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Abstract 

In the article the task of cross bending of elastic isotropic plates with simply supported and 

clamped edge from the action of evenly distributed load is described. It is suggested to use form 

factor interpolation technique to determine the value of maximum plate deflection; and the ratio 

of inner conformal radius to the outer as a geometric argument is proposed to be used instead of 

form factor. Such replacement allows the increase of the technique accuracy.  
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1. Introduction 

Parallelogram plates are widely used in the building industry, machine construction, aircraft and 

shipbuilding as structural components accepting cross bending deformation (Harari et al. 2011; 

Marti 2013; Sadd 2014). The nowadays structural calculation is carried using numerical methods, 

particularly, the finite element method (FEM) (ANSYS; Zienkiewicz et al. 2014). The last one is 

the basis for many software packages, such as ANSYS. However, despite the high efficiency of 

numerical methods, such methods suffer from well-known significant drawbacks which assert in 

difficulty of analysis of calculating result, inability of estimating qualitative and quantitative 

assessment of the desired solution during variation of geometric parameters or design shape 

(plate in our case) (Korobko 1994; Polya, Szego 1951). 

2. Method 

One of the authors of this article has developed an engineering technique for solving two-

dimensional problem of structural theory – form factor interpolation technique (FFIT) (Korobko 

1999). In this method the main geometric argument is the form factor – integral characteristic of 

design shape (plate in our case), that yields a quantitative estimate of correctness (symmetry) of 

its shape. Detailed information about the form factor of the region with prominent outline Kf  is 

given in the monograph (Korobko 1999). In the same monograph, a number of features of the 

form factor and integral physical characteristic of plates F are proven: 
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– plate form factor is a geometric analogue of integral physical characteristic of plates F, 

particularly, maximum deflection at cross bending w0, fundamental plate oscillation frequency in 

no-load state ω, critical load at longitudinal plate bending N0, quantitative and qualitative 

modifications Kf in direct (or inverse) proportion to quantitative and qualitative F modifications; 

– all F sets of values for the equivalent elastic isotropic plates with prominent outline and 

uniform boundary conditions (either simply supported or clamped edge) represented on 

coordinate axes are doubly bounded: elliptic plates form one of the edges, polygonal plates – the 

other; all the sides are tangent to a circumference; 

– all F sets of values for parallelogram plates are bounded from one side by F values for 

rectangular plates, from the other side – values F for plates in the form of an isosceles triangle; 

– all F sets of values for trapezoidal plates are bounded from one side by F values for 

rectangular plates, from the other side – values F for plates in the form of an isosceles triangle. 

The geometric entity of form factor interpolation technique is in choice of geometric 

transformation of prefixed plate in which family of plate forms contains at least two plates which 

solution is known or can be obtained by some methods (reference solutions). In case of 

parallelogram area, it is always possible to choose transformation (for instance, affine) in which 

the area is turned into a rectangle or rhomb. If solutions for rectangular and rhombic plate are 

known, then the solution for prefixed parallelogram plates can be found using the form factor 

interpolation. So, one needs to know all sets of solutions for rectangular and rhombic plate in 

case of using the form factor interpolation technique. Scientific and reference literature provides 

many task solution for rectangular plates under different boundary conditions; it can be possible 

to plot a curve F – Kf using these data. Not a lot of decisions are set out for rhombic plate, 

however, it is possible to plot a curve F – Kf   using the finite element method. 

Fig. 1 shows the mentioned curves w0 – 1/Kf at evenly distributed action on a plate. In the 

figure, along the abscissa axis value 1/Kf is plotted, while the ordinate axis - multiplied by 103 

times represents the proportionality constant in bending form 

 ,
D

qA
kw w

2

0   (1) 

where  23 112  EhD  is bending stiffness of plate; E is modulus of deflection of 

material; ν is Poisson ratio; q is intensity of uniformly distributed load; h is thickness of the plate; 

A is plate area, kw is deflection function which depends on the boundary conditions and the form 

factor. 
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Fig. 1. Maximum deflection of plates in isoperimetric form 

As shown in Fig. 1, points 3, 4, and 6 correspond to w0 values for plates in the form of a 

regular shape – triangle, tetragon (square), hexagon; point 0 is in keeping with w0 values for 

round plate. Ranges of values w0 that belong to parallelogram plates are shaded in the figure. 

3. Results and discussion 

In the present work it is suggested to use the ratio of inner r  conformal radius to outer r  –  

(Korobko, Chernyaev 2011) instead of the form factor of the region with convex outline. The 

value of parameters for area forming boundary curves was calculated, and corresponding to them 

values of kw proportionality constant were found using ANSYS software by the partition of area 

with grid 1/10 of side. For rectangles and rhombs, the exact analytic formulas for conform radius 

ratio value using gamma function are known. But these formulas are sufficiently cumbersome 

(Polya, Szego 1951). That is why in this article approximating polynomial functions are plotted 

with high accuracy based on the previously obtained solution set; these functions can be useful in 

creating computer programs. 

For rhombs, the equation is known as (Polya, Szego 1951): 
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where L is perimeter; G(x) is gamma function. The values of the inner ( r ) and outer ( r ) 

conformal radiuses to the different α were obtained (Table 1) using these formulas. According to 

Table 1 and using MS Excel, approximating function (3) was plotted: 

 432  edcbarr , (3) 

where a = 7,0709·10-5; b = 0,02219; с = –0,0001678; d = 5,2896·10-7; e = –1,6694·10-9; 

[Alpha] – acute rhomb angle in degrees. 

In the work by Polya and Szego (1951) for rectangles with a and b (a ≥ b) sides, the 

equations of the inner and outer conformal radiuses take the form: 
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where baeq  , 
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Here   is an argument of complex numbers (points of the circle, images of which for 

conformal mapping are the tops of the rectangle); (-1)!! = 1. 

Using these formulas, the inner and outer conformal radius and its ratio ( r r ) to the different 

a and b was calculated and presented in Table 2. According to Table 2 and using MS Excel, 

approximating function (6) was plotted: 
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where a = 0,80307; b = – 0,76171; c = – 0,92186; d = 0,49197; e = 1,243; f = 0,49981; 

[lambda] = a/b – ratio of the greater rectangle side to the smaller; 

For obtaining the inner and the outer conformal radius of parallelogram expansion of the 

mapping function  zf  was used:  

       ...azcazcazzf 
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where ω, z are complex variables (points of the complex plane). 

Function, which represents the one-to-one conformal transition, was obtained using the 

Christoffel – Schwartz formula: 
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where С1 and С2 are arbitrary complex constants (С1 ≠ 0); ak are prototypes of the tops of the 

a polygon Ai on the real axis; αk are radian measures of the inner angles of a polygon. 

Further, the ratio of it was defined. The results of the different a/h and [Alpha] are shown in 

Table 3. According to Table 3 and using MS Excel approximating function was plotted (9): 
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where a = –0,3575; b = –8,0875; с = 0,8777; d = –4,2622; e = –0,3624; f = 5,0926; g = 

0,04877; h = 0,04177; i = –0,6431; j = 0,7254; [lambda] = a/h – ratio of the greater parallelogram 

side to the smaller height; [Alpha] – acute angle, formed by the sides, in degrees. 
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[Alpha] 10° 20° 30° 40° 45° 50° 60° 70° 80° 90° 

r , a  0,1066 0,2036 0,2898 0,3643 0,3970 0,4264 0,4754 0,5108 0,5322 0,5394 

r , a  0,5183 0,5348 0,5492 0,5616 0,5670 0,5718 0,5798 0,5855 0,5890 0,5902 

rr  0,2057 0,3807 0,5277 0,6487 0,7002 0,7457 0,8199 0,8724 0,9036 0,9139 

Notes: 1. [Alpha] – acute rhomb angle; 2. – rhomb side. 

Table 1. Values of conformal radius and its ratio for rhombs 

a/b 1 1,2 1,4 1,6 1,8 2,0 2,5 3,0 5,0 → ∞ 

r , a  0,5394 0,4848 0,4332 0,3876 0,3488 0,3159 0,2543 0,2121 0,1273 2b/π 

r , a  0,5902 0,5406 0,5045 0,4768 0,4551 0,4374 0,4049 0,3826 0,3361 a/4 

rr  0,9139 0,8968 0,8587 0,8129 0,7664 0,7222 0,6281 0,5544 0,3788 0 

Note – a and b rectangle side (a ≥ b). 

Table 2. Values of conformal radius and its ratio for rectangles 

[Alpha] 

10° 20° 30° 40° 50° 60° 70° 80° 90° 
a/h 

1 – – – – – – – – 0,9139 

1,25 – – – – – 0,8191 0,8610 0,8822 0,8885 

1,5 – – – – 0,7415 0,7914 0,8185 0,8321 0,8363 

1,75 – – – 0,6482 0,7136 0,7474 0,7658 0,7751 0,7779 

2 – – 0,5277 0,6302 0,6766 0,7007 0,7137 0,7203 0,7222 

2,5 – – 0,5185 0,5761 0,6022 0,6157 0,6231 0,6268 0,6281 

3 – 0,3825 0,4861 0,5220 0,5383 0,5468 0,5514 0,5537 0,5544 

4 – 0,3682 0,4173 0,4344 0,4421 0,4461 0,4482 0,4494 0,4498 

5 – 0,3335 0,3609 0,3703 0,3747 0,3769 0,3781 0,3787 0,3788 

Notes: 1. a/h – ratio of greater parallelogram side to the smaller height (a/h ≥ 1); 2. [Alpha] – acute 

parallelogram angle ([Alpha] ≤ 90°); 3. Dash ‗–‘ means that this parallelogram already exists in the table. 

Table 3. Values of conformal radius ratio for parallelograms 
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Approximating curves kw – are plotted based on the obtained data; curves can be determined 

by the following analytical dependences: 

– for simply supported rhombic plates: 
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– for simply supported rectangular plates: 
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– for clamped rhombic plates:  
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– for clamped rectangular plates:  
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Here, the equations 10-13 were obtained from data which are presented in tables 5-8 using 

MS Excel. The values of the ratio rr  where obtained using formula (3). The values of the 

parameter 1000 kw were obtained using ANSYS (FEM). 

The resulting graphs turned out to be identical to the graphs illustrated in Fig. 1; its 

comparison enables to conclude that: 

1. All the solutions to problems for plates in the form of rhomb, regular polygon, and 

arbitrary rectangle can be described by the same analytical dependence (formula (10) for simply 

supported plates, formula (12) for clamped plates). 

2. Range of maximum deflection values for quadrangular plates in case of using conformal 

radius ratio is significantly narrower than it would be if the form factor was used. Therefore, by 

using ratio rr  in the capacity of geometrical argument and applying the form factor 

interpolation technique in quadrangular plates computing (in particular – parallelogram and 

trapezoidal), the desired solution is determined with higher accuracy than by using the form 

factor. 

For determination of maximum deflection of parallelogram plates by using the form factor 

interpolation technique, the ratio rr  is as follows. 

1. For a given parallelogram plate, which form depends on the ratio of larger side to the 

smaller height λ= a/h and acute α angle, «reference» plates and their geometric characteristics 

are defined by the affine shift along larger side: [Alpha] angle for rhombic plate is determined as 

  1arcsin , side ratio (Fig. 2). 
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Fig. 2. Modeling parallelogram area 

2. Ratios rr  for the «reference» plates are calculated according to the formulas (3), (6), 

deflection values kw – according to the formulas (10-13). 

3. Ratio rr  for parallelogram plate is determined by the formula (9). 

4. Maximum deflection kw of parallelogram plate may be defined using interpolation 

between the reference solutions.  

Two types of interpolation – power and linear – may be used during implementation of the 

last paragraph: 

– at power interpolation: 
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– at linear interpolation: 
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where rr  – is conformal radius ratio for the given parallelogram plate;  1rr ,  2rr  and 

kw1, kw2 – ratio of conformal radiuses and maximum deflection for «reference» plates. Index ―1‖ 

of formulas (14) and (15) refers to rhombic plate, index ―2‖ – to rectangular one. Graphical 

interpretation of the analized types of interpolation on formula (14) and (15) is shown in Fig. 3, 

where curve I is for real curve, curve II is obtained by interpolating function. 

Equations (14) and (15) were obtained by Korobko (1999) using graphical presentation of 

the solutions in the axes kw – rr . If one substitutes reference solutions ―1‖ and ―2‖, then the 

solution to the parallelogram plate will lay on curve ―I‖. This curve can be plotted approximately 

using power function (14) or linear function (15). These functions were obtained from 

mathematics and functional analysis. 
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a – linear, b – power 

Fig. 3. Interpolation 

We did test calculations of multiplicity of parallelogram plates, ratio a/h varied between 1.25 

and 5, [alpha] varied between 30° and 80°. Calculations were carried out using the finite element 

method, conformal radius ratio and ANSYS software package (Table 4). 

 

N 

Parallelogram plate 

characteristics 

Deflection values 1000 kw in the form of (1) 

(FEM) 

ANSY

S 

rr  

interpolation 
Δ, % 

Кf  

interpolatio

n (FFIT) 

Δ, % 

1 2 3 4 5 6 7 

Simply supported plates 

1 a/h = 1,25; [Alpha] = 80° 3,808 3,795 -0,36 3,797 -0,29 

2 a/h = 1,5; [Alpha]  = 75° 3,364 3,358 -0,17 3,343 -0,63 

3 
a/h = 1,75; [Alpha]  = 

70° 
2,893 2,901 0,28 2,866 -0,95 

4 a/h = 2; [Alpha]  = 65° 2,461 2,483 0,87 2,436 -1,03 

5 
a/h = 2,25; [Alpha]  = 

60° 
2,094 2,116 1,06 2,067 -1,28 

6 a/h = 2,5; [Alpha]  = 55° 1,786 1,801 0,83 1,755 -1,75 

7 a/h = 3; [Alpha]  = 45° 1,314 1,309 -0,35 1,274 -3,02 

8 a/h = 3,5; [Alpha]  = 40° 1,006 0,988 -1,87 0,964 -4,18 

9 a/h = 4; [Alpha]  = 35° 0,787 0,766 -2,69 0,747 -5,07 

1

0 
a/h = 5; [Alpha]  = 30° 0,514 0,507 -1,32 0,491 -4,46 

Maximum deviation -2,69  -5,07 

Average deviation (by absolute value) 0,91  2,28 

Clamped plates 

1 2 3 4 5 6 7 

1 a/h = 1,25; [Alpha] = 80° 1,150 1,147 -0,24 1,147 -0,2 

2 a/h = 1,5; [Alpha]  = 75° 0,957 0,959 0,21 0,954 -0,32 
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3 
a/h = 1,75; [Alpha]  = 

70° 
0,774 0,777 0,43 0,768 -0,75 

4 a/h = 2; [Alpha]  = 65° 0,622 0,629 1,24 0,619 -0,45 

5 
a/h = 2,25; [Alpha]  = 

60° 
0,505 0,516 2,22 0,506 0,2 

6 a/h = 2,5; [Alpha]  = 55° 0,413 0,415 0,34 0,407 -1,62 

7 a/h = 3; [Alpha]  = 45° 0,287 0,283 -1,26 0,278 -3,1 

8 a/h = 3,5; [Alpha]  = 40° 0,211 0,207 -1,94 0,204 -3,6 

9 a/h = 4; [Alpha]  = 35° 0,161 0,158 -2,29 0,155 -4,09 

1

0 
a/h = 5; [Alpha]  = 30° 0,102 0,102 -0,78 0,099 -3,62 

Maximum deviation -2,29  -4,09 

Average deviation (by absolute value) 1,08  1,89 

Note: Δ – difference between kw values in columns 3 and 2, 5 and 2. 

Table 4. w0 values association for parallelogram plates obtained by conformal radius ratio 

interpolation, the form factor interpolation technique (FFIT) and the finite element method 

(FEM) in ANSYS software package. 

4. Summary 

1 Using the form factor interpolation technique and geometric argument rr  instead of form 

factor Kf for maximum deflection of parallelogram plates allows for the double increase of the 

analytical solutions accuracy.  

2 Results, obtained by power and linear interpolation of reference solutions, are not significantly 

different. However, for the higher simplicity and naturalness it is recommended to use power 

interpolation.  

3 The main advantage of the presented method for determination of maximum plate deflection is 

the obtained results representation that allows to exactly determine the place of found solution 

for all sets (in discussing set) of parallelogram plates. Among the plethora of known approximate 

approaches for solving considered problems, only interpolation technique on the form factor Кf 

and conformal radiuses ratio rr  gives such opportunity. 
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Извод 

Одређивање максималне дефлексије код попречно савијених плоча у 

облику паралелограма употребом интерполационе технике односа 

конформалног радијуса 
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Резиме 

У раду се описује попречно савијање еластичних просто ослоњених изотропних плоча и 

плоча са укљештеном ивицом при равномерно распоређеном оптерећењу. Предлаже се 

употреба технике интерполације фактора облика како би се одредила вредност 

максималне дефлексије плочe; и однос унутрашњег и спољашњег конформалног радијуса 

као геометријског аргумента јер се предлаже да се геометријски аргумент употреби уместо 

фактора облика. Оваква замена омогућава већу тачност.  

Кључне речи: плоче у облику паралелограма, попречно савијање, максимална дефлексија, 

однос конформалног радијуса, техника интерполације фактора облика. 
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