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Abstract

The present work aims to develop a 3D constitutive model to describe pseudoelastic effect on
the behavior of memory shape alloys. This phenomenological constitutive model is based on a
set of variables: temperature and stress as control variables, and the fraction of the martensite as
an internal variable. By using the first and the second principle of thermodynamics and with a
simple formalism, we have developed constitutive equations followed by criteria of
transformations. This developed model has parameters intended to be determined by a tensile
pseudoelastic test. We have introduced an algorithm to simulate the response of the model with
respect to experimental data. Three cases were considered: one dimensional, biaxial and triaxial
loading.

Keywords: constitutive relations, martensite fraction, shape memory alloys, pseudoelastic
effect.

1. Introduction

In the last decades, the materials field development has seen an extraordinary progress because
of new applications of materials. The shape memory alloys, which belong to a particular group
of materials called smart materials, form an interesting part of the entirely new used materials.
These materials exhibit a unique behavior in comparison with conventional materials.
Researchers, scientists and engineers were attracted by this behavior, so several studies were
pursued to understand this behavior and find behavior laws. Consequently, a large number of
models have been developed. Because of their properties, these materials are introduced into
numerous areas such as biomedical field, car industry, aerospatial applications, aviation field
and others (Lagoudas et al. 2004). By using these materials, many alternatives which appear
economical and practical were adopted. The use of such materials requires a good description of
the constitutive law.
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Due to their diversity, these models can be classified into three categories:

e Micromechanical models: These models describe material behavior rigorously, but
their implementation in the finite continuum numerical computer codes remains
difficult. The pioneers of these types of models were Wechsler (Wechsler et al.
1953) and Falk (Falk et al. 1980), with many improvements in (Ball et al. 1992,
Battacharya et al. 1999).

e Phenomenological models: These types of models are used in engineering because
of their simple formulations but with a low accuracy (Tanaka et al. 1986, Brinson
etal. 1993, Lexcellent et al. 2000, Lagoudas et al. 2004).

e Micro-macroscopic models: These models are developed by combination of the
two above approaches (Patoor et al. 1993, Chu et al. 1995, Lexcellent et al. 1996,
Huang et al. 1998)

Our developed constitutive model belongs to the second category, where we have
considered three dimensional pseudoelastic effect on the material behavior. This model is
intended to be used in engineering field. The presentation is divided into the following sections:
the first section is devoted to building of the model by writing constitutive equation, the second
section is dedicated to simulation of the response of the model in three cases: one dimensional,
two dimensional and three dimensional loading conditions. Finally, the last section presents the
discussion of the obtained results.

2. Methods and materials

2.1. Presentation of the pseudoelastic effect

The pseudoelasticity effect is obtained when the alloy is submitted to a thermomechanical
loading composed of a heating cycle above a temperature T*>A? (temperature of the end of
austenite transformation), followed by a mechanical loading when the material undergoes a
large deformation. When the applied mechanical loading is removed, the alloy recovers its
initial shape. (Fig. 1)

2.2. Constitutive equations:

We choose the following expression of the density of Gibbs free energy:
G(o,T,f)=—Q.0:S:0—(1—Q).0:Sy:0— f.eg.0: R+ f.B.(T—M2)+C.f.(1—f) (1)
where:

o: Stress tensor of Cauchy

Q: Controller coefficient of elastic energy of martensite or austenite

0= { 1Ifthereis elastic deformation of austenite _, 0= {1 if f#0etf=0 @)

0 If there is elastic deformation of martensite 0 iff #0etf=1
S, and Sy, : 4™ order tensor of compliance of austenite and martensite, respectively
Q.0:5,: 0 : Elastic energy of deformation of austenite
(1 — Q).0:Sy: 0 : Elastic energy of deformation of martensite

R : 2" order tensor of transformation:
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f.&9.0: R Mechanical work associated with the transformation of martensite

RU -

f.B.(T — M) :Free energy of phase change

c.fr.(a—-p : Energy of interaction between martensite and austenite
£p : Maximum deformation along an axis

f: Fraction of martensite (f =2 0etf <1)

B: Coefficient related to energy of phase change, to be determined by a tensile test
of pseudoelasticity

C: Coefficient related to interaction energy, to be determined by a tensile test
of pseudoelasticity

M2 : Temperature of start of martensite transformation

Assuming that the dissipation is associated only with the transformation of martensite, the
second law of thermodynamics can be written as (Patoor et al. 1993, Lagoudas et al. 2004):

a6
—2=0 ®)
Let us write (3) as follows:
ac
o = @

where F" is the driving force.

Criteria of transformation. The driving force can be written as follows:

Ft"‘:—z—?:so.a:R— B.(T—M®)+C.(2f — 1) (5)
The dissipative force (Patoor et al. 1993) can be expressed by:
F*" =Kf+H (6)

where K and H are coefficients related to dissipativity, and they are to be determined by a
tensile test of pseudoelasticity.

The forward and reverse transformations occur when the following conditions are satisfied:

P _ 0 or .
o T.F) = {EQ.J.R B.(T M;) +C.2f —1)+Kf + H,f =0 %)
g.0:R— B (T-MD+C.Q2f—-1)—Kf—-H;f<0
Let us introduce the criterion function ¢(a, T, f) as:
Fth = Fdi. f forward transformation )
F™h = —F%. f < 0 reverse transformation
When the forward transformation occurs we have:
¢®(a,T,f)=0 ©)

The consistence conditions are:

de®(a,T,f)=0 (10)
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0% 4 20 gy 4 208 e
oy do +——dT + T, df =0 (11)
&-R:do—BdT + (2C — K)df =0 (12)
From equation (12) we can obtain the evolution of the martensite fraction:
__ &-R:do—BdT
af = (K=20) (13)
while for the reverse transformation we have:
_ &o.R:do—BdT
if == (14)
The expression of the total strain can be written as:
a6
&= —E (15)
Total strain can be divided into elastic and nonlinear terms:
e=¢e°+¢t (17)

where we have

€@ - elastic strain, and €t - nonlinear strain due to transformation, which are

e =0Q.54:0+(1—-0Q).Sy:0 (18)
et= f.g.R (19)
and
de = de® + det (20)
Equation (19) can be written in the form:
det = df.&0. R (21)
and using (13) and (21), it follows:
t _ ,€0-R:do—BdT
det = (—(K—ZC) ). €. R (22)
t _ &2 . __&BR
det = (K—ZC)R X R:do w20 dT (23)
In case of reverse transformation we have:
t_ £02 . £oBR
det = (K+2C)R X R:do + w20 dT (24)

where X denotes the tensor product.
Equation (24) shows the control of the transformation by stress and temperature.

Let us write the term related to the stress:

£02
(K-2C)

£02
(K+20)

RxXR; for f>0
ECS = (25)

RXR; for f<0

The analogous relations follow for the term related to the temperature:
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ECT = £0BR . (26)
22— for <0
(K+20)’
Equation (23) can then be written as:
det = ECS:do + ECT.dT 27)

where:

ECS: 4" order tensor of complaisance associated with transformation controlled by stress

ECT: 4" order tensor of complaisance associated with transformation controlled by

temperature

In case the condition is isothermal dT = 0 (pseudoelastic effect behavior), then equations

(13) and (14) become:

_ &-Rido

f= (K=20)
_ _ &-Rdo
af = (K+20)

Under these conditions, equation (27) takes the following form:

£02

det = R X R:do
(K-2C)
and for reverse transformation:
2
det = —— _R X R:do
(K+2C)

2.3. Determination of constants B, C, K and H

(28)

(29)

(30)

(31)

To determine these constants we use one dimensional tensile test of pseudoelasticity at T=T,;.

At the start of the forward transformation we have:

oys 0 0 1 0 0
f=0; T=T1; 0 = ( 0 0 0) . R= (0 0 0)
0 0 O 0 0 O
At the end of the forward transformation:

oyg 0 0 1 0 0
f:1;T:T1;=<0 0 0); R=<0 0 0)
0 0 O 0 0 O
At the start of the reverse transformation:
o5 0 0 10 0
f=1,T=TL,o=( 0 0 0)]; R=|0 0 O
0 0 O 0 00
At the end of the reverse transformation:

O'Af 0 0 1 0 0
f=0;T=TL;,=( 0 o0 0); R=|0 0 ©

0 0 O 0 0 0

With conditions (32) corresponding to ¢%(c = oy, T = T1,f = 0) = 0, we have

(32)

(33)

(34)

(35)
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With conditions (33) corresponding to ¢% (o = gy, T = T1,f = 1) = 0, we have

€9-Opp— B.(T1—M)+C—K—-H=0

With conditions (34) corresponding ¢™¢ (o = 0,5, T = T1,f = 1) = 0, we have

€9.04s— B.(T1—M)+C+K+H=0
Aux conditions (35) corresponding ¢™¢(o = 0,7, T =T1,f =0) =0
Finally, we obtain the following system:
£.0ys— B.(T1—-M —-C—-H=0
.0y — B.(T1-M)+C-K-H=0
€0.04s— B.(T1—-M)+C+K+H=0
g.04 — B.(T1—M)—C+H=0

2.4. Numerical simulation

The simulation is performed considering the pseudoelastic effect (Fig. 1)

P [ Forward
Transformation A--M
Mrt I
M |

s |

p ’
AS - - Reverse

-

25, ” e

‘01

Fig. 1. Effect of pseudoelasticity

Notations in the figure represent:
e 0y, . Stress of transformation start of Austenite to Martensite
e oy : Stress of transformation finish of Austenite to Martensite
e gy, : Stress of transformation start of Martensite to Austenite

* g,y : Stress of transformation finish of Martensite to Austenite

| Transformation M - A

(36)

(37)

(38)

(39)

(40)
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2.4.1. Experimental data

To determine the parameters of the model we have exploited the tensile tests performed on a
tube pseudoelastic NiTi (KL Ng, QP Sun 2006), with the test illustrated by Fig. 7. The data are
grouped in Table 1.

oys (MPa) 300 2 (K) 297
oy (MPa) 305 4 (K) 330

o5 (MPa) 100 £ 0.06106
g5 (MPa) 50 B (MPa.K") 0.18746
Ey (MPa) 25775 C (MPa) -0.88082
Ey (MPa) 18442 K (MPa) -1.44134
M (K) 279 H (MPa) 8.007499
M (K) 240

Table 1. Experimental data (Ng et al. 2006)

2.4.2. Boundary conditions and loads
We consider the following cases:
e  One dimensional case:

The used specimen is a segment with 1 element:

g
11 %,
- — e

Fig. 2. The simulated specimen is submitted to one dimensional tensile loading

e Biaxial case:

The used specimen is a cube with 1 element:

Fig. 3. The simulated specimen is submitted to biaxial tensile loading

e Triaxial case:

The used specimen is a cube with 1 element:



8 M. Belakacem et al.: Three-dimensional modeling of pseudoelastic effect of the shape memory alloys

022

%
|
-
[_]

’x
933 ‘

Fig. 4. The simulated specimen is submitted to triaxial tensile loding

3. Results

The results are presented for the load cases specified in Section 2.4.2, and discussion of results

is given in Section 4.

3.1 One dimensional case
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Fig. 5. Loading history
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Fig. 6. Evolution of martensite fraction
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Fig. 7. Comparison between numerical and experimental results, 1D case
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Fig. 8. Response at different temperatures, 1D case

3.2 Biaxial case
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Fig. 9. Loading history
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Fig. 12. Evolution of martensite fraction

3.3. Triaxial case
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4. Discussion

After inserting the experimental data into algorithm and performing simulation in the above
cited cases we have obtained results shown in figures 5 to 17.

By analyzing the results for the three cases we can exibit the following interesting findings.

4.1. One dimensional case

Fig. 5 shows that the results of numerical simulation coincide well with the experimental plot.
The model responds well and because of being basic, this one-dimensional test has permitted
the determination of the parameters of the model which are further used in the remaining cases.
Fig. 6 shows an evolution of the martensite fraction composed of three stages: the first is
characterized by an increase of the fraction of martensite to vicinity of unity, hence this stage
corresponds to the transformation of austenite to martensite; the second stage, where the
fraction is constant, corresponds to the large deformation of martensite; and finally, the last
stage is characterized by a decrease of the fraction, hence this regime corresponds to the reverse
transformation. Fig. 8 shows the response of the model at different temperatures.
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4.2. Biaxial case

An expected response is obtained in this case, where two stresses are applied. Figures 10 and 11
are similar to the one dimensional case. It is noted that the hysteresis shrinks in each direction
of stresses because of biaxiality. Fig. 12 shows the evolution of the overall martensite fraction
corresponding to the reverse transformation, the large deformation of martensite and the reverse
transformation. The aspect of the evolution appears compatible with both strains ¢;; and ¢
and similar to the one dimensional case.

4.3. Triaxial case

For this tridimensional case where three orthogonal stresses are applied, we observe an analogy
with the biaxial case. Figures 14, 15 and 16 show the hysteresis shrinking vertically because of
tridimensional loading. The evolution of the martensite fraction (Fig. 17) remains similar to the
above 2D case. We observe the three stages corresponding to the reverse transformation, the
large deformation of martensite, and the reverse transformation. The whole evolution is
compatible with the three strains &,, &5, and ;3.

5. Conclusion

In this work we have developed a 3D constitutive model using the principles of
thermodynamics and a simple formalism these principles have permitted to write criteria of
transformation. This macroscopic model is developed by simple formalism and assumptions.
By using an algorithm we have implemented the model and the response seems to be
compatible with the nature of the pseudoelastic effect. In the one-dimensional case we have
observed a good agreement between the numerical and experimental plots.

It should be noted that the parameters of the model were determined by the one-
dimensional test and further used in the biaxial and triaxial cases to ensure consistency of the
model in different cases of loading. The implementation of the model in the algorithm is simple
and practical. The obtained results testify the usability of the developed model.

In the end, we can say that this macroscopic constitutive model can be used in applications
to engineering problems, particularly in order to simulate the pseudoelastic effect of shape
memory alloys.
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Pe3ume

Papg mma 3a umib pasBHjame TPOIMMEH3MOHAIHOT KOHCTHTYTHBHOT MOJENIa 32 OIMCHBAE
NceyloeNacTHYHOr edekTa Ha IOHalIake MeMOpHjckuX Jerypa. OBaj (eHOMEHOJIOUIKH
KOHCTUTYTUBHHM MOJIE]l 3aCHOBaH je€ Ha CKyIy BapujaOnu: TeMIeparypd M HaloOHY Kao
KOHTPOJIHMM Bapujabnama u (pakuuju MaTeH3UTa Kao yHYTpammo] Bapujadbmu. Kopucrehu
IIPBU U IpyTH 3aKOH TEPMOJIUHAMUKE U (hOpMaTH3aM, pa3BHIM CMO KOHCTHTYTHBHE jelHAUMHE,
a 3aTUM W KpUTepHjyMe TpaHcpopmanuje. Pa3BujeHHm Momen campKu mapameTrpe Koju ce
onpelyjy mceymoenacTHUHHM TECTOM 3are3ama. [IOHYAWIIM CMO auropuTaM KOjU CHMYJIHpa
OIroBOpe Mojeda y3uMajyhu y o03up eKCIepuMEHTalHe mojaTke. Y3eTra cy y o03Hup TpH
ciIy4aja: jeTHOTUMEH3HOHAIHO, TBOANMEH3NOHAIHO U TPOJUMEH3HOHAITHO onTepehemse.

Ki/byyne peuM: KOHCTHTYTMBHH OIHOCH, MAapTEH3UT (Qpakiija, MEMOPHjCKe JeType,
TniceyoenacTHYHu edekar.
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