kojic and Bathe, 2005), in the incremental elastic-plastic analysis of a material 

body, the unknown quantities at the end of the time step t are  

, ,t t t t t t IN+ + +
σ β e

                                                    (1)                        
 

where , ,t t t t t t IN+ + +
σ β e  are stress, internal variables, and inelastic strains. It is assumed 

that these variables are known at the start of time step, as well as strains t t+
e . The assumption 

is that there is a governing parameter p, such that the th unknown (1) can be expressed as 

                                                    ( ), , , , ,t t t t t t IN t t p+ +=σ σ σ e β e e
             

                             ( ), , , , ,t t t t t t IN t t p+ +=β β σ e β e e
                                           (2) 

                                        ( ), , , , ,t t IN IN t t t t IN t t p+ +=e e σ e β e e
                    

 

where the upper index t denotes values at the start of the time step. It is fundamental that, a 

monotonic function f(p) can be formulated such that the zero of that function enables 

determination of all unknowns (1), i.e., 

( ) 0f p =                                                                 (3) 

 This methodology is illustrated in Fig.1b, with the aim to show an example of the internal 

variable of a material model; here it is the so-called back stress α   which specifies the center of 

the yield surface in the deviatoric plane. The constitutive relation for this internal variable is  

( )
2 ˆ
3

P
P PE ME = − α e

                                                    (4) 

where PE  and ˆ
PE are weighted plastic moduli according to the yield curve, Pe is the 

increment of plastic strain, and M is the mixed hardening parameter. The governing parameter 

is the modulus of plastic strain  Pe  .  Details of the computational procedure are given in 

(Kojic and Bathe, 2005).  
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 To illustrate the generality of the GPM we here outline the stress integration in the case 

of a general form of the yield surface (Kojic and Bathe, 2005).   Schematic representation of the               
 

 
Fig. 1 а) Hysteresis of metal in loading-reverse loading plastic deformation of steel, according 

to Smith and Sidebottom (1965) ; b) Graphical representation of the stress integration at a load 

step. Yield surfaces in the deviatoric plane at the start and end of the load step. Stress points B 

and D at yield surfaces, and B’ and D’  at the yield curve correspond to the start and end of the 

load step. The internal variable is back stress α .  According to (Kojic and Bathe, 2005)
 

 

computational procedure is shown in Fig. 2.  The basic relations used here include the 

following., The increment of plastic strain can be expressed as 

P P = e e n
                                                         (5) 

where n is the unit normal to the yield surface (with double shear terms). Then, the following 

relations follow from the constitutive relations for stress and internal variables, and the yield 

condition : 

( ) ( ),P t t t t E P E t t t P P t t
yf f  

+ + + + = −  − e σ e C n β e C n
            (6) 

where fy is the yield function, t t E+
σ is the stress corresponding to the elastic solution,  

/

t t

y yt t
f f



+

+
   

=     

n
β β                                                     (7) 

and E
C and 

P
C  are elastic matrix and constitutive matrix related to the internal variables. We 

use a trial value 
( )k

Pe and evaluate the trial value ( )k
yf  of the function (6)  using the trial 

values for stresses and internal variables: 
( ) ( 1)

( ) ( 1) ( 1)
k k

t t k t t k P P E t t k
−

+ + − + − 
= −  −  

 
σ σ e e C n

 

( ) ( 1)
( 1)( ) ( 1)

k k
kt t k t t k P P P t t

 

−
−+ + − + 

= −  −  
 

β β e e C n
                         (8) 
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Fig. 2 Solution procedure for the elastic-plastic model with a general form of the yield 

condition. a) Search for the zero of the function of the governing parameter Pe ; 

b) Successive yield surfaces analogous to the return mapping concept. According to (Kojic and 

Bathe, 2005). 
 

The trials continue until the zero of the function (6) is obtained. Additional details are given 

in (Kojic and Bathe, 2005). The return mapping was introduced in (Simo and Taylor, 1986) , 

practically at the same time as we published our ‘effective-stress-function’ (Kojic and Bathe, 

1987).  

 It is very important to emphasize the role of the consistent-tangent elastic-plastic 

matrix. The general form of this matrix can be written as 

co s

t t t t t t
ij ijt t

ijrs t t t t t t
rs rsp n t

p
C

e p e

 + + +
+

+ + +

=

  
= +

                                    (9)
 

We do not present additional details of the derivation of this matrix for specific material 

models – they are given in our references. Here is given illustration of the effects of the tangent 

character of this matrix. Fig. 3 displays convergence to the exact solution in the case of torsion 

of a tube where elastic-plastic deformation is produced. The material is metal with a bilinear 

yield curve. It can be seen that the number of iterations is 346 is needed if the elastic matrix is 

used (modified Newton method), while the solution is obtained by 2 iterations only if the 

consistent elastic-plastic matrix is employed (full Newton method). The consistent matrices are 

built into the program PAK. 
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Fig. 3 a) Torsion of a tube, elastic-plastic deformation, von Mises yield condition; b)Solution is 

reached after 346 iterations if the elastic matrix is used (modified Newton method), while only 

2 iterations are needed when the consistent elastic-plastic matrix is employed (full Newton 

method). According to (Kojic and Bathe, 2005). 

 

Accuracy of the ESF is demonstrated on numerous examples in the book (Kojic and Bathe, 

2005) and during the Kojic implementation of the ESF into the ADINA code, and later into the 

PAK. In Fig. 4, we show the field of effective plastic deformation in the supporting thin-walled 

beam with a closed cross-section used for bridges, subjected to torsion, which produces elastic-

plastic deformation. The PAK FE model was generated at the Laboratory for Engineering 

Software of the Mechanical Engineering Faculty in Kragujevac, and the experiment was carried 

out at the Civil Engineering Faculty in Belgrade (Ph. D. thesis of Bratislav Stipanic under the 

mentorship of academican Nikola Hajdin). Stipanic was a professor and the main collaborator 

in designing bridges over the largest rivers in Europe: the Danube, the Sava in Serbia, and the 

Visla in Poland. The computational model results and experimental measurements were 

perfectly matched.   

 
Fig. 4. Field of plastic deformation within a thin-walled beam with closed cross-section 

subjected to torsion. This beam structure is used to carry the load at bridges (Ph. D. thesis of 

Bratislav Stipanic, Mentor academician Nikola Hajdin, 1989) 
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 3. Application of the GPM to the Cam-clay geological material model 

In this section, we apply our GPM concept to the Cam-clay geological material model. We 

briefly summarize a part of the computational procedure given in (Kojic and Bathe, 2005) as a 

simple example built into our PAK code.  

The model is represented by the yield surface shown in Fig. 4. The yield function, 

according to Wood (1990) in the plane second invariant of the deviatoric stress J2D – mean 

stress m , is shown in Fig. 5. The analytical form is  

( ) 2

0 2

3
0D

y m m

J
f p

M
 = − + =                                         (10) 

where p0  is the length of the horizontal axis of the ellipse, and M is a material parameter. In the 

computational procedure, we distinguish three loading regimes, comparing the elastic mean 

stress t t E

m+   and 
0

t p : 

hardening                  0

1

2

t t E t
m p+    

softening                   0

1

2

t t E t
m p+                                          (11) 

perfect plasticity      0

1

2

t t E t
m p+ =  

 

Fig. 5. Cam-clay model. Loading regimes at a time step. a) Hardening and perfect plasticity; b) 

Softening. According to (Kojic and Bathe, 2005). 
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We select the increment of the mean volumetric deformation 
P
me  as the governing 

parameter and then, for a selected value of 
P
me  we evaluate 

• void ratio   ( ) ( )01 exp 1t t t t
Ve e e+ += + − −  

• quantity     

( )3 1

t t s
V t t

k
b

e

+

+
=

+
 

• 0 0 exp
P

t t t m

t t
V

e
p p

b

+

+

 
=   

 

 

• ( )t t t t t P
m m m m mc e e e+ += − −   

• 
0

3

2

P
m

t t t t
m

e

p


+ +


 =

−
 

• 
( )

22

2 1
,     

21 6 /

t t t P

t t t t t t t t
D

G
J

G M

+

+ + + +
 −

= =
+ 

e e
S S S  

• Check if 0t t
yf+   

where 
t t

Ve+
is volumetric strain; t t+ e  and t Pe  are deviatoric total and plastic strains; 

cm=3K is volumetric elastic constant (K is volumetric modulus); G is the shear modulus; ks is a 

material parameter. If the convergence is not reached, use another trial value of the governing 

parameter 
P
me . 

 In the case of perfect plasticity, we have that the increment of the mean volumetric 

strain is equal to zero, i.e. 0P
me = , 00.5t t t t E t

m m p + += =  and   is 

 
2

23
1

6

t t E
D

t t E
m

JM

G M




+

+

 
  = −
 
 

                                           (12) 

with   determined, we continue as in the other cases given above. The derivation for the 

elastic-plastic matrix is given in our reference. The application of this model is illustrated by a 

model of the triaxial compression test, used in a standard evaluation of characteristics of a 

geological material. The data and the results are shown in Fig. 6, which agree with those 

reported by Desai and Siriwardane (1984). 

 

 Fig. 6 Triaxial compression test of Cam-clay material. Model data and results that 

agree with those of Desai and Siriwardane (1984). According to (Kojic and Bathe, 2005). 
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4. Concluding remarks 

 

We have outlined our governing parameter method (GPM), generalized from the ESF, as the 

basic concept for the implicit stress integration of inelastic material deformation. This 

methodology is built within our PAK finite element program, developed over decades. The 

GPM with the implicit stress integration has been accepted by numerous developers and users 

of our code as fundamental for computational procedures for inelastic material models within 

the PAK package. This outline includes a general elastic-plastic model and the Cam-clay 

model as a brief insight into our methodology, while a detailed description of it is available in 

our numerous references.  
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