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Abstract

In this paper, the refined beam theory (RBT) is examined for the bending of simply supported
isotropic, laminated composite and sandwich beams. The axial displacement field uses parabolic
function in terms of thickness ordinate to include the effect of transverse shear deformation. The
transverse displacement consists of bending and shear components. The present theory satisfies
the traction free conditions on the upper and lower surfaces of the beam without using problem
dependent shear correction factors of Timoshenko. Governing differential equations and
boundary conditions associated with the assumed displacement field are obtained by using the
principle of virtual work. To prove the credibility of the present theory, we applied it to the
bending analysis of beams. A simply supported isotropic, laminated composite and sandwich
beams are analyzed using Navier approach. The numerical results of non-dimensional
displacements and stresses obtained by using the present theory are presented and compared with
those of other refined theories available in the literature along with the elasticity solution.

Keywords: transverse shear deformation, shear correction factor, transverse shear stress,
bending, laminated composite, sandwich.

1. Introduction

Structural components made of fibrous composite materials are increasingly being used in
various engineering applications due to their attractive properties in strength, stiffness, and
lightness. The effect of transverse shear deformation is more pronounced in thick beams made of
fibrous composite material which has a high extensional modulus to shear modulus ratio.

The classical beam theory (CBT) does not predict the correct bending behaviour of thick
beams made of fibrous composite materials. The first order shear deformation beam theory
(FSDT) developed by Timoshenko (1921) includes the effect of transverse shear deformation but



16 A. S. Sayyad et al.: Stress analysis of laminated composite and soft core sandwich beams ...

does not satisfy the zero shear stress conditions on the top and bottom surfaces of the beam,
hence, it requires shear correction factor. Many higher order theories are available in the
literature for the bending, buckling and free vibration analysis of laminated composite beams
which take into account the effect of transverse shear deformation and do not require shear
correction factor. The third order theory of Reddy (1984) is the most commonly used higher
order theory for beams as well as for plates. A recent review of higher order theories available
for the analysis of laminated composite beams has been presented by Ghugal and Shimpi (2001).
Kadoli et al. (2008) applied the third order theory of Reddy for the static analysis of functionally
graded beams. A general analytical model was developed by Lee (2005) using the shear
deformable beam theory and was applied to the flexural analysis of thin walled I-shaped
laminated composite beams. Chen and Wu (2005) developed a new higher-order shear
deformation theory based on global-local superposition technique. Reddy (2007) reformulated
various beam theories using nonlocal elasticity and applied them to the bending, buckling and
vibration analysis of beams. Wang et al. (2008) also presented some work on beam bending
solutions based on nonlocal Timoshenko beam theory. Mechab et al. (2008) carried out an
assessment of parabolic and exponential shear deformation theories on bending of short
laminated composite beams subjected to mechanical and thermal loadings. Carrera and Giunta
(2010) presented refined beam theories based on a unified formulation and applied them to the
static analysis of beams made of isotropic materials. Karama et al. (2008) did the refinement of
Ambartsumian multi-layer beam theory considering an exponential function in terms of thickness
coordinate. Chakrabarti et al. (2011) presented a new finite element model based on the zig-zag
theory for the analysis of sandwich beams which is further extended by Chalak et al. (2011) for
free vibration analysis of laminated sandwich beams having soft core. Gherlone et al. (2011)
carried out the finite element analysis of multilayered composite and sandwich beams based on
the refined zigzag theory. Sayyad and Ghugal (2011) developed a trigonometric shear and
normal deformation theory for the bending analysis of laminated composite beams subjected to
various static loadings. Sayyad (2011) presented a refined shear deformation theory for the static
flexure and free vibration analysis of thick isotropic beams considering parabolic, trigonometric,
hyperbolic and exponential functions in terms of thickness co-ordinate associated with transverse
shear deformation effect. This theory is further extended by Sayyad et al. (2014) for the flexural
analysis of single layered composite beams. Chen et al. (2011) carried out bending analysis of
laminated composite plates considering first order shear deformation based on modified couple
stress theory. Aguiar et al. (2012) carried out static analysis of composite beams of different
cross-sections using mixed and displacement based models. Ghugal and Shinde (2013) extended
the layerwise trigonometric shear deformation theory of Shimpi and Ghugal (2001) for the
bending analysis of two layered anti-symmetric laminated composite beams with various
boundary conditions. Recently, Sayyad et al. (2015) developed a new trigonometric shear
deformation theory for the bending analysis of laminated composite and sandwich beams.

The theory used in the present study is originally developed by Shimpi and Patel (2006) for
the bending analysis of orthotropic plates. In this paper, this theory is applied to the bending
analysis of laminated composite and sandwich beams. Governing equations and boundary
conditions of the presented theory are obtained using the principle of virtual work. The Navier’s
solution technique is employed for the simply supported boundary conditions. The numerical
results are obtained for isotropic, laminated composite and sandwich beams subjected to
sinusoidal load.

2. The development of the theory

A laminated composite beam of length ‘L’, width ‘b’ and overall thickness ‘h’ as shown in Fig. 1
is considered. The beam consists of ‘N’ number of layers made up of linearly elastic orthotropic



Journal of the Serbian Society for Computational Mechanics / Vol. 9/ No. 1, 2015 17

material. The beam occupies the region 0 < x <L, -b/2 <y <b/2 and -h/2 <z < h/2 in Cartesian
coordinate system.

e XU

z,w

Fig. 1. Geometry and coordinate system of laminated composite beam.

In the present theory, the axial displacement u in x direction consists of extension, bending and
shear components, whereas transverse displacement w in the z-direction consists of bending (wy)
and shear (ws) components along the center line of the beam:

B
w=Ww, (X)+w, (X) 2

where ug is the axial displacement along the center line of the beam. The nonzero strain
components corresponding to the assumed displacement field are as follows:

g=a+k + T (2)k and . =759(2) )
where

2 2 3 2

oo e O e A e W) 152 21 g g(z)=| 252

dx dx dx dx 3h 4 4 h
(4)

The stress strain relationship for k™ layer of laminated composite beam is as follows:

O-: :Q1k1 g: and fo :sts 7>I<(z (5)

where Qlk1 is the Young’s modulus in the axial direction of the laminated composite beam, while

QX is the shear modulus. The principle of virtual work is used to obtain the governing equations
of equilibrium and associate boundary conditions. The analytical form of the Principle of virtual
work is:

L h/2 L

b[ [ (0,05, +7,7,)dxdz—b[ g(ow, +ow,)dx =0 (6)
0 -h/2 0

Substituting expressions for strains and stresses from Eqgs. (3) - (5) into Eq. (6), the principle of
virtual work can be rewritten as:
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L dsu d’sw, d’sw, dow,
N 0 _M? b —M; S+ dx—| q(ow, +6w,)dx=0 7

-([ [ *dx ok ol T g jq ° ) )
where ¢ is the variational operator. The stress resultants (NX, M., Mj,QX) associated with the

assumed displacement field are defined as:

N N

(N M }ZI{ f(2)}o} dz, QXZJ dz ®)

=l —h/2 k=1 _h/2

Substituting stresses from Eqg. (5) into the Eqg. (8) and integrating through the thickness, the
following equations are obtained:

du d?w d?w,
N, =Aud—)f— 11?;)_ v 9)
b du, d?w, d*w,
Mx:Blla_DﬂF_ v (10)
. du d?w, d?w,
sz lld_)?_EllTZD_ 11? (11)
dw,
S 12
%5 ik (12)

Integrating Eq. (7) by parts and setting the coefficients of du,,dw,,dw, zero, the following
governing differential equations and associated boundary conditions are obtained:

du, : dNX:O
dx
d’m?
oW, : + 0 13
b e q= (13)
2 s
6Ws: d%_kd&_quo
dx dx

The boundary conditions of the present theory at x = 0, x = L are of the form:

Specify N, or u,

. dM?
Specify —= or w,
pecify X b
Specify M? or ddlxb (14)
Specify M or w,
dx
. . dw,
Specify M; or .
dx

The governing differential equations in terms of unknown displacement variables (U, W,, W)
are rewritten as:
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d®u d’w, d®w,
duy i —A, dx20 + By, dx3b +Cy, o - 0 (15)
d’u dw, d*w,
dw,: —-B, dx30 +D, » > +E, o q (16)
d’u d*w, d*w, d?w,
w1 —Cy dX3O +Ey, dX4b +Fy dy’ —Gss dx? = a7
where
N h/2 N h/2 N h/2
A =>Q J' dz, B,=)Qf J' zdz, C,=>0Qf J' f (z)dz,
k=1 —h/2 k=1 ~h/2 k=1 -h/2
N h/2 N h/2
D11:ZQ1k1 j 2° dz, Ellzlekl _[ z f(z)dz' (18)
k=1 —h/2 k=1 —h/2

h/2 h/2

kﬁ;Qﬁj‘ [(2)] dz, Gss:kzN;stSJ‘ [9(2)] ¢

-h/2 —h/2

Fl 1

2.1 The Navier solution for simply supported beams

The closed form solution is obtained using the Navier’s solution technique. A beam as shown in
Fig. 1 is considered for the detailed numerical study. The following simply-supported boundary
conditions are considered at x =0, x =L

N, =w, =w, =M =M; =0 (19)
The beam is subjected to sinusoidal load q(x) on the top surface, i.e. z = -h/2. The load q is
expanded in single trigonometric series:

q(x)=d, sinﬁTX (20)

where (, denotes the intensity of the load at the center of the beam. The following
expansions of the unknown displacement variables (U, W, , W, ) satisfy the boundary conditions
in Eq. (19):

X . X X
u0=u1cosT, Wb:wblsmT, Ws=W515'”T (21)

where u,, W, W, are arbitrary parameters. Substituting unknown displacement variables (
Uy, W,,w, ) from Eq. (21) and the load from Eq. (20) into the Egs. (15) - (17), the closed-form
solutions can be obtained from the following equations:
Kll K12 K13 ul 0
K12 Kzz K23 Wy 1 =9 (22)
K13 K23 K33 Wsl qO

where
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7 - -
Kun=A, F1 Ky, =-By Fl K _Cn Fl
(23)
zt ! ! 7
Ky = DMF' Ky = EnFr Ky = F11F+GSSF

3. Numerical results and discussion

To assess the efficiency of the present theory, the bending analysis of simply supported beams is
considered. The numerical results are obtained for displacements and stresses for isotropic,
laminated composite and sandwich beams. The values of transverse shear stress (7, ) presented
in the tables are obtained by using equilibrium equations of the theory of elasticity to satisfy
interface continuity.

N
o= [ =2dz (24)

The following non-dimensional forms are used to present the displacements and stresses:
U(O,—h/Z) =uxn,, V_V(L/2,0) =wxn,,

(25)
&,(0,-h/2)=0,xn,, 7,(0,0)=17,xn,

where

b 100h° b
n —

Cn- - 26
' 100g,h" * g, ° 10q, (26)

3.1 Bending analysis of isotropic beams

The simply supported isotropic beams subjected to sinusoidal load are considered with the
following material properties:

Q, =210GPa and Q, =80.77GPa

Table 1 shows the maximum displacements and stresses for the simply supported isotropic
beams with L/h = 4, 10, 20, 50 and 100. The present results are compared with the elasticity
solution provided by Ghugal (2006), the higher order shear deformation theory (HSDT) of Reddy
(1984), the first order shear deformation theory (FSDT) of Timoshenko (1921) and the classical
beam theory (CBT). From the examination of Table 1 it is observed that the present theory
accurately predicts the values of axial (T ) and transverse (W) displacements. For L/h = 4, 10
and 20, these displacements (T and W) are identical to those obtained by the HSDT of Reddy

(1984). The bending stress predicted by the present theory is in excellent agreement with that of
the exact solution. It is also observed that the transverse shear stress (T, ) evaluated by using

equilibrium equations is close to elasticity solution.

3.2 Bending analysis of two layered (0°/90°) laminated composite beams

The two layered anti-symmetric cross-ply laminated composite beams with simply supported
boundary conditions and subjected to sinusoidal load with following material properties are
considered.
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0° layer (z = -h/2 to z = 0): Q1; = 25 and Qs5= 0.5
90° layer (z=0to z = h/2): Q;;=1.0 and Qs5= 0.2

The layers are of equal thickness i.e. h/2. The displacements and stresses are obtained for
different L/h ratios such as 4, 10, 20, 50 and 100. The numerical results are reported in Table 2.
From Table 2 it is observed that, even for thick beams, the displacements and stresses obtained
using the present theory are in excellent agreement with those obtained by the HSDT of Reddy
(1984) and the 3-D elasticity solution given by Pagano (1969). The transverse shear stress
continuity is maintained via equilibrium equations of theory of elasticity. The CBT
underestimates the values of displacements and bending stress whereas it overestimates the
values of transverse shear stress due to the neglect of transverse shear deformation. The
variations of axial displacement, bending stress and transverse shear stress with respect to
thickness ordinate are shown in Fig. 2 through Fig. 4.

3.3 Bending analysis of three layered (0°/90%0°) laminated composite beams

A simply supported three layered symmetric cross-ply laminated composite beam under
sinusoidal load is considered with the following material properties.

0° layer (z = -h/2 to z = -h/6): Q1= 25 and Qs5 = 0.5
90° layer (z = -h/6 to z = h/6): Q1; = 1.0 and Qs5= 0.2
0° layer (z = h/6 to z = h/2): Q.1 = 25 and Qs5= 0.5

The layers are of equal thickness i.e. h/3. The displacements and stresses for the beam with
above material properties are presented in Table 3. The numerical results are compared with the
HSDT of Reddy (1984), the FSDT of Timoshenko (1921), the CBT and exact elasticity solution
given by Pagano (1969). Comparing the results with other theories, it is observed that, axial
displacement predicted by the present theory and the theory of Reddy is identical for all L/h
ratios whereas maximum transverse displacement is in excellent agreement with that of the exact
solution. The through thickness distribution of axial displacement (L/h = 4) is plotted in Fig. 5.
The FSDT and CBT underestimate the values of bending stress whereas they overestimate the
transverse shear stress compared to those of the exact solution. It is also pointed out that, the
bending and transverse stresses obtained using the FSDT and CBT are identical. The present
theory and the theory of Reddy show excellent agreement for these stresses. The through
thickness distributions of these stresses (&, , T, ) are shown in Fig. 6 and Fig.7.

3.4 Bending analysis of simply supported three layered (0%core/0°) sandwich beams

A three layered simply supported soft sandwich beam under sinusoidal load is analyzed using the
following properties:

0° layer (z = -0.5h to z = -0.4h): Qy; = 25 and Qss = 0.5
core (z=-0.4hto z = 0.4h): Q;;=4.0 and Qss= 0.06
0° layer (z = 0.4h to z = 0.5h): Q11 = 25 and Qs5= 0.5

The thickness of each face sheet is 0.1h and core is of 0.8h. The maximum displacements
and stresses for L/h = 4, 10, 20, 50 and 100 are given in Table 4. The exact elasticity solution for
this problem is not available in the literature, therefore, the results are also generated by using the
HSDT, FSDT and CBT. From Table 4 it is observed that the present theory is in excellent
agreement with the HSDT of Reddy (1984) while predicting displacements and bending stress,
but it predicts the lower value of transverse shear stress. The FSDT and CBT show identical
values for axial displacement and bending stress for all L/h ratios. The through thickness
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distributions of axial displacement, bending stress and transverse shear stress are plotted in Fig. 8
through Fig. 10.
3.5 Bending analysis of simply supported five layered (0°/90%core/90%0°) sandwich beams

A simply supported five layered symmetric soft sandwich beam under sinusoidal load is
considered with the following material properties:

0° layer (z = -0.5h to z = -0.45h): Q,; = 25 and Qs5= 0.5
90° layer (z = -0.45h to z = -0.4h): Qy; = 1.0 and Qs5= 0.2
core (z=-0.4hto z = 0.4h): Q;;=4.0 and Qss= 0.06
90° layer (z = 0.4h to z = 0.45h): Q;; = 1.0 and Qs5= 0.2
0° layer (z = 0.45h to z = 0.5h): Q1 = 25 and Qs5= 0.5

The thickness of each face sheet is 0.05h and core is of 0.8h. The displacements and stresses
obtained for different L/h ratios are reported in Table 2. From this table, it is noted that the
displacements and stresses evaluations using the present theory match with the HSDT of Reddy
(1984) whereas the FSDT of Timoshenko (1921) and the CBT underestimate the displacements
and bending stress. Fig. 11 through Fig. 13 shows through thickness distributions of axial
displacement, bending stress and transverse shear stress for this loading case.

L/h Theory Model ¥ W G, T,

4 Present RBT 0.1271 1.429 0.9986 0.1893
Reddy (1984) HSDT 0.1271 1.429 0.9986 0.1897
Timoshenko (1921) | FSDT 0.1238 1.430 0.9727 0.1910
Bernoulli-Euler CBT 0.1238 1.232 0.9727 0.1910
Ghugal (2006) Exact 0.1230 1.411 0.9958 0.1900

10 Present RBT 1.9434 1.264 6.1052 0.4767
Reddy (1984) HSDT 1.9434 1.264 6.1050 0.4769
Timoshenko (1921) | FSDT 1.9351 1.264 6.0790 0.4774
Bernoulli-Euler CBT 1.9351 1.232 6.0790 0.4774
Ghugal (2006) Exact 1.9295 1.261 6.0910 0.4764

20 Present RBT 15.497 1.2398 24.343 0.9545
Reddy (1984) HSDT 15.497 1.2398 24.343 0.9546
Timoshenko (1921) | FSDT 15.481 1.2398 24.317 0.9549
Bernoulli-Euler CBT 15.481 1.2322 24.317 0.9549
Ghugal (2006) Exact 1.2318 24.194 0.9474

50 Present RBT 241.927 | 1.2331 | 152.007 | 2.3871
Reddy (1984) HSDT | 241916 | 1.2331 | 152.004 | 2.3871
Timoshenko (1921) | FSDT | 241.879 | 1.2331 | 151.977 | 2.3872
Bernoulli-Euler CBT 241.886 | 1.2322 | 151.981 | 2.3872

100 | Present RBT 1935.17 | 1.2322 | 607.953 | 4.7744
Reddy (1984) HSDT | 1935.79 | 1.2322 | 608.146 | 4.7761
Timoshenko (1921) | FSDT | 1935.03 | 1.2322 | 607.909 | 4.7745
Bernoulli-Euler CBT 1935.09 | 1.2322 | 607.927 | 4.7745

Table 1. Comparison of displacements stresses for isotropic beam subjected sinusoidal load.
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L/h | Theory Model ) W o, T,

4 Present RBT 0.0171 4.4514 3.3593 0.2976
Reddy (1984) HSDT 0.0171 4.4511 3.3592 0.2883
Timoshenko (1921) | FSDT 0.0142 4.7966 2.7905 0.2912
Bernoulli-Euler CBT 0.0142 2.6254 2.7905 0.2947
Pagano (1969) Elasticity 0.0153 4.7080 3.0019 0.2721

10 Present RBT 0.2294 2.9225 18.019 0.7339
Reddy (1984) HSDT 0.2294 2.9225 18.018 0.7263
Timoshenko (1921) | FSDT 0.2220 2.9728 17.440 0.7279
Bernoulli-Euler CBT 0.2220 2.6254 17.440 0.7367
Pagano (1969) Elasticity 0.2248 2.9611 17.653 0.7267

20 Present RBT 1.7912 2.6999 70.342 1.4685
Reddy (1984) HSDT 1.7912 2.6999 70.342 1.4550
Timoshenko (1921) | FSDT 1.7765 2.6978 69.762 1.4558
Bernoulli-Euler CBT 1.7765 2.6254 69.762 1.4558
Pagano (1969) Elasticity 1.7818 2.7094 69.973 1.4696

50 Present RBT 27.794 2.6373 | 436.593 | 3.6694
Reddy (1984) HSDT 27.794 2.6373 | 436.593 | 3.6393
Timoshenko (1921) | FSDT 27.757 2.6370 | 436.013 | 3.9396
Bernoulli-Euler CBT 27.757 2.6254 | 436.013 | 3.6397
Pagano (1969) Elasticity 27.766 2.6384 | 436.150 | 3.6849

100 | Present RBT 222,133 | 2.6284 | 1744.63 | 7.3382
Reddy (1984) HSDT 222.133 | 2.6284 | 1744.63 | 7.2792
Timoshenko (1921) | FSDT 222.060 | 2.6283 | 1744.05 | 7.2793
Bernoulli-Euler CBT 222.059 | 2.6254 | 1744.05 | 7.2798
Pagano (1969) Elasticity | 222.750 | 2.6366 | 1749.50 | 7.3963

Table 2. Comparison of displacements stresses for two layered (0°/90°) laminated composite

beam subjected sinusoidal load.



24 A. S. Sayyad et al.: Stress analysis of laminated composite and soft core sandwich beams ...

L/h | Theory Model o Y o, Ty
4 Present RBT 0.0086 | 2.6906 | 1.6934 | 0.1648
Reddy (1984) HSDT 0.0086 | 2.7000 | 1.6989 | 0.1557
Timoshenko (1921) | FSDT 0.0051 | 2.4107 | 1.0085 | 0.1769
Bernoulli-Euler CBT 0.0051 | 0.5109 | 1.0085 | 0.1769
Pagano (1969) Elasticity | 0.0092 | 3.0344 | 1.8820 | 0.1430
10 | Present RBT 0.0893 | 0.8744 | 7.0171 | 0.4353
Reddy (1984) HSDT 0.0893 | 0.8751 | 7.0212 | 0.4334
Timoshenko (1921) | FSDT 0.0802 | 0.8149 | 6.3033 | 0.4422
Bernoulli-Euler CBT 0.0802 | 0.5109 | 6.3033 | 0.4422
Pagano (1969) Elasticity | 0.0934 | 0.9357 | 7.6660 | 0.4230
20 | Present RBT 0.6604 | 0.6023 | 25.930 | 0.8797
Reddy (1984) HSDT 0.6604 | 0.6025 | 25.935 | 0.8800
Timoshenko (1921) | FSDT 0.6420 | 0.5743 | 25.213 | 0.8845
Bernoulli-Euler CBT 0.6420 | 0.5109 | 25.213 | 0.8801
Pagano (1969) Elasticity | 0.6695 | 0.6186 | 26.320 | 0.8740
50 | Present RBT 10.078 | 0.5256 | 158.298 | 2.2084
Reddy (1984) HSDT 10.078 | 0.5256 | 158.308 | 2.2095
Timoshenko (1921) | FSDT 10.032 | 0.5211 | 157.584 | 2.2113
Bernoulli-Euler CBT 10.032 | 0.5109 | 157.584 | 2.2002
Pagano (1969) Elasticity | 10.100 | 0.5283 | 158.700 | 2.2050
100 | Present RBT 80.349 | 0.5146 | 631.034 | 4.4194
Reddy (1984) HSDT 80.349 | 0.5146 | 631.062 | 4.4217
Timoshenko (1921) | FSDT 80.257 | 0.5135 | 630.339 | 4.4226
Bernoulli-Euler CBT 80.257 | 0.5109 | 630.339 | 4.4004
Pagano (1969) Elasticity | 80.400 | 0.5153 | 631.500 | 4.4150

Table 3. Comparison of displacements stresses for three layered (0°/90%0°) laminated composite
beam subjected sinusoidal load.
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L/h Theory Model o W o, T,

4 Present RBT 0.0183 | 9.8710 3.5920 | 0.1530
Reddy (1984) HSDT | 0.0183 | 9.8800 3.5920 | 0.1537
Timoshenko (1921) | FSDT | 0.0087 | 5.1434 1.7067 0.1549
Bernoulli-Euler CBT 0.0087 | 0.8646 1.7067 0.1549

10 Present RBT 0.1619 | 2.4086 12.714 0.3302
Reddy (1984) HSDT | 0.1615 | 2.4079 12.684 0.3707
Timoshenko (1921) | FSDT | 0.1358 | 1.5492 10.666 0.3874
Bernoulli-Euler CBT 0.1358 | 0.8646 10.666 0.3874

20 Present RBT 1.1421 | 1.2568 | 44.848 | 0.6514
Reddy (1984) HSDT | 11384 | 12543 | 44.705 | 0.7663
Timoshenko (1921) | FSDT | 10865 | 1.0358 | 42.667 | 0.7748
Bernoulli-Euler CBT 1.0865 | 0.8646 | 42.667 | 0.7748

50 Present RBT 17.166 | 0.9301 | 269.652 | 1.6222
Reddy (1984) HSDT | 17106 | 09272 | 268.715 | 1.9333
Timoshenko (1921) | FSDT 16.977 | 0.8920 | 266.673 | 1.9369
Bernoulli-Euler CBT 16.977 | 0.8646 | 266.673 | 1.9369

100 | Present RBT 136.55 | 0.8833 | 107250 | 3.2425
Reddy (1984) HSDT | 136.07 | 0.8803 | 1068.73 | 3.8722
Timoshenko (1921) | FSDT | 13581 | 0.8715 | 1066.70 | 3.8738
Bernoulli-Euler CBT 135.81 | 0.8646 | 1066.70 | 3.8738

Table 4. Comparison of displacements and stresses for three layered (0°/Core/0°) sandwich beam
subjected to sinusoidal load.
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L/h Theory Model u W o, Ty

4 Present RBT 0.0230 | 10.808 45109 0.1414
Reddy (1984) HSDT | 0.0230 | 10.815 45092 0.1453
Timoshenko (1921) | FSDT | 0.0137 | 6.7293 2.6899 0.1580
Bernoulli-Euler CBT 0.0137 1.3627 2.6899 0.1580

10 Present RBT 0.2394 | 2.9852 18.803 0.2765
Reddy (1984) HSDT | 02389 | 2.9834 18.761 0.3774
Timoshenko (1921) | FSDT | 02140 | 2.2214 16.812 0.3950
Bernoulli-Euler CBT 0.2140 | 1.3627 16.812 0.3950

20 Present RBT 1.7674 | 1.7755 | 69.407 | 0.5293
Reddy (1984) HSDT | 17626 | 1.7721 | 69.218 | 0.7812
Timoshenko (1921) | FSDT 1.7124 | 15774 67.248 0.7901
Bernoulli-Euler CBT 1.7124 | 1.3627 | 67.248 | 0.7901

50 Present RBT 26.960 | 1.4323 423.49 1.3063
Reddy (1984) HSDT | 26.883 | 1.4284 422.28 1.9717
Timoshenko (1921) | FSDT | 26757 | 1.3971 420.30 1.9753
Bernoulli-Euler CBT 26.757 | 1.3627 420.30 1.9753

100 | Present RBT 214.93 | 1.3831 | 1688.09 | 2.6078
Reddy (1984) HSDT | 21431 | 1.3792 | 1683.19 | 3.9489
Timoshenko (1921) | FSDT | 21405 | 1.3713 | 1681.21 | 3.9507
Bernoulli-Euler CBT 214.05 | 1.3627 | 1681.21 | 3.9507

Table 5. Comparison of displacements and stresses for five layered (0°/90%Core/90%0°)
sandwich beam subjected to sinusoidal load.
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Fig. 2. Through thickness distribution of axial displacement (T ) for two layered (0°/90°)
laminated composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 3. Through thickness distribution of bending stress (&, ) for two layered (0°/90°) laminated
composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 4. Through thickness distribution of transverse shear stress ( T,, ) for two layered (0%90°)
laminated composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 5. Through thickness distribution of axial displacement (T ) for three layered (0%90%0°)
laminated composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 6. Through thickness distribution of bending stress ( &, ) for three layered (0°/90%0°)
laminated composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 7. Through thickness distribution of transverse shear stress ( T,, ) for three layered
(0°/90%/0°) laminated composite beam subjected to sinusoidal load at L/h = 4.
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Fig. 8. Through thickness distribution of axial displacement (T ) for three layered (0%core/0°)
sandwich beam subjected to sinusoidal load at L/h = 4.
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Fig. 9. Through thickness distribution of bending stress ( &, ) for three layered (0°core/0°)
sandwich beam subjected to sinusoidal load at L/h = 4.
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Fig. 10. Through thickness distribution of transverse shear stress ( T,, ) for three layered
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Fig. 11. Through thickness distribution of axial displacement (U ) for five layered
(0°/90%core/90°%0°) sandwich beam subjected to sinusoidal load at L/h = 4.
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Fig. 12. Through thickness distribution of bending stress ( &, ) for five layered
(0°/90%core/90°%0°) sandwich beam subjected to sinusoidal load at L/h = 4.
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Fig. 13. Through thickness distribution of transverse shear stress ( T,, ) for five layered
(0°/90°/core/90%0°) sandwich beam subjected to sinusoidal load at L/h = 4.
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5. Conclusions

In this paper, the refined beam theory has been applied for laminated composite and soft core
sandwich beams. The mathematical formulation and application of the present theory to bending
analysis of beams led to the following conclusions:

1. The theory satisfies the zero transverse shear conditions on top and bottom surfaces of
the beam. The transverse stress continuity is satisfied using equilibrium equations of the
theory of elasticity.

The governing equations and boundary conditions are variationally consistent.

3. The theory obviates the need of shear correction factors which are generally associated
with the first order shear deformation theory.

4. The present results are in excellent agreement with those of the exact solution and the

HSDT of Reddy.

5. The CBT and the FSDT show inaccurate results compared with the present theory and
the HSDT of Reddy.
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Pe3ume

VY pany ce ucnutyje noboseirana treopuja rpena (PBT) y cBeTny caBujama MPOCTO OCIOHCHUX
W30TPOIHUX, JIAMAHAPHUX KOMIIO3UTAa W CceHABUY rpena. OCHO TOJbe MOMepama KOPHUCTH
napabonnyHy (QyHKIHMjy 3a OpAMHATY JeOJbMHE Kako OM ce yKJbY4no edeKaT TpaHCBep3aslHe
cvuuyhe nedopmanuje. TpaHcBep3aslHO ToOMepame cacToju ce o caBujajyhux m cmuuyhmx
koMnoHeHTH. Cajanima TeopHja 3al0BOJbABAa TAHTCHIMOHY KOMIIOHEHTY HAIlOHA TOPHBHX H
JOKUX TOBPIIMHA Tpene 0e3 y3uMmama y 003up mpobirieMckor cMuayher KOpeKTHBHOT (hakTopa
Tumomrenka. [maBHe mudepeHNUjadHe jeAHAYMHE W TPAHUYHH YCIOBH BE3aHH 3a
MPETIIOCTaB/bEHO MOJbE MOMEparma JoOWjeHe Cy MO MPUHIMIY BUpTyesnHor paga. Kako Ou
JOKa3aJd BEPOLOCTOJHOCT TeopHje, IPUMEHWIM CMO je Ha aHauu3y caBHjama rpexpa. IIpocro
OCJIOE-CHU M30TPOIHH, JIAMUHAPHH KOMIIO3UTH M CEHABUY Ipelie aHAIU3UpaHu cy myTeM Hasuje
npucryna. Hymepuuku pesynratn HequMeH3MOHAJIHUX [TIOMeparba U HaroHa J100ujeHn y3 nomoh
Cajlalllibe TEOpHje MPEICTaB/beHH Cy M ymopeljeHH ca pesynraTima MOOOJBIIAHMX TEOpHja
JOCTYIHUX Y JIMTEPATYPH 32j€THO Ca PEIICHEM elTaCTHYHOCTH.
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Kibyune peum: tpaHcBep3anHa cmuuyha nedopmanuja, cmuuyhu KOpekTHBHH (haxTop,
TpaHCBep3aJHU CMU4yhU HalOH, CaBUjambe, JAMUHAPHNA KOMIIO3UTH, CEH/IBUY.
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