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Abstract 

In this paper, the refined beam theory (RBT) is examined for the bending of simply supported 

isotropic, laminated composite and sandwich beams. The axial displacement field uses parabolic 

function in terms of thickness ordinate to include the effect of transverse shear deformation. The 

transverse displacement consists of bending and shear components. The present theory satisfies 

the traction free conditions on the upper and lower surfaces of the beam without using problem 

dependent shear correction factors of Timoshenko. Governing differential equations and 

boundary conditions associated with the assumed displacement field are obtained by using the 

principle of virtual work. To prove the credibility of the present theory, we applied it to the 

bending analysis of beams. A simply supported isotropic, laminated composite and sandwich 

beams are analyzed using Navier approach. The numerical results of non-dimensional 

displacements and stresses obtained by using the present theory are presented and compared with 

those of other refined theories available in the literature along with the elasticity solution. 

Keywords: transverse shear deformation, shear correction factor, transverse shear stress, 

bending, laminated composite, sandwich. 

1. Introduction 

Structural components made of fibrous composite materials are increasingly being used in 

various engineering applications due to their attractive properties in strength, stiffness, and 

lightness. The effect of transverse shear deformation is more pronounced in thick beams made of 

fibrous composite material which has a high extensional modulus to shear modulus ratio.  

The classical beam theory (CBT) does not predict the correct bending behaviour of thick 

beams made of fibrous composite materials. The first order shear deformation beam theory 

(FSDT) developed by Timoshenko (1921) includes the effect of transverse shear deformation but 
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does not satisfy the zero shear stress conditions on the top and bottom surfaces of the beam, 

hence, it requires shear correction factor. Many higher order theories are available in the 

literature for the bending, buckling and free vibration analysis of laminated composite beams 

which take into account the effect of transverse shear deformation and do not require shear 

correction factor. The third order theory of Reddy (1984) is the most commonly used higher 

order theory for beams as well as for plates. A recent review of higher order theories available 

for the analysis of laminated composite beams has been presented by Ghugal and Shimpi (2001). 

Kadoli et al. (2008) applied the third order theory of Reddy for the static analysis of functionally 

graded beams. A general analytical model was developed by Lee (2005) using the shear 

deformable beam theory and was applied to the flexural analysis of thin walled I-shaped 

laminated composite beams. Chen and Wu (2005) developed a new higher-order shear 

deformation theory based on global-local superposition technique. Reddy (2007) reformulated 

various beam theories using nonlocal elasticity and applied them to the bending, buckling and 

vibration analysis of beams. Wang et al. (2008) also presented some work on beam bending 

solutions based on nonlocal Timoshenko beam theory. Mechab et al. (2008) carried out an 

assessment of parabolic and exponential shear deformation theories on bending of short 

laminated composite beams subjected to mechanical and thermal loadings. Carrera and Giunta 

(2010) presented refined beam theories based on a unified formulation and applied them to the 

static analysis of beams made of isotropic materials. Karama et al. (2008) did the refinement of 

Ambartsumian multi-layer beam theory considering an exponential function in terms of thickness 

coordinate. Chakrabarti et al. (2011) presented a new finite element model based on the zig-zag 

theory for the analysis of sandwich beams which is further extended by Chalak et al. (2011) for 

free vibration analysis of laminated sandwich beams having soft core. Gherlone et al. (2011) 

carried out the finite element analysis of multilayered composite and sandwich beams based on 

the refined zigzag theory. Sayyad and Ghugal (2011) developed a trigonometric shear and 

normal deformation theory for the bending analysis of laminated composite beams subjected to 

various static loadings. Sayyad (2011) presented a refined shear deformation theory for the static 

flexure and free vibration analysis of thick isotropic beams considering parabolic, trigonometric, 

hyperbolic and exponential functions in terms of thickness co-ordinate associated with transverse 

shear deformation effect. This theory is further extended by Sayyad et al. (2014) for the flexural 

analysis of single layered composite beams. Chen et al. (2011) carried out bending analysis of 

laminated composite plates considering first order shear deformation based on modified couple 

stress theory. Aguiar et al. (2012) carried out static analysis of composite beams of different 

cross-sections using mixed and displacement based models. Ghugal and Shinde (2013) extended 

the layerwise trigonometric shear deformation theory of Shimpi and Ghugal (2001) for the 

bending analysis of two layered anti-symmetric laminated composite beams with various 

boundary conditions. Recently, Sayyad et al. (2015) developed a new trigonometric shear 

deformation theory for the bending analysis of laminated composite and sandwich beams. 

The theory used in the present study is originally developed by Shimpi and Patel (2006) for 

the bending analysis of orthotropic plates. In this paper, this theory is applied to the bending 

analysis of laminated composite and sandwich beams. Governing equations and boundary 

conditions of the presented theory are obtained using the principle of virtual work. The Navier‘s 

solution technique is employed for the simply supported boundary conditions. The numerical 

results are obtained for isotropic, laminated composite and sandwich beams subjected to 

sinusoidal load. 

2. The development of the theory 

A laminated composite beam of length ‗L‘, width ‗b‘ and overall thickness ‗h‘ as shown in Fig. 1 

is considered. The beam consists of ‗N‘ number of layers made up of linearly elastic orthotropic 



Journal of the Serbian Society for Computational Mechanics / Vol. 9 / No. 1, 2015 

 

 

17 

material. The beam occupies the region 0 ≤ x ≤ L, -b/2 ≤ y ≤ b/2 and -h/2 ≤ z ≤ h/2 in Cartesian 

coordinate system. 

 

Fig. 1. Geometry and coordinate system of laminated composite beam. 

In the present theory, the axial displacement u in x direction consists of extension, bending and 

shear components, whereas transverse displacement w in the z-direction consists of bending (wb) 

and shear (ws) components along the center line of the beam: 

    
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    b sw w x w x   (2) 

where u0 is the axial displacement along the center line of the beam. The nonzero strain 

components corresponding to the assumed displacement field are as follows: 
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The stress strain relationship for kth layer of laminated composite beam is as follows:  

 
11

k k k

x xQ   and 
55

k k k

zx xzQ   (5) 

where 11
kQ is the Young‘s modulus in the axial direction of the laminated composite beam, while 

55
kQ  is the shear modulus. The principle of virtual work is used to obtain the governing equations 

of equilibrium and associate boundary conditions. The analytical form of the Principle of virtual 

work is: 

    
/2

0 /2 0

0

L h L

x x zx xz b s

h

b dx dz b q w w dx     


       (6) 

Substituting expressions for strains and stresses from Eqs. (3) - (5) into Eq. (6), the principle of 

virtual work can be rewritten as: 
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where   is the variational operator. The stress resultants  , , ,b s

x x x xN M M Q  associated with the 

assumed displacement field are defined as:  
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Substituting stresses from Eq. (5) into the Eq. (8) and integrating through the thickness, the 

following equations are obtained: 
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Integrating Eq. (7) by parts and setting the coefficients of 0 , ,b su w w   zero, the following 

governing differential equations and associated boundary conditions are obtained: 
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The boundary conditions of the present theory at x = 0, x = L are of the form: 
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The governing differential equations in terms of unknown displacement variables ( 0, ,b su w w ) 

are rewritten as: 
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2.1 The Navier solution for simply supported beams 

The closed form solution is obtained using the Navier‘s solution technique. A beam as shown in 

Fig. 1 is considered for the detailed numerical study. The following simply-supported boundary 

conditions are considered at x = 0, x = L 

 0b s

x b s x xN w w M M      (19) 

The beam is subjected to sinusoidal load q(x) on the top surface, i.e. z = -h/2. The load q is 

expanded in single trigonometric series: 
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x

q x q
L


  (20) 

where q0 denotes the intensity of the load at the center of the beam. The following 

expansions of the unknown displacement variables ( 0, ,b su w w ) satisfy the boundary conditions 

in Eq. (19): 
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where 1 1 1, ,b su w w are arbitrary parameters. Substituting unknown displacement variables (

0 , ,b su w w ) from Eq. (21) and the load from Eq. (20) into the Eqs. (15)  - (17), the closed-form 

solutions can be obtained from the following equations: 
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where 
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3. Numerical results and discussion 

To assess the efficiency of the present theory, the bending analysis of simply supported beams is 

considered. The numerical results are obtained for displacements and stresses for isotropic, 

laminated composite and sandwich beams. The values of transverse shear stress ( zx ) presented 

in the tables are obtained by using equilibrium equations of the theory of elasticity to satisfy 

interface continuity.  
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The following non-dimensional forms are used to present the displacements and stresses: 
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where 
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3.1 Bending analysis of isotropic beams 

The simply supported isotropic beams subjected to sinusoidal load are considered with the 

following material properties: 

 11 55210GPa and 80.77GPaQ Q    

Table 1 shows the maximum displacements and stresses for the simply supported isotropic 

beams with L/h = 4, 10, 20, 50 and 100. The present results are compared with the elasticity 

solution provided by Ghugal (2006), the higher order shear deformation theory (HSDT) of Reddy 

(1984), the first order shear deformation theory (FSDT) of Timoshenko (1921) and the classical 

beam theory (CBT). From the examination of Table 1 it is observed that the present theory 

accurately predicts the values of axial ( u ) and transverse ( w ) displacements. For L/h = 4, 10 

and 20, these displacements ( andu w ) are identical to those obtained by the HSDT of Reddy 

(1984). The bending stress predicted by the present theory is in excellent agreement with that of 

the exact solution. It is also observed that the transverse shear stress ( zx ) evaluated by using 

equilibrium equations is close to elasticity solution.    

3.2 Bending analysis of two layered (00/900) laminated composite beams 

The two layered anti-symmetric cross-ply laminated composite beams with simply supported 

boundary conditions and subjected to sinusoidal load with following material properties are 

considered. 
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 00 layer (z = -h/2 to z = 0): Q11 = 25 and Q55 = 0.5  

 900 layer (z = 0 to z = h/2): Q11 = 1.0 and Q55 = 0.2  

The layers are of equal thickness i.e. h/2. The displacements and stresses are obtained for 

different L/h ratios such as 4, 10, 20, 50 and 100. The numerical results are reported in Table 2. 

From Table 2 it is observed that, even for thick beams, the displacements and stresses obtained 

using the present theory are in excellent agreement with those obtained by the HSDT of Reddy 

(1984) and the 3-D elasticity solution given by Pagano (1969). The transverse shear stress 

continuity is maintained via equilibrium equations of theory of elasticity. The CBT 

underestimates the values of displacements and bending stress whereas it overestimates the 

values of transverse shear stress due to the neglect of transverse shear deformation. The 

variations of axial displacement, bending stress and transverse shear stress with respect to 

thickness ordinate are shown in Fig. 2 through Fig. 4. 

3.3 Bending analysis of three layered (00/900/00) laminated composite beams 

A simply supported three layered symmetric cross-ply laminated composite beam under 

sinusoidal load is considered with the following material properties. 

 00 layer (z = -h/2 to z = -h/6): Q11 = 25 and Q55 = 0.5  

 900 layer (z = -h/6 to z = h/6): Q11 = 1.0 and Q55 = 0.2  

 00 layer (z = h/6 to z = h/2): Q11 = 25 and Q55 = 0.5  

The layers are of equal thickness i.e. h/3. The displacements and stresses for the beam with 

above material properties are presented in Table 3. The numerical results are compared with the 

HSDT of Reddy (1984), the FSDT of Timoshenko (1921), the CBT and exact elasticity solution 

given by Pagano (1969). Comparing the results with other theories, it is observed that, axial 

displacement predicted by the present theory and the theory of Reddy is identical for all L/h 

ratios whereas maximum transverse displacement is in excellent agreement with that of the exact 

solution. The through thickness distribution of axial displacement (L/h = 4) is plotted in Fig. 5. 

The FSDT and CBT underestimate the values of bending stress whereas they overestimate the 

transverse shear stress compared to those of the exact solution. It is also pointed out that, the 

bending and transverse stresses obtained using the FSDT and CBT are identical. The present 

theory and the theory of Reddy show excellent agreement for these stresses. The through 

thickness distributions of these stresses ( x , zx ) are shown in Fig. 6 and Fig.7.      

3.4 Bending analysis of simply supported three layered (00/core/00) sandwich beams 

A three layered simply supported soft sandwich beam under sinusoidal load is analyzed using the 

following properties:    

 00 layer (z = -0.5h to z = -0.4h): Q11 = 25 and Q55 = 0.5  

 core (z = -0.4h to z = 0.4h): Q11 = 4.0 and Q55 = 0.06  

 00 layer (z = 0.4h to z = 0.5h): Q11 = 25 and Q55 = 0.5  

The thickness of each face sheet is 0.1h and core is of 0.8h. The maximum displacements 

and stresses for L/h = 4, 10, 20, 50 and 100 are given in Table 4. The exact elasticity solution for 

this problem is not available in the literature, therefore, the results are also generated by using the 

HSDT, FSDT and CBT. From Table 4 it is observed that the present theory is in excellent 

agreement with the HSDT of Reddy (1984) while predicting displacements and bending stress, 

but it predicts the lower value of transverse shear stress. The FSDT and CBT show identical 

values for axial displacement and bending stress for all L/h ratios. The through thickness 
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distributions of axial displacement, bending stress and transverse shear stress are plotted in Fig. 8 

through Fig. 10.  

3.5 Bending analysis of simply supported five layered (00/900/core/900/00) sandwich beams 

A simply supported five layered symmetric soft sandwich beam under sinusoidal load is 

considered with the following material properties: 

 00 layer (z = -0.5h to z = -0.45h): Q11 = 25 and Q55 = 0.5  

 900 layer (z = -0.45h to z = -0.4h): Q11 = 1.0 and Q55 = 0.2  

 core (z = -0.4h to z = 0.4h): Q11 = 4.0 and Q55 = 0.06  

 900 layer (z = 0.4h to z = 0.45h): Q11 = 1.0 and Q55 = 0.2  

 00 layer (z = 0.45h to z = 0.5h): Q11 = 25 and Q55 = 0.5  

The thickness of each face sheet is 0.05h and core is of 0.8h. The displacements and stresses 

obtained for different L/h ratios are reported in Table 2. From this table, it is noted that the 

displacements and stresses evaluations using the present theory match with the HSDT of Reddy 

(1984) whereas the FSDT of Timoshenko (1921) and the CBT underestimate the displacements 

and bending stress. Fig. 11 through Fig. 13 shows through thickness distributions of axial 

displacement, bending stress and transverse shear stress for this loading case.  

 

L/h Theory Model u  w  
x  zx  

4 Present RBT 0.1271 1.429 0.9986 0.1893 

 Reddy (1984) HSDT 0.1271 1.429 0.9986 0.1897 

 Timoshenko (1921) FSDT 0.1238 1.430 0.9727 0.1910 

 Bernoulli-Euler CBT 0.1238 1.232 0.9727 0.1910 

 Ghugal (2006)  Exact 0.1230 1.411 0.9958 0.1900 

10 Present RBT 1.9434 1.264 6.1052 0.4767 

 Reddy (1984) HSDT 1.9434 1.264 6.1050 0.4769 

 Timoshenko (1921) FSDT 1.9351 1.264 6.0790 0.4774 

 Bernoulli-Euler CBT 1.9351 1.232 6.0790 0.4774 

 Ghugal (2006)  Exact 1.9295 1.261 6.0910 0.4764 

20 Present RBT 15.497 1.2398 24.343 0.9545 

 Reddy (1984) HSDT 15.497 1.2398 24.343 0.9546 

 Timoshenko (1921) FSDT 15.481 1.2398 24.317 0.9549 

 Bernoulli-Euler CBT 15.481 1.2322 24.317 0.9549 

 Ghugal (2006)  Exact --- 1.2318 24.194 0.9474 

50 Present RBT 241.927 1.2331 152.007 2.3871 

 Reddy (1984) HSDT 241.916 1.2331 152.004 2.3871 

 Timoshenko (1921) FSDT 241.879 1.2331 151.977 2.3872 

 Bernoulli-Euler CBT 241.886 1.2322 151.981 2.3872 

100 Present RBT 1935.17 1.2322 607.953 4.7744 

 Reddy (1984) HSDT 1935.79 1.2322 608.146 4.7761 

 Timoshenko (1921) FSDT 1935.03 1.2322 607.909 4.7745 

 Bernoulli-Euler CBT 1935.09 1.2322 607.927 4.7745 

Table 1. Comparison of displacements stresses for isotropic beam subjected sinusoidal load. 
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L/h Theory Model u  w  
x  zx  

4 Present RBT 0.0171 4.4514 3.3593 0.2976 

 Reddy (1984) HSDT 0.0171 4.4511 3.3592 0.2883 

 Timoshenko (1921) FSDT 0.0142 4.7966 2.7905 0.2912 

 Bernoulli-Euler CBT 0.0142 2.6254 2.7905 0.2947 

 Pagano (1969) Elasticity 0.0153 4.7080 3.0019 0.2721 

10 Present RBT 0.2294 2.9225 18.019 0.7339 

 Reddy (1984) HSDT 0.2294 2.9225 18.018 0.7263 

 Timoshenko (1921) FSDT 0.2220 2.9728 17.440 0.7279 

 Bernoulli-Euler CBT 0.2220 2.6254 17.440 0.7367 

 Pagano (1969) Elasticity 0.2248 2.9611 17.653 0.7267 

20 Present RBT 1.7912 2.6999 70.342 1.4685 

 Reddy (1984) HSDT 1.7912 2.6999 70.342 1.4550 

 Timoshenko (1921) FSDT 1.7765 2.6978 69.762 1.4558 

 Bernoulli-Euler CBT 1.7765 2.6254 69.762 1.4558 

 Pagano (1969) Elasticity 1.7818 2.7094 69.973 1.4696 

50 Present RBT 27.794 2.6373 436.593 3.6694 

 Reddy (1984) HSDT 27.794 2.6373 436.593 3.6393 

 Timoshenko (1921) FSDT 27.757 2.6370 436.013 3.9396 

 Bernoulli-Euler CBT 27.757 2.6254 436.013 3.6397 

 Pagano (1969) Elasticity 27.766 2.6384 436.150 3.6849 

100 Present RBT 222.133 2.6284 1744.63 7.3382 

 Reddy (1984) HSDT 222.133 2.6284 1744.63 7.2792 

 Timoshenko (1921) FSDT 222.060 2.6283 1744.05 7.2793 

 Bernoulli-Euler CBT 222.059 2.6254 1744.05 7.2798 

 Pagano (1969) Elasticity 222.750 2.6366 1749.50 7.3963 

Table 2. Comparison of displacements stresses for two layered (00/900) laminated composite 

beam subjected sinusoidal load. 
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L/h Theory Model u  w  
x  zx  

4 Present RBT 0.0086 2.6906 1.6934 0.1648 

 Reddy (1984) HSDT 0.0086 2.7000 1.6989 0.1557 

 Timoshenko (1921) FSDT 0.0051 2.4107 1.0085 0.1769 

 Bernoulli-Euler CBT 0.0051 0.5109 1.0085 0.1769 

 Pagano (1969) Elasticity 0.0092 3.0344 1.8820 0.1430 

10 Present RBT 0.0893 0.8744 7.0171 0.4353 

 Reddy (1984) HSDT 0.0893 0.8751 7.0212 0.4334 

 Timoshenko (1921) FSDT 0.0802 0.8149 6.3033 0.4422 

 Bernoulli-Euler CBT 0.0802 0.5109 6.3033 0.4422 

 Pagano (1969) Elasticity 0.0934 0.9357 7.6660 0.4230 

20 Present RBT 0.6604 0.6023 25.930 0.8797 

 Reddy (1984) HSDT 0.6604 0.6025 25.935 0.8800 

 Timoshenko (1921) FSDT 0.6420 0.5743 25.213 0.8845 

 Bernoulli-Euler CBT 0.6420 0.5109 25.213 0.8801 

 Pagano (1969) Elasticity 0.6695 0.6186 26.320 0.8740 

50 Present RBT 10.078 0.5256 158.298 2.2084 

 Reddy (1984) HSDT 10.078 0.5256 158.308 2.2095 

 Timoshenko (1921) FSDT 10.032 0.5211 157.584 2.2113 

 Bernoulli-Euler CBT 10.032 0.5109 157.584 2.2002 

 Pagano (1969) Elasticity 10.100 0.5283 158.700 2.2050 

100 Present RBT 80.349 0.5146 631.034 4.4194 

 Reddy (1984) HSDT 80.349 0.5146 631.062 4.4217 

 Timoshenko (1921) FSDT 80.257 0.5135 630.339 4.4226 

 Bernoulli-Euler CBT 80.257 0.5109 630.339 4.4004 

 Pagano (1969) Elasticity 80.400 0.5153 631.500 4.4150 

Table 3. Comparison of displacements stresses for three layered (00/900/00) laminated composite 

beam subjected sinusoidal load. 
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L/h Theory Model u  w  
x  zx

 
4 Present RBT 0.0183 9.8710 3.5920 0.1530 

 Reddy (1984) HSDT 0.0183 9.8800 3.5920 0.1537 

 Timoshenko (1921) FSDT 0.0087 5.1434 1.7067 0.1549 

 Bernoulli-Euler CBT 0.0087 0.8646 1.7067 0.1549 

10 Present RBT 0.1619 2.4086 12.714 0.3302 

 Reddy (1984) HSDT 0.1615 2.4079 12.684 0.3707 

 Timoshenko (1921) FSDT 0.1358 1.5492 10.666 0.3874 

 Bernoulli-Euler CBT 0.1358 0.8646 10.666 0.3874 

20 Present RBT 1.1421 1.2568 44.848 0.6514 

 Reddy (1984) HSDT 1.1384 1.2543 44.705 0.7663 

 Timoshenko (1921) FSDT 1.0865 1.0358 42.667 0.7748 

 Bernoulli-Euler CBT 1.0865 0.8646 42.667 0.7748 

50 Present RBT 17.166 0.9301 269.652 1.6222 

 Reddy (1984) HSDT 17.106 0.9272 268.715 1.9333 

 Timoshenko (1921) FSDT 16.977 0.8920 266.673 1.9369 

 Bernoulli-Euler CBT 16.977 0.8646 266.673 1.9369 

100 Present RBT 136.55 0.8833 1072.50 3.2425 

 Reddy (1984) HSDT 136.07 0.8803 1068.73 3.8722 

 Timoshenko (1921) FSDT 135.81 0.8715 1066.70 3.8738 

 Bernoulli-Euler CBT 135.81 0.8646 1066.70 3.8738 

Table 4. Comparison of displacements and stresses for three layered (00/Core/00) sandwich beam 

subjected to sinusoidal load. 
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L/h Theory Model u  w  
x  zx

 
4 Present RBT 0.0230 10.808 4.5109 0.1414 

 Reddy (1984) HSDT 0.0230 10.815 4.5092 0.1453 

 Timoshenko (1921) FSDT 0.0137 6.7293 2.6899 0.1580 

 Bernoulli-Euler CBT 0.0137 1.3627 2.6899 0.1580 

10 Present RBT 0.2394 2.9852 18.803 0.2765 

 Reddy (1984) HSDT 0.2389 2.9834 18.761 0.3774 

 Timoshenko (1921) FSDT 0.2140 2.2214 16.812 0.3950 

 Bernoulli-Euler CBT 0.2140 1.3627 16.812 0.3950 

20 Present RBT 1.7674 1.7755 69.407 0.5293 

 Reddy (1984) HSDT 1.7626 1.7721 69.218 0.7812 

 Timoshenko (1921) FSDT 1.7124 1.5774 67.248 0.7901 

 Bernoulli-Euler CBT 1.7124 1.3627 67.248 0.7901 

50 Present RBT 26.960 1.4323 423.49 1.3063 

 Reddy (1984) HSDT 26.883 1.4284 422.28 1.9717 

 Timoshenko (1921) FSDT 26.757 1.3971 420.30 1.9753 

 Bernoulli-Euler CBT 26.757 1.3627 420.30 1.9753 

100 Present RBT 214.93 1.3831 1688.09 2.6078 

 Reddy (1984) HSDT 214.31 1.3792 1683.19 3.9489 

 Timoshenko (1921) FSDT 214.05 1.3713 1681.21 3.9507 

 Bernoulli-Euler CBT 214.05 1.3627 1681.21 3.9507 

Table 5. Comparison of displacements and stresses for five layered (00/900/Core/900/00) 

sandwich beam subjected to sinusoidal load. 
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Fig. 2. Through thickness distribution of axial displacement ( u ) for two layered (00/900) 

laminated composite beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 3. Through thickness distribution of bending stress ( x ) for two layered (00/900) laminated 

composite beam subjected to sinusoidal load at L/h = 4. 
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Fig. 4. Through thickness distribution of transverse shear stress (
zx ) for two layered (00/900) 

laminated composite beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 5. Through thickness distribution of axial displacement ( u ) for three layered (00/900/00) 

laminated composite beam subjected to sinusoidal load at L/h = 4. 
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Fig. 6. Through thickness distribution of bending stress ( x ) for three layered (00/900/00) 

laminated composite beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 7. Through thickness distribution of transverse shear stress (
zx ) for three layered 

(00/900/00) laminated composite beam subjected to sinusoidal load at L/h = 4. 
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Fig. 8. Through thickness distribution of axial displacement ( u ) for three layered (00/core/00) 

sandwich beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 9. Through thickness distribution of bending stress ( x ) for three layered (00/core/00) 

sandwich beam subjected to sinusoidal load at L/h = 4. 
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Fig. 10. Through thickness distribution of transverse shear stress (
zx ) for three layered 

(00/core/00) sandwich beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 11. Through thickness distribution of axial displacement ( u ) for five layered 

(00/900/core/900/00) sandwich beam subjected to sinusoidal load at L/h = 4. 
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Fig. 12. Through thickness distribution of bending stress ( x ) for five layered 

(00/900/core/900/00) sandwich beam subjected to sinusoidal load at L/h = 4. 

 

Fig. 13. Through thickness distribution of transverse shear stress (
zx ) for five layered 

(00/900/core/900/00) sandwich beam subjected to sinusoidal load at L/h = 4. 
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5. Conclusions 

In this paper, the refined beam theory has been applied for laminated composite and soft core 

sandwich beams. The mathematical formulation and application of the present theory to bending 

analysis of beams led to the following conclusions: 

1. The theory satisfies the zero transverse shear conditions on top and bottom surfaces of 

the beam. The transverse stress continuity is satisfied using equilibrium equations of the 

theory of elasticity. 

2. The governing equations and boundary conditions are variationally consistent. 

3. The theory obviates the need of shear correction factors which are generally associated 

with the first order shear deformation theory. 

4. The present results are in excellent agreement with those of the exact solution and the 

HSDT of Reddy. 

5. The CBT and the FSDT show inaccurate results compared with the present theory and 

the HSDT of Reddy. 

Извод 

 

Анализа напона код ламинарних композитних и сендвич греда са 

меким језгром уз помоћ теорије смичућег напона вишег реда 
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Резиме 

У раду се испитује побољшана теорија греда (РБТ) у светлу савијања просто ослоњених 

изотропних, ламинарних композита и сендвич греда. Осно поље померања користи 

параболичну функцију за ординату дебљине како би се укључио ефекат трансверзалне 

смичуће деформације. Трансверзално померање састоји се од савијајућих и смичућих 

компоненти. Садашња теорија задовољава тангенциону компоненту напона горњих и 

доњих површина греде без узимања у обзир проблемског смичућег корективног фактора 

Тимошенка. Главне диференцијалне једначине и гранични услови везани за 

претпостављено поље померања добијене су по принципу виртуелног рада. Како би 

доказали веродостојност теорије, применили смо је на анализу савијања греда. Просто 

ослоњени изотропни, ламинарни композити и сендвич греде анализирани су путем Навије 

приступа. Нумерички резултати недимензионалних померања и напона добијени уз помоћ 

садашње теорије представљени су и упоређени са резултатима побољшаних теорија 

доступних у литератури заједно са решењем еластичности.  
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Кључне речи: трансверзална смичућа деформација, смичући корективни фактор, 

трансверзални смичући напон, савијање, ламинарни композити, сендвич. 
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