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Abstract

In the article the task of cross bending of elastic isotropic plates with simply supported and
clamped edge from the action of evenly distributed load is described. It is suggested to use form
factor interpolation technique to determine the value of maximum plate deflection; and the ratio
of inner conformal radius to the outer as a geometric argument is proposed to be used instead of
form factor. Such replacement allows the increase of the technique accuracy.
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1. Introduction

Parallelogram plates are widely used in the building industry, machine construction, aircraft and
shipbuilding as structural components accepting cross bending deformation (Harari et al. 2011,
Marti 2013; Sadd 2014). The nowadays structural calculation is carried using numerical methods,
particularly, the finite element method (FEM) (ANSY'S; Zienkiewicz et al. 2014). The last one is
the basis for many software packages, such as ANSYS. However, despite the high efficiency of
numerical methods, such methods suffer from well-known significant drawbacks which assert in
difficulty of analysis of calculating result, inability of estimating qualitative and quantitative
assessment of the desired solution during variation of geometric parameters or design shape
(plate in our case) (Korobko 1994; Polya, Szego 1951).

2. Method

One of the authors of this article has developed an engineering technique for solving two-
dimensional problem of structural theory — form factor interpolation technique (FFIT) (Korobko
1999). In this method the main geometric argument is the form factor — integral characteristic of
design shape (plate in our case), that yields a quantitative estimate of correctness (symmetry) of
its shape. Detailed information about the form factor of the region with prominent outline K; is
given in the monograph (Korobko 1999). In the same monograph, a number of features of the
form factor and integral physical characteristic of plates F are proven:
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— plate form factor is a geometric analogue of integral physical characteristic of plates F,
particularly, maximum deflection at cross bending wy,, fundamental plate oscillation frequency in
no-load state w, critical load at longitudinal plate bending N,, quantitative and qualitative
modifications K in direct (or inverse) proportion to quantitative and qualitative F modifications;

— all F sets of values for the equivalent elastic isotropic plates with prominent outline and
uniform boundary conditions (either simply supported or clamped edge) represented on
coordinate axes are doubly bounded: elliptic plates form one of the edges, polygonal plates — the
other; all the sides are tangent to a circumference;

— all F sets of values for parallelogram plates are bounded from one side by F values for
rectangular plates, from the other side — values F for plates in the form of an isosceles triangle;

— all F sets of values for trapezoidal plates are bounded from one side by F values for
rectangular plates, from the other side — values F for plates in the form of an isosceles triangle.

The geometric entity of form factor interpolation technique is in choice of geometric
transformation of prefixed plate in which family of plate forms contains at least two plates which
solution is known or can be obtained by some methods (reference solutions). In case of
parallelogram area, it is always possible to choose transformation (for instance, affine) in which
the area is turned into a rectangle or rhomb. If solutions for rectangular and rhombic plate are
known, then the solution for prefixed parallelogram plates can be found using the form factor
interpolation. So, one needs to know all sets of solutions for rectangular and rhombic plate in
case of using the form factor interpolation technique. Scientific and reference literature provides
many task solution for rectangular plates under different boundary conditions; it can be possible
to plot a curve F — K using these data. Not a lot of decisions are set out for rhombic plate,
however, it is possible to plot a curve F — K; using the finite element method.

Fig. 1 shows the mentioned curves wy — 1/K; at evenly distributed action on a plate. In the
figure, along the abscissa axis value 1/K; is plotted, while the ordinate axis - multiplied by 10°
times represents the proportionality constant in bending form

2
e

W0= D

, 1)
where D= Eh3/12-(1—v2) is bending stiffness of plate; E is modulus of deflection of
material; v is Poisson ratio; q is intensity of uniformly distributed load; h is thickness of the plate;

A is plate area, ki, is deflection function which depends on the boundary conditions and the form
factor.
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Fig. 1. Maximum deflection of plates in isoperimetric form

As shown in Fig. 1, points 3, 4, and 6 correspond to wq values for plates in the form of a
regular shape — triangle, tetragon (square), hexagon; point 0 is in keeping with w, values for
round plate. Ranges of values w, that belong to parallelogram plates are shaded in the figure.

3. Results and discussion

In the present work it is suggested to use the ratio of inner f conformal radius to outer 7 —
(Korobko, Chernyaev 2011) instead of the form factor of the region with convex outline. The
value of parameters for area forming boundary curves was calculated, and corresponding to them
values of k,, proportionality constant were found using ANSY'S software by the partition of area
with grid 1/10 of side. For rectangles and rhombs, the exact analytic formulas for conform radius
ratio value using gamma function are known. But these formulas are sufficiently cumbersome
(Polya, Szego 1951). That is why in this article approximating polynomial functions are plotted
with high accuracy based on the previously obtained solution set; these functions can be useful in
creating computer programs.

For rhombs, the equation is known as (Polya, Szego 1951):

12 12
T L, F= T

_ W 8@[1— Z)G(“za} L

where L is perimeter; G(x) is gamma function. The values of the inner () and outer ()
conformal radiuses to the different o were obtained (Table 1) using these formulas. According to
Table 1 and using MS Excel, approximating function (3) was plotted:

O]

F/F =a+bo+ca? +da’ +ea’, (3)
where a = 7,0709-10-5; b = 0,02219; ¢ = -0,0001678; d = 5,2896:10-7; € = —1,6694-10-9;
[Alpha] — acute rhomb angle in degrees.

In the work by Polya and Szego (1951) for rectangles with a and b (a > b) sides, the
equations of the inner and outer conformal radiuses take the form:
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Here o is an argument of complex numbers (points of the circle, images of which for
conformal mapping are the tops of the rectangle); (-1)!! = 1.
Using these formulas, the inner and outer conformal radius and its ratio (/¥ ) to the different
a and b was calculated and presented in Table 2. According to Table 2 and using MS Excel,
approximating function (6) was plotted:
a+ch+er?
/T = , 6
/ 1+bx+da? + 3 ©
where a = 0,80307; b = — 0,76171; ¢ = — 0,92186; d = 0,49197; e = 1,243; f = 0,49981,

[lambda] = a/b — ratio of the greater rectangle side to the smaller;
For obtaining the inner and the outer conformal radius of parallelogram expansion of the

mapping function o = f(z) was used:

Y]

o="f(z)=z-a+c,(z—a)f +cs(z—a)* + ...
where o, z are complex variables (points of the complex plane).
Function, which represents the one-to-one conformal transition, was obtained using the
Christoffel — Schwartz formula:
Z n
f(z):Cl_[H(z—ak)“k’ldz+C2, (8)
ZO k=1

where C; and C, are arbitrary complex constants (C; # 0); ax are prototypes of the tops of the

a polygon A; on the real axis; oy are radian measures of the inner angles of a polygon.
Further, the ratio of it was defined. The results of the different a/h and [Alpha] are shown in

Table 3. According to Table 3 and using MS Excel approximating function was plotted (9):
t/F=a+bra ™t +c(lna)+di? +elna)’ + f(Ina) ™ + ©
+gn 2 +h(ina)® +ilna) 2™ + jInap 2,

where a = -0,3575; b = —-8,0875; ¢ = 0,8777; d = -4,2622; e = -0,3624; f = 5,0926; g =
0,04877; h =0,04177; i =-0,6431; j = 0,7254; [lambda] = a/h — ratio of the greater parallelogram
side to the smaller height; [Alpha] — acute angle, formed by the sides, in degrees.
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[Alpha] | 10° 20° 30° 40° 45° 50° 60° 70° 80° 90°

I, a 0,1066 | 0,2036 | 0,2898 | 0,3643 | 0,3970 | 0,4264 | 0,4754 | 0,5108 | 0,5322 | 0,5394

r,a 05183 | 0,5348 | 0,5492 | 05616 | 0,5670 | 0,5718 | 0,5798 | 0,5855 | 0,5890 | 0,5902

r/r 0,2057 | 0,3807 | 0,5277 | 0,6487 | 0,7002 | 0,7457 | 0,8199 | 0,8724 | 0,9036 | 0,9139

Notes: 1. [Alpha] — acute rhomb angle; 2. — rhomb side.

Table 1. Values of conformal radius and its ratio for rhombs

a/b 1 1.2 1,4 1,6 18 2,0 2,5 3,0 5,0 — ©

r, a 0,5394 | 0,4848 | 0,4332 | 0,3876 | 0,3488 | 0,3159 | 0,2543 | 0,2121 | 0,1273 | 2b/n

r,a 0,5902 | 0,5406 | 0,5045 | 0,4768 | 0,4551 | 0,4374 | 0,4049 | 0,3826 | 0,3361 | a/4

r/r 0,9139 | 0,8968 | 0,8587 | 0,8129 | 0,7664 | 0,7222 | 0,6281 | 0,5544 | 0,3788 | O

Note — a and b rectangle side (a > b).

Table 2. Values of conformal radius and its ratio for rectangles

[Alpha]
10° 20° 30° 40° 50° 60° 70° 80° 90°
a/h
1 - - - - - - - - 0,9139
1,25 - - - - - 0,8191 | 0,8610 | 0,8822 | 0,8885
15 - - - - 0,7415 | 0,7914 | 08185 | 0,8321 | 0,8363
1,75 - - - 0,6482 | 0,7136 | 0,7474 | 0,7658 | 0,7751 | 0,7779
2 - - 0,5277 | 0,6302 | 0,6766 | 0,7007 | 0,7137 | 0,7203 | 0,7222
25 - - 0,5185 | 05761 | 0,6022 | 0,6157 | 0,6231 | 0,6268 | 0,6281
3 - 0,3825 | 0,4861 | 0,5220 | 0,5383 | 0,5468 | 0,5514 | 0,5537 | 0,5544
4 - 0,3682 | 0,4173 | 0,4344 | 0,4421 | 0,4461 | 0,4482 | 0,4494 | 0,4498
5 - 0,3335 | 0,3609 | 0,3703 | 0,3747 | 03769 | 0,3781 | 0,3787 | 0,3788

Notes: 1. a’h — ratio of greater parallelogram side to the smaller height (a/h > 1); 2. [Alpha] — acute
parallelogram angle ([Alpha] < 90°); 3. Dash ‘—” means that this parallelogram already exists in the table.

Table 3. Values of conformal radius ratio for parallelograms
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Approximating curves k,, — are plotted based on the obtained data; curves can be determined
by the following analytical dependences:

— for simply supported rhombic plates:

_0,0209 + 6,349(r/F )* —6184(r/F)* . 10)
1-05516(/F)* —04192(r/F)*
— for simply supported rectangular plates:
« _ —00113+25758(F/ F) +14,4157(¢/F)" a1
1+1,4745(¢/F * +11153(¢/F )’
— for clamped rhombic plates:
« _ —00044 +15655(r/ F) —11923(¢/F)" 12)
" 1-06771243(r/7)* —11923(¢/7)*
— for clamped rectangular plates:
. =\2
~0,0077 +0,7075(r/F) 13)

" 1-1121(¢/7 2 + 05735(¢/ 7 )

Here, the equations 10-13 were obtained from data which are presented in tables 5-8 using
MS Excel. The values of the ratio ¢/F where obtained using formula (3). The values of the

parameter 1000 k,, were obtained using ANSY'S (FEM).

The resulting graphs turned out to be identical to the graphs illustrated in Fig. 1; its
comparison enables to conclude that:

1. All the solutions to problems for plates in the form of rhomb, regular polygon, and
arbitrary rectangle can be described by the same analytical dependence (formula (10) for simply
supported plates, formula (12) for clamped plates).

2. Range of maximum deflection values for quadrangular plates in case of using conformal
radius ratio is significantly narrower than it would be if the form factor was used. Therefore, by
using ratio f/f in the capacity of geometrical argument and applying the form factor
interpolation technique in quadrangular plates computing (in particular — parallelogram and
trapezoidal), the desired solution is determined with higher accuracy than by using the form
factor.

For determination of maximum deflection of parallelogram plates by using the form factor
interpolation technique, the ratio f/f is as follows.

1. For a given parallelogram plate, which form depends on the ratio of larger side to the
smaller height A= a/h and acute a angle, «reference» plates and their geometric characteristics
are defined by the affine shift along larger side: [Alpha] angle for rhombic plate is determined as
a = arcsin(1/A), side ratio (Fig. 2).



42 V. I. Korobko et al.: Determination of maximum deflection at cross bending parallelogram plates ...

r r
a’ VA
L 4L a 4L 4L a ’\L

4 (@4 4l

Fig. 2. Modeling parallelogram area

2. Ratios r/F for the «reference» plates are calculated according to the formulas (3), (6),
deflection values k,, — according to the formulas (10-13).

3. Ratio r/F for parallelogram plate is determined by the formula (9).

4. Maximum deflection k,, of parallelogram plate may be defined using interpolation
between the reference solutions.

Two types of interpolation — power and linear — may be used during implementation of the
last paragraph:

— at power interpolation:

(Y k)
ol 105 R -

— at linear interpolation:
LG
oo T ey e ) =

where f/F — is conformal radius ratio for the given parallelogram plate; (¢/F),, (¢/F), and

kw1, kwo — ratio of conformal radiuses and maximum deflection for «reference» plates. Index “1”
of formulas (14) and (15) refers to rhombic plate, index “2” — to rectangular one. Graphical
interpretation of the analized types of interpolation on formula (14) and (15) is shown in Fig. 3,
where curve I is for real curve, curve Il is obtained by interpolating function.

Equations (14) and (15) were obtained by Korobko (1999) using graphical presentation of
the solutions in the axes k,, — f/r . If one substitutes reference solutions “1” and “2”, then the
solution to the parallelogram plate will lay on curve “I”. This curve can be plotted approximately
using power function (14) or linear function (15). These functions were obtained from
mathematics and functional analysis.



Journal of the Serbian Society for Computational Mechanics / Vol. 9/ No. 1, 2015

43

J Fw &
2 . 2
Iz 1I - k2
] Y 1
T - /,{'
e kw e 2 II
1 ,/” 1 ’,1/
kw] kw] = B
P T
(1/7); S (1/T) " (1/7); P (1/T) s o

a — linear, b — power

Fig. 3. Interpolation

We did test calculations of multiplicity of parallelogram plates, ratio a/h varied between 1.25
and 5, [alpha] varied between 30° and 80°. Calculations were carried out using the finite element
method, conformal radius ratio and ANSY'S software package (Table 4).

Parallelogram plate

Deflection values 1000 k,, in the form of (1)

N - (FEM) ¢/F K;
characteristics ANSY | / ) A, % | interpolatio A, %
S interpolation n (FFIT)
1 2 3 4 5 6 7
Simply supported plates
1 | alh=1,25; [Alpha] =80° | 3,808 3,795 -0,36 3,797 -0,29
2 | a/h =15; [Alpha] =75° 3,364 3,358 -0,17 3,343 -0,63
a/h =1,75; [Alpha] =
3 200 2,893 2,901 0,28 2,866 -0,95
4 | a/h =2; [Alpha] = 65° 2,461 2,483 0,87 2,436 -1,03
a/h = 2,25; [Alpha] =
5 2,094 2,116 1,06 2,067 -1,28
60°
6 | ah=25; [Alpha] =55° | 1,786 1,801 0,83 1,755 -1,75
7 | a/h = 3; [Alpha] = 45° 1,314 1,309 -0,35 1,274 -3,02
8 | a/h =3,5; [Alpha] =40° 1,006 0,988 -1,87 0,964 -4,18
9 | a/h =4; [Alpha] =35° 0,787 0,766 -2,69 0,747 -5,07
1
0 a/h =5; [Alpha] =30° 0,514 0,507 -1,32 0,491 -4,46
Maximum deviation -2,69 -5,07
Average deviation (by absolute value) 0,91 2,28
Clamped plates
1 2 3 4 5 6 7
1 | a/lh =1,25; [Alpha] = 80° 1,150 1,147 -0,24 1,147 -0,2
2 | a/h =15; [Alpha] =75° 0,957 0,959 0,21 0,954 -0,32
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a/h =1,75; [Alpha] =
3 0,774 0,777 0,43 0,768 -0,75
70°
4 | a/h =2; [Alpha] =65° 0,622 0,629 1,24 0,619 -0,45
a/h = 2,25; [Alpha] =
5 0,505 0,516 2,22 0,506 0,2
60°
6 | a/h =2,5; [Alpha] =55° 0,413 0,415 0,34 0,407 -1,62
7 | a/lh =3; [Alpha] =45° 0,287 0,283 -1,26 0,278 -3,1
8 | alh=3,5; [Alpha] =40° | 0,211 0,207 -1,94 0,204 3,6
9 | a/h =4; [Alpha] =35° 0,161 0,158 -2,29 0,155 -4,09
1
0 a/h = 5; [Alpha] = 30° 0,102 0,102 -0,78 0,099 -3,62
Maximum deviation -2,29 -4,09
Average deviation (by absolute value) 1,08 1,89

Note: A — difference between k,, values in columns 3 and 2, 5 and 2.

Table 4. wy values association for parallelogram plates obtained by conformal radius ratio
interpolation, the form factor interpolation technique (FFIT) and the finite element method
(FEM) in ANSY'S software package.

4. Summary

1 Using the form factor interpolation technique and geometric argument r/F instead of form

factor K¢ for maximum deflection of parallelogram plates allows for the double increase of the
analytical solutions accuracy.

2 Results, obtained by power and linear interpolation of reference solutions, are not significantly
different. However, for the higher simplicity and naturalness it is recommended to use power
interpolation.

3 The main advantage of the presented method for determination of maximum plate deflection is
the obtained results representation that allows to exactly determine the place of found solution
for all sets (in discussing set) of parallelogram plates. Among the plethora of known approximate
approaches for solving considered problems, only interpolation technique on the form factor K;
and conformal radiuses ratio f/F gives such opportunity.
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Pe3ume

VY pany ce onmcyje HONPEYHO CaBHjambe eIACTUYHHUX IPOCTO OCIOHEHUX W30TPOIHUX IUIoYa U
IUIOYA Ca YKJBEIITCHOM HBHIIOM IIPU paBHOMEpHO pacropeheHom onrepehemy. Ilpennaxe ce
ynotpeba TeXHHWKe WHTepnojandje ¢akropa oOIMKa Kako OW ce OIpequia BPeTHOCT
MaKcUMalHe JediekcHje TIoYe; U OJJHOC YHYTPAILIker U CIOJbAllber KOH)OPMAITHOT paaujyca
Kao TEOMETPHjCKOT apryMeHTa jep ce Mpeiiaxke 1a ce TeOMETPH)CKH apTyMEHT YIOTpeOH yMecTo
(hakTopa obmmka. OBakBa 3aMeHa oMoryhasa Behy Ta4HOCT.

KibyuyHe peun: oiode y oOJHKy mapaieiorpama, IolpeyHo CaBHjamke, MaKCHMalHa ediexcuja,
0JTHOC KOH(OpMaJHOT pajinjyca, TEXHHKA HHTeproanyje Gakrtopa ooauKa.
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