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Abstract 

The authors have formulated a simple 1D finite element for fluid flow and heat or mass 

transport by diffusion. The element is computationally efficient and suitable for modeling large 

systems of pipe segments. Motivation for this development came from a need for efficient 

computational models for mass transport within biological systems, such as blood vessel 

network, or capillary network within tumors. A detailed derivation of the fundamental equations 

is presented, with numerical examples which illustrate the element accuracy. 
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1. Introduction 

Flow of a Newtonian fluid within straight pipes with rigid walls and uniform circular cross-

section can be considered as Poiseuille flow, with a parabolic velocity profile. This is true for 

steady flow conditions, but for transient and oscillatory flows it can be considered as a good 

approximation. Also, deviation from a parabolic profile occurs for large velocities within small 

pipe cross-sections and laminar flow, where the profile tends to a flat-shape (details are given 

below). In case of relatively small wall deformations (diameter change up to the order, say, 

10%) the flow could be still considered as in case of rigid pipes. 

On the other hand, flow through pipe branching is three-dimensional.  Then, 3D models are 

necessary. The 3D models of branching, in general, require significant effort in the 3D FE mesh 

generation and are computationally demanding. These models are not suitable for large pipe 

networks, as in case of blood vessel systems. Therefore, it is desirable to have simpler, efficient, 

1D finite elements which can be practically used as a good approximation of the flow within 

large pipe networks. This approximation is particularly acceptable for modeling of flow within 

complex capillary networks present in healthy tissue and especially in tumors.  These facts have 

been a motivation to here explore possibility of formulation of 1D pipe FE, and this study has 

been prepared having in mind capillary networks. 

Regarding computational methods and models for blood flow within network of vessels, 

we cite here those related to our study. The most commonly used is the “network” method, 
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where the network is represented by blood vessel segments with common edges (nodes) within 

the net. Pressure change along segments is governed by the Hagen-Poiseuille law, while the 

pressure is equal for all segments at the common node and the total flux at interior nodes is 

equal to zero. A system of linear equations with respect to nodal pressures is formed and solved 

with the given boundary conditions - pressures and/or fluxes (Lipowsky et al. 1974, Pries et al. 

2009). Our development relies on the same assumptions, but is generalized by including pipes 

with deformable walls. 

The paper is organized as follows. In the next section we present a review of the basic 

relations for pipe flow, and then in Section 3 we formulate our 1D pipe finite element. In 

Section 4 are given several examples, and some concluding remarks are presented in Section 5. 

2. Fundamental relations for pipe flow 

Here we summarize the fundamental relations for flow within deformable pipes, which serve as 

a basis for the development of the finite element models. We consider axisymmetric flow of 

viscous incompressible fluid within circular deformable pipe. It is assumed that the pipe is 

straight, the flow is unsteady and that the fluid is Newtonian. Regarding the fluid-wall interface, 

a no-slip condition is adopted.  

A general concept presented in (Smith et al. 2002, Canic and Kim 2003) will basically be 

followed to derive the governing equations. Continuity equation in the cylindrical coordinate 

system can be written as: 
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where x and r are axial and radial coordinates, and vx and vr are axial and radial fluid velocity 

components. The balance of linear momentum in the axial direction, expressed as the Navier-

Stokes equation, is: 
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where p is fluid pressure, and ρ and   are density and kinematic viscosity, respectively. In pipe 

flow the term 
2 2/xv x   can be neglected due to the fact that radial velocities are much 

smaller that the axial velocities (Canic and Kim 2003). Then (2) can be written as: 
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or in a form suitable for further derivations,  
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Now, we integrate (1) and (4) from r=0 to r=R, where R is the pipe radius, with neglecting 

variation of pressure over the cross-section (Canic and Kim 2003). After some algebra 

(including the Leibniz integral rule), the continuity and Navier-Stokes equation can be in the 

form: 
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where v is the mean velocity of the pipe cross-section,  
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is a dimensionless energy parameter often used in pipe flow (Formaggia et al. 2001 and 2003, 

Sherwin et al. 2003a, Milisic and Quarteroni 2004, Sherwin et al. 2003b, Sochi 2013). The 
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depends on the velocity profile within the pipe, which can be expressed in a 

form: 
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where   is a parameter depending on the flow character. In case of a parabolic profile which 

occurs in a fully-developed steady conditions 2  , while for large arteries and pulsatory 

flow it can be taken 9   (Ref. Hunter 1972 cited in Smith et al. 2002).  With given  , the 

parameter   can be determined from (8) as     2 / 1     ; for a parabolic profile 

α=4/3  With vx expressed by (9), the Navier-Stokes equation (6) can be written as: 
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The next fundamental relation which will be used further is related to wall deformation. It is 

assumed that the wall thickness is small with respect to the radius, hence the wall can be 

considered as a cylindrical thin shell,  so that  the axial deformation is negligible 

(physiologically verified condition for blood vessels) ; and that material is elastic. Under these 

conditions, the current pipe radius can be expressed in terms of the pressure at the cross-section 

as follows: 
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where 0R  is the initial radius,   is the wall thickness (considered constant);  and E and   are 

Young’s modulus and Poisson ratio of the wall material, respectively.  

We further express continuity equation (5) and balance of linear momentum equation (10) 

in terms of the cross-sectional mass-flux Q, 

 vRAvQ 2   (12) 

where A is he cross-sectional area. Also, we employ the pipe constitutive relation (11), from 

which follows: 
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Is the elastic constant. Note that in case of a rigid pipe 0Ek   , the wall tissue can be 

considered incompressible, and the elastic constant is  03 / 4Ek R E .  With use of (12) 

and (14), the continuity equation (5) can be written as: 
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Further, after some straightforward algebra, equation (10) can be obtained in the form of force 

balance along the pipe axis: 
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We note that in case of a rigid pipe, the continuity equation reduces to: 
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while (16) becomes: 
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In case of steady flow and fully-developed Poiseuille flow ( 2  ) the balance of forces 

equation reduces to the well-known Hagen-Poiseuille equation: 
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is a pipe characteristic which will be further used in our derivation; the reverse of k  represents 

the viscous resistance to flow, used in literature. 

In further development of the 1D finite element for pipe flow, we will use equations (15) 

and (16) as the fundamental equations, as well as (17) and (19) as their special cases. 

3. One-dimensional finite element for flow within deformable pipe 

We first derive the basic FE equation of mass balance of our 2-node finite element, then 

introduce Lagrange multiplier method to enforce continuity at a branching point, and finally 

formulate equations for 1D diffusion. 

3.1. Element formulation 

We consider 2-node finite element with data shown in Fig. 1: nodal pressures are P1 and P2, 

nodal fluxes are Q1 and Q2, while at a position r (where the pipe radius is R) they are p and Q; 

element length is L.  

 

Fig. 1. Pipe finite element, basic data 

In order to derive governing equations for a pipe finite element and general conditions 

incorporated into fundamental equations of Section 2, we proceed as follows. 

Our goal is to develop a finite element with the nodal pressure as the only nodal variable to 

be determined within an incremental-iterative scheme of the FE assemblage. To achieve this, 

we differentiate the governing equation (16) with respect to x, to obtain: 
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where “,x” and “,xx” denote first and second derivative with respect to x. In deriving this 

equation we have taken that / 0x   , which means that change of the velocity profile 

along the element is neglected; also, derivative of the cross-section area A is neglected, i.e. it is 

taken / 0A x   .  Next, we further drop-out the second term in (20) as small with respect 

others, and obtain: 
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Before proceeding to derive the finite element balance equation for a general case of 

deformable pipe and under transient conditions, consider a special case of steady flow through 

rigid pipe. Then we have constant flux Q (equation (17)), and (21) reduces to: 

 0, xxp  (22) 

Now, we first apply the Galerkin procedure in a standard form (Kojic et al. 2008) to equation 

(22) and obtain the balance equation of pipe finite element, as: 
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are nodal fluxes with positive sign if the flux is in direction of normal to the cross section. If a 

pipe network is modeled by this linear pipe element, boundary conditions include prescribed 

pressures and fluxes, which can be functions of time. Since the system is linear, the system of 

equations is solved once for a given time, without any trace of history of pressure/fluxes 

evolution. The FE model is computationally very efficient: there is no numerical integration for 

evaluation of element matrices and it has one degree of freedom per node. Therefore, the model 

is suitable for large pipe networks, as in case of capillary beds with huge number of branching. 

It will be shown in solved examples that distribution of flux among pipe segments with a 

common junction is according to equation (23), and the net mass flux at the junction is equal to 

zero, i.e. 
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where I is a common node, and n is number of branching segments. 

The finite element for a rigid pipe under steady conditions can serve as the basic element 

and the solutions obtained with deformable pipe and unsteady flow can be considered as 

perturbed with respect to the basic ones. 

We now return to the deformable pipe and equation (21). To eliminate the flux as the nodal 

variable, we use continuity equation (15) from which it follows: 
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and substitute /Q x  into (21). Then, the balance equation (21) can be written in the form: 
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Equation (29) is written in a way to lead to the previously element matrix (24) in case of rigid 

pipe. This equation represents the equation of balance of linear momentum, with adopted 

approximations, in terms of pressure only. The coefficients 2

pm , k  and Ek  are dependent on the 

current pipe radius and the flux, so that we transform (29) into the incremental-iterative finite 

element form: 
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Here, NI are the interpolation functions along the element, t is time step, 
JtP  is the 

pressure at start of the time step, and i is the equilibrium iteration counter. 

As can be seen from the expression for m2 in (30), it is necessary to have the value of flux 

Q for each iteration.  In order to determine Q we write equation (16) in a weak form: 
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with summation on the repeated index k, k=1,2.  From the nodal fluxes, the flux Q at integration 

point is evaluated for the current iteration on P in equation (33) and then substituted in (34) to 

calculate 
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3.2. Use of Lagrange multipliers for branching points

 
We note here that the fluxes Q

I
  from (31) do not satisfy the condition (26), or satisfy it 

approximately, depending mainly on wall deformability. In order to satisfy the continuity 

condition (26) we use the Lagrange multiplier concept (Bathe 1996, Liu 2010).  A node I with a 

branching is shown:  

 

Fig. 2. Branching at node I. Lagrange parameter λ
I
 is introduced at node I to enforce continuity 

condition (26). For element e nodal pressures and fluxes are P1, PI and Q1, Q2, respectively. 

in Fig. 2. The variational form of the continuity condition (26)  can be written as (Liu 2010
14

): 
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where λ
I
 is the Lagrange multiplier, and summation goes over all elements with the common 

node I. In writing (36), the expression (35) for fluxes of elements e has been used. The terms in 

the element matrix and nodal vector, corresponding to λ
I
 (node I can be first or second element 

node, hence I can be either 1 or 2) are: 
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where the element nodal variables include P
1
, P

2
, λ

I
.  With use of the Lagrange multipliers, the 

total system of equations is extended for number of nodes with branching, and this extended 

system is solved over time steps and iterations. 

3.3. Diffusion balance equations 

The fundamental transport convective-diffusion equation in 1D case is (Kojic et al. 2008): 
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where c is volumetric concentration,  D is diffusion coefficient, v is velocity at a cross-section 

within the element, and q is a source term.  Using the Galerkin procedure (Kojic et al. 2008), we 

obtain the balance of mass equation for the finite element as: 
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where C
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 and C
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 are nodal concentrations at start and end of time step, 
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Analogous equations can be obtained for heat transfer  (details can be seen in Kojic et al. 2008).

    

 

4. Examples 

Here are presented two examples: 1) Example to assess accuracy of our pipe FE when the walls 

are rigid, and to compare solutions using the two formulations of the element; also, solution of 

diffusion with convection within the pipe.  2) Example to show the results in case of branching.  

4.1. Straight pipe, several segments 

We are considering a straight pipe modeled with ten 1D FE elements and eleven FE nodes, with 

5 mm length and 1 mm in diameter (Fig. 3a). We prescribed constant pressure of 2800 Pa (21 

mm Hg) at inlet of pipe domain, and constant velocity of 200 mm/s at outlet of pipe.  We 

consider fluid flow of water with viscosity of 1e-3 g/(mm s) and density of 1e-3 g/mm
3
.  We are 

investigating three different transport cases: fluid flow with both rigid and deformable walls, 

and coupled convective diffusive transport with deformable walls. 
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Pressure drop along pipe axis for pipes with rigid walls is given in Fig. 3b. As can be seen from 

Fig. 3a and 3b, pressure drop is P  = 32.00 Pa, which is same as the analytic solution: 

 

 3

2 2

32 10 g / mm s 532
200 / 32

1

mmL
P v mm s Pa

D mm


 

     
 

which proves accuracy of the presented model and the developed pipe finite element. 

 

       

 

Fig. 3. 1D pipe FE model with rigid walls a) The FE model consists of 10 1D finite elements, 

with prescribed inlet pressure and outlet velocity, together with the pipe velocity (mean fluid 

velocity) field and pressure field obtained using FE model; b) Pressure distribution along the 

pipe length. 

In case of deformable walls, additional data are: wall with thickness is 0.1 mm, Young’s 

modulus is 100 kPa (10
5
 g/(mm

 
s

2
)) and Poisson’s ratio is 0.5. Pressure drop and radius change 

for both Hagen-Poiseuille assumption (equation (23)), and for 1D Navier-Stokes flow (equation 

(31)) are shown in Fig.2a and Fig.2b, respectively. It can be seen that Hagen-Poiseuille 

assumption leads to higher drop of pressure, and therefore larger change of diameter.  Detailed 

investigation of this difference can be achieved by using 3D model for fluid and shell model for 

the wall, with the solid-fluid interaction (this is left for studies which will follow this report). 
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Fig. 4. Fluid flow through 1D pipe elements with deformable walls: Pressure drop (a) and 

radius change (b) along pipe length for both Hagen-Poiseuille and Navier-Stokes formulations. 

Results for coupled convective and diffusive transport are given in Fig. 5a and 5b. We 

prescribed constant inlet concentration of 100 M/L, and considered infinite reservoir at outlet of 

pipe (zero concentration). Concentration fields for initial (time=0.001s) and steady-state 

conditions are given at Fig 5.a.  Concentration profiles along the pipe length for three transient 

states, and for  the stationary state are shown in Fig 5.b. It can be seen that the profiles change 

until the linear distribution is reached, which agrees with the analytical solution. 
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Fig. 5. Coupled convective-diffusive transport within pipe with deformable walls. a) 

Concentration fields at initial, and final time step (t=0.02 s - stationary state). b) Concentration 

profiles along pipe length for few different times within transient period (t=0.001, 0.002 and 

0.004s) and for stationary state (t = 0.02s) 

4.2. Pipe structure with a branching 

We here consider two examples. The first example is a simple pipe structure, with the main pipe 

branching into two equal segments, shown in Fig. 6. Diameter of inlet branch is 2 mm, while 

diameter of outlet pipes is 1 mm. The wall thickness is 0.1mm and Young’s modulus is 100 

kPa. We prescribed constant pressure of 2800 Pa at the inlet, and constant velocity of 200 mm/s 

at both outlet pipes. We investigated the effects of the Lagrange multipliers. The solution 

without and with using of Lagrange multipliers are shown in the figure. It can be seen from Fig. 

4b that the solutions are practically the same, and the continuity equation (26) is satisfied within 

a small number. We have noticed that in more complex cases, with more pipe segments coming 

from a common node, and with different diameters, the equation (26) is satisfied and our 

finding is that use of the Lagrange multipliers can be avoided. 
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Fig. 6. Pipe structure with branching a) 1D pipe branching model, with pressure field within the 

segments. b) Pressure profiles along x pipes for both cases, with and without Lagrange 

multipliers. 

The second example is shown in Fig. 7, where, in order to investigate more effects of use 

of Lagrange multipliers on accuracy of  a branching model, we generate a complex structure 

with the main pipe branching into four different segments, where diameters are in ratio of 

4:3:2:1 (D = 1, 0.75, 0.5, 0.25 respectively).  
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Fig. 7. Pipe structure with branching with four different outlet segments in ratio of 4:3:2:1 (D = 

1, 0.75, 0.5, 0.25 respectively). Other data are as in the first example. Element fluxes: a) 

solution with Lagrange multipliers, b) solution without Lagrange multipliers 

As can be seen from Fig 7, algebraic sum of fluxes in outlet segments (out of branching 

point) in the method with Lagrange multipliers is Q=423.98 mg/(mm
2
s), which gives  the 

0.004% relative error with respect to  the flux in inlet segment which is 424 mg/(mm
2
s).  

On the other hand, in case without Lagrange multipliers, algebraic sum of fluxes in outlet 

segments is Q=423.238 mg/(mm
2
s), which represents  2.167% relative error with respect to the 

flux in inlet segment which is 432.41 mg/(mm
2
s). 

5. Concluding remarks 

We have derived in a consistent manner 1D pipe finite element for rigid and deformable pipes. 

Two options can be used for this element: a) one, based on the Hagen-Poiseuille equation (PE), 

and b) another, by using a consistently derived 1D Navier-Stockes equations (NS). The PE 

formulation is computationally more efficient since it does not require numerical integration; as 

such, it is attractive to be implemented in large pipe systems, as can be met in modeling blood 

flow within body organs or tumors. In a simplified form, the PE formulation is applicable to 

pipes with deformable walls. Further investigations can lead to specific parameters showing 
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accuracy of both PE and NS formulations. Our finding that use of Lagrange multipliers to 

enforce continuity conditions at branching, in case of using deformable pipe and the NS 

formulation,  does not significantly contribute to the solution accuracy, and might serve as a 

useful information for further research in this field.  
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Извод 

1Д коначни елемент цеви са крутим и деформабилним зидовима 
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Rезиме 

Аутори су у овом раду представили једноставан и ефикасан 1Д коначни елемент за 

спрегнуто струјање течности и провођење топлоте или транспорт масе путем дифузије. 

Овај коначни елемент је рачунски ефикасан и погодан за моделирање сложених система 

који се састоје из великог броја сегмената цеви. Мотивација за развој овог елемента је 

проистекла из потребе за ефикасним рачунским моделима који би се користили за 

транспорт у сложеним биолошким системима, као што су мрежа крвних судова или 

капиларна мрежа у тумору. У раду је приказано детаљно извођење основних 

транспортних једначина, заједно са примерима који показују тачност представљеног 1Д 

коначног елемента. 

Кључне речи: 1D коначни елемент, струјање кроз цеви, крути зидови, деформабилни 

зидови, дифузиони транспорт 
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