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Abstract

The authors have formulated a simple 1D finite element for fluid flow and heat or mass
transport by diffusion. The element is computationally efficient and suitable for modeling large
systems of pipe segments. Motivation for this development came from a need for efficient
computational models for mass transport within biological systems, such as blood vessel
network, or capillary network within tumors. A detailed derivation of the fundamental equations
is presented, with numerical examples which illustrate the element accuracy.
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1. Introduction

Flow of a Newtonian fluid within straight pipes with rigid walls and uniform circular cross-
section can be considered as Poiseuille flow, with a parabolic velocity profile. This is true for
steady flow conditions, but for transient and oscillatory flows it can be considered as a good
approximation. Also, deviation from a parabolic profile occurs for large velocities within small
pipe cross-sections and laminar flow, where the profile tends to a flat-shape (details are given
below). In case of relatively small wall deformations (diameter change up to the order, say,
10%) the flow could be still considered as in case of rigid pipes.

On the other hand, flow through pipe branching is three-dimensional. Then, 3D models are
necessary. The 3D models of branching, in general, require significant effort in the 3D FE mesh
generation and are computationally demanding. These models are not suitable for large pipe
networks, as in case of blood vessel systems. Therefore, it is desirable to have simpler, efficient,
1D finite elements which can be practically used as a good approximation of the flow within
large pipe networks. This approximation is particularly acceptable for modeling of flow within
complex capillary networks present in healthy tissue and especially in tumors. These facts have
been a motivation to here explore possibility of formulation of 1D pipe FE, and this study has
been prepared having in mind capillary networks.

Regarding computational methods and models for blood flow within network of vessels,
we cite here those related to our study. The most commonly used is the “network™ method,
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where the network is represented by blood vessel segments with common edges (nodes) within
the net. Pressure change along segments is governed by the Hagen-Poiseuille law, while the
pressure is equal for all segments at the common node and the total flux at interior nodes is
equal to zero. A system of linear equations with respect to nodal pressures is formed and solved
with the given boundary conditions - pressures and/or fluxes (Lipowsky et al. 1974, Pries et al.
2009). Our development relies on the same assumptions, but is generalized by including pipes
with deformable walls.

The paper is organized as follows. In the next section we present a review of the basic
relations for pipe flow, and then in Section 3 we formulate our 1D pipe finite element. In
Section 4 are given several examples, and some concluding remarks are presented in Section 5.

2. Fundamental relations for pipe flow

Here we summarize the fundamental relations for flow within deformable pipes, which serve as
a basis for the development of the finite element models. We consider axisymmetric flow of
viscous incompressible fluid within circular deformable pipe. It is assumed that the pipe is
straight, the flow is unsteady and that the fluid is Newtonian. Regarding the fluid-wall interface,
a no-slip condition is adopted.

A general concept presented in (Smith et al. 2002, Canic and Kim 2003) will basically be
followed to derive the governing equations. Continuity equation in the cylindrical coordinate
system can be written as:
oV, 1drv
— X4 _M =0 1)

oXx r or

where x and r are axial and radial coordinates, and v, and v, are axial and radial fluid velocity
components. The balance of linear momentum in the axial direction, expressed as the Navier-
Stokes equation, is:
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where p is fluid pressure, and p and v are density and kinematic viscosity, respectively. In pipe
flow the term 82VX / &X? can be neglected due to the fact that radial velocities are much
smaller that the axial velocities (Canic and Kim 2003). Then (2) can be written as:

o, v, v, 1ép 1o ov,
+V, +V, +——=v=——I|r 3)
ot or oX poX ror\ or
or in a form suitable for further derivations,
ot or OX L OX or\ or

Now, we integrate (1) and (4) from r=0 to r=R, where R is the pipe radius, with neglecting
variation of pressure over the cross-section (Canic and Kim 2003). After some algebra
(including the Leibniz integral rule), the continuity and Navier-Stokes equation can be in the
form:
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where v is the mean velocity of the pipe cross-section,
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is a dimensionless energy parameter often used in pipe flow (Formaggia et al. 2001 and 2003,
Sherwin et al. 2003a, Milisic and Quarteroni 2004, Sherwin et al. 2003b, Sochi 2013). The

ov
derivative ( 5 X j depends on the velocity profile within the pipe, which can be expressed in a
r R

v, :M{l—[rjy}v 9)
/4 R

where ¥ is a parameter depending on the flow character. In case of a parabolic profile which

form:

occurs in a fully-developed steady conditions » =2, while for large arteries and pulsatory
flow it can be taken ¥ =9 (Ref. Hunter 1972 cited in Smith et al. 2002). With given y, the

parameter ¢ can be determined from (8) as o = (7/+ 2)/(7+1); for a parabolic profile
a=4/3. With v, expressed by (9), the Navier-Stokes equation (6) can be written as:

2
@+21@+2av—@+2m@+£@+w=0 (10)
ot R ot R ox OX p OX R

The next fundamental relation which will be used further is related to wall deformation. It is
assumed that the wall thickness is small with respect to the radius, hence the wall can be
considered as a cylindrical thin shell, so that the axial deformation is negligible
(physiologically verified condition for blood vessels) ; and that material is elastic. Under these
conditions, the current pipe radius can be expressed in terms of the pressure at the cross-section
as follows:

Re_ R (11)



Journal of the Serbian Society for Computational Mechanics / VVol. 8 / No. 2, 2014 41

where RO is the initial radius, o is the wall thickness (considered constant); and E and v are
Young’s modulus and Poisson ratio of the wall material, respectively.

We further express continuity equation (5) and balance of linear momentum equation (10)
in terms of the cross-sectional mass-flux Q,

Q=Av=R’w (12)

where A is he cross-sectional area. Also, we employ the pipe constitutive relation (11), from
which follows:

R_( 2P (13)
ot ot
where
R
Ke :(1—v2)E° (14)

Is the elastic constant. Note that in case of a rigid pipe kE =0 , the wall tissue can be

considered incompressible, and the elastic constant is K. = 3R, /(45E). With use of (12)
and (14), the continuity equation (5) can be written as:
2Rk, P+ R (15)
0t OX

Further, after some straightforward algebra, equation (10) can be obtained in the form of force
balance along the pipe axis:

Q. 2pQR [ o, QR 2ulr+2)]y a2 _ (16)
ot A ox R A 0Ox R OX
We note that in case of a rigid pipe, the continuity equation reduces to:
0
Q_y a7
OX
while (16) becomes:
p@+727w(7/+2)Q+A@=0 (18)

ot A OX

In case of steady flow and fully-developed Poiseuille flow (7 =2) the balance of forces
equation reduces to the well-known Hagen-Poiseuille equation:

kQ+ P» =0 (19)
OX
where
4
k = =R (20)
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is a pipe characteristic which will be further used in our derivation; the reverse of k represents
the viscous resistance to flow, used in literature.

In further development of the 1D finite element for pipe flow, we will use equations (15)
and (16) as the fundamental equations, as well as (17) and (19) as their special cases.

3. One-dimensional finite element for flow within deformable pipe

We first derive the basic FE equation of mass balance of our 2-node finite element, then
introduce Lagrange multiplier method to enforce continuity at a branching point, and finally
formulate equations for 1D diffusion.

3.1. Element formulation

We consider 2-node finite element with data shown in Fig. 1: nodal pressures are P, and P,,
nodal fluxes are Q; and Q,, while at a position r (where the pipe radius is R) they are p and Q;
element length is L.

Q; Py L p,Q,R 2 Q,
1 ' 2 X

Fig. 1. Pipe finite element, basic data

In order to derive governing equations for a pipe finite element and general conditions
incorporated into fundamental equations of Section 2, we proceed as follows.

Our goal is to develop a finite element with the nodal pressure as the only nodal variable to
be determined within an incremental-iterative scheme of the FE assemblage. To achieve this,
we differentiate the governing equation (16) with respect to x, to obtain:

092 saap L. F +00u by -4ap ST 2 Do Ly 0 o

A ot A X R

I3

where “,” and “,” denote first and second derivative with respect to X. In deriving this
equation we have taken that dcr/ Ox =0, which means that change of the velocity profile
along the element is neglected; also, derivative of the cross-section area A is neglected, i.e. it is
taken OA/Ox =0. Next, we further drop-out the second term in (20) as small with respect
others, and obtain:

B aQ'X +1|:_ 4aanR+2/u(7/+2):le + p,xx =0 (21)

A ot RA A Ox R

Before proceeding to derive the finite element balance equation for a general case of
deformable pipe and under transient conditions, consider a special case of steady flow through
rigid pipe. Then we have constant flux Q (equation (17)), and (21) reduces to:

P =0 (22)

Now, we first apply the Galerkin procedure in a standard form (Kojic et al. 2008) to equation
(22) and obtain the balance equation of pipe finite element, as:
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K,P’ =-Q’ (23)
where
k
K11 = Kzz = _K12 = _KZl = E (24)
and
Q'|=]Q%=Q (25)

are nodal fluxes with positive sign if the flux is in direction of normal to the cross section. If a
pipe network is modeled by this linear pipe element, boundary conditions include prescribed
pressures and fluxes, which can be functions of time. Since the system is linear, the system of
equations is solved once for a given time, without any trace of history of pressure/fluxes
evolution. The FE model is computationally very efficient: there is no numerical integration for
evaluation of element matrices and it has one degree of freedom per node. Therefore, the model
is suitable for large pipe networks, as in case of capillary beds with huge number of branching.
It will be shown in solved examples that distribution of flux among pipe segments with a
common junction is according to equation (23), and the net mass flux at the junction is equal to
zero, i.e.

;Q(Ii) =0 (26)

where | is a common node, and n is number of branching segments.

The finite element for a rigid pipe under steady conditions can serve as the basic element
and the solutions obtained with deformable pipe and unsteady flow can be considered as
perturbed with respect to the basic ones.

We now return to the deformable pipe and equation (21). To eliminate the flux as the nodal
variable, we use continuity equation (15) from which it follows:

@:—ZR%kg @:—_g@ @7)
OX ot ot
where
k, =2R°7K, (28)
and substitute 0Q / OX into (21). Then, the balance equation (21) can be written in the form:
0° 0
-m} at—zp—mngp+kpﬂ =0 (29)

where
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mp =kk, £
T (30)
kk
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Equation (29) is written in a way to lead to the previously element matrix (24) in case of rigid
pipe. This equation represents the equation of balance of linear momentum, with adopted

approximations, in terms of pressure only. The coefficients m2p ,k and IZE are dependent on the

current pipe radius and the flux, so that we transform (29) into the incremental-iterative finite
element form:

(M0 L KEVAPIO = QEO (M 200 4 K i) )P0 4 (v piDp (31)

where Q" is external flux, and:

_ p(i-1) _
mpi = L [ (ml + m;“l)]N, N, dx

AtIl At
(1-1) jk‘lN N, dx

(32)

Here, N, are the interpolation functions along the element, Atis time step, P s the
pressure at start of the time step, and i is the equilibrium iteration counter.

As can be seen from the expression for m, in (30), it is necessary to have the value of flux
Q for each iteration. In order to determine Q we write equation (16) in a weak form:

KIQ’ +f M2 (Q’ —Q")-KPP’ =0 (33)

where

MYy = [ N, N, dL
L

w Q ( Q R 2#(7+2)j }
Ky =[N [2ap|\| | —20p =T+ TEETENIN G AL
N { ! A RA ox R’ ’

(34)

KiP = KE = [ AN|N, dL
L

and Q™ is the nodal flux at start of the time step; summation is implied for the repeated index J:
J=1,2. Now, for a calculated nodal pressures P’® from (31), nodal fluxes can be determined
(for a finite element) from (33), as:

17
Q':EK.k MYQ* —K I P (35)

where
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1/ W w 1 w / 7/ W— V]
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with summation on the repeated index k, k=1,2. From the nodal fluxes, the flux Q at integration

point is evaluated for the current iteration on P in equation (33) and then substituted in (34) to
calculate mp@™.

3.2. Use of Lagrange multipliers for branching points

We note here that the fluxes Q' from (31) do not satisfy the condition (26), or satisfy it
approximately, depending mainly on wall deformability. In order to satisfy the continuity

condition (26) we use the Lagrange multiplier concept (Bathe 1996, Liu 2010). A node | with a
branching is shown:

Fig. 2. Branching at node |. Lagrange parameter A' is introduced at node I to enforce continuity
condition (26). For element e nodal pressures and fluxes are P, P, and Q;, Q,, respectively.

in Fig. 2. The variational form of the continuity condition (26) can be written as (Liu 2010™):

54.(2[K<.s>ppp<ew1>_A1tK<.:>W-1Mg>wq<e>ﬁjjm.(zKa?ppaawnjzo (@)
where A' is the Lagrange multiplier, and summation goes over all elements with the common
node 1. In writing (36), the expression (35) for fluxes of elements e has been used. The terms in

the element matrix and nodal vector, corresponding to A' (node | can be first or second element
node, hence | can be either 1 or 2) are:

Ki ) = K, Keiay = Kiy,J =12 (37)
F/=—K5A',J=12nosumon |

Fia) =—KIP’ +Ait REIMEYQE™ sumond k: J,k =1,2
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where the element nodal variables include P*, P?, A'. With use of the Lagrange multipliers, the
total system of equations is extended for number of nodes with branching, and this extended
system is solved over time steps and iterations.
3.3. Diffusion balance equations
The fundamental transport convective-diffusion equation in 1D case is (Kojic et al. 2008):

oc cc 0 oc

-——-——V+—|D—|+q=0 (38)
ot ox ox\ ox

where ¢ is volumetric concentration, D is diffusion coefficient, v is velocity at a cross-section
within the element, and q is a source term. Using the Galerkin procedure (Kojic et al. 2008), we
obtain the balance of mass equation for the finite element as:

1 " ex \ 1 v
[EMU +K, +K), jACJ - QM + Q! My (€’ -c¥)-(k, +K} )’ @9)

. . t
where C’ and C" are nodal concentrations at start and end of time step, Q™ are external mass

volumetric fluxes, and matrices and nodal vector Q,’ are:

M,, = A N,N,dL
L
Ky, = A[DN, N, dL
L
K}y = [VN,N, v
\Y

Q;l = AIqudL
L

Analogous equations can be obtained for heat transfer (details can be seen in Kojic et al. 2008).

4. Examples

Here are presented two examples: 1) Example to assess accuracy of our pipe FE when the walls
are rigid, and to compare solutions using the two formulations of the element; also, solution of
diffusion with convection within the pipe. 2) Example to show the results in case of branching.

4.1. Straight pipe, several segments

We are considering a straight pipe modeled with ten 1D FE elements and eleven FE nodes, with
5 mm length and 1 mm in diameter (Fig. 3a). We prescribed constant pressure of 2800 Pa (21
mm Hg) at inlet of pipe domain, and constant velocity of 200 mm/s at outlet of pipe. We
consider fluid flow of water with viscosity of 1e-3 g/(mm s) and density of 1e-3 g/mm°®. We are
investigating three different transport cases: fluid flow with both rigid and deformable walls,
and coupled convective diffusive transport with deformable walls.
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Pressure drop along pipe axis for pipes with rigid walls is given in Fig. 3b. As can be seen from
Fig. 3a and 3b, pressure drop is AP =32.00 Pa, which is same as the analytic solution:

2uL S32~10*3g/(mm s)-5mm

AP = —v———=-200mm / 5 =32Pa
D Imm

which proves accuracy of the presented model and the developed pipe finite element.

1 2 3 4 5 6 7 8 9 10 N

1D FE Nodes and Elements

Pin Vout
e
1D Pipe FE model 2800
2792
2784
2776
a Pressure Field[Pa] 2768
2805 T T T
2800
2795
o 2790 |
o
Q o7sst
=
7]
[
O 2780 |
o
2775 +
2770 |
2765 T T T T
0 1 2 3 4 5
b Distance [mm]

Fig. 3. 1D pipe FE model with rigid walls a) The FE model consists of 10 1D finite elements,

with prescribed inlet pressure and outlet velocity, together with the pipe velocity (mean fluid

velocity) field and pressure field obtained using FE model; b) Pressure distribution along the
pipe length.

In case of deformable walls, additional data are: wall with thickness is 0.1 mm, Young’s
modulus is 100 kPa (10° g/(mm s?)) and Poisson’s ratio is 0.5. Pressure drop and radius change
for both Hagen-Poiseuille assumption (equation (23)), and for 1D Navier-Stokes flow (equation
(31)) are shown in Fig.2a and Fig.2b, respectively. It can be seen that Hagen-Poiseuille
assumption leads to higher drop of pressure, and therefore larger change of diameter. Detailed
investigation of this difference can be achieved by using 3D model for fluid and shell model for
the wall, with the solid-fluid interaction (this is left for studies which will follow this report).
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0.555 L L s t
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Fig. 4. Fluid flow through 1D pipe elements with deformable walls: Pressure drop (a) and
radius change (b) along pipe length for both Hagen-Poiseuille and Navier-Stokes formulations.

Results for coupled convective and diffusive transport are given in Fig. 5a and 5b. We
prescribed constant inlet concentration of 100 M/L, and considered infinite reservoir at outlet of
pipe (zero concentration). Concentration fields for initial (time=0.001s) and steady-state
conditions are given at Fig 5.a. Concentration profiles along the pipe length for three transient
states, and for the stationary state are shown in Fig 5.b. It can be seen that the profiles change
until the linear distribution is reached, which agrees with the analytical solution.
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Fig. 5. Coupled convective-diffusive transport within pipe with deformable walls. a)
Concentration fields at initial, and final time step (t=0.02 s - stationary state). b) Concentration
profiles along pipe length for few different times within transient period (t=0.001, 0.002 and
0.004s) and for stationary state (t = 0.02s)

4.2. Pipe structure with a branching

We here consider two examples. The first example is a simple pipe structure, with the main pipe
branching into two equal segments, shown in Fig. 6. Diameter of inlet branch is 2 mm, while
diameter of outlet pipes is 1 mm. The wall thickness is 0.1mm and Young’s modulus is 100
kPa. We prescribed constant pressure of 2800 Pa at the inlet, and constant velocity of 200 mm/s
at both outlet pipes. We investigated the effects of the Lagrange multipliers. The solution
without and with using of Lagrange multipliers are shown in the figure. It can be seen from Fig.
4b that the solutions are practically the same, and the continuity equation (26) is satisfied within
a small number. We have noticed that in more complex cases, with more pipe segments coming
from a common node, and with different diameters, the equation (26) is satisfied and our
finding is that use of the Lagrange multipliers can be avoided.
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Vout
’/' 2800
', 2788

2775
2762
2750
2800 4
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@
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2750
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0 2 4 6 8 10 12 14 16 18
b Distance X [mm]

Fig. 6. Pipe structure with branching a) 1D pipe branching model, with pressure field within the
segments. b) Pressure profiles along x pipes for both cases, with and without Lagrange
multipliers.

The second example is shown in Fig. 7, where, in order to investigate more effects of use
of Lagrange multipliers on accuracy of a branching model, we generate a complex structure
with the main pipe branching into four different segments, where diameters are in ratio of
4:3:2:1 (D =1, 0.75, 0.5, 0.25 respectively).
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flux= 244.69
flux=120.907

flux=424

flux= 47.75

flux=10.63 H

flux= 244.061

flux=120.81
flux=432.41

flux=47.73

flux=10.67

b

Fig. 7. Pipe structure with branching with four different outlet segments in ratio of 4:3:2:1 (D =
1, 0.75, 0.5, 0.25 respectively). Other data are as in the first example. Element fluxes: a)
solution with Lagrange multipliers, b) solution without Lagrange multipliers

As can be seen from Fig 7, algebraic sum of fluxes in outlet segments (out of branching
point) in the method with Lagrange multipliers is Q=423.98 mg/(mm?s), which gives the
0.004% relative error with respect to the flux in inlet segment which is 424 mg/(mm?s).

On the other hand, in case without Lagrange multipliers, algebraic sum of fluxes in outlet
segments is Q=423.238 mg/(mm?s), which represents 2.167% relative error with respect to the
flux in inlet segment which is 432.41 mg/(mm?s).

5. Concluding remarks

We have derived in a consistent manner 1D pipe finite element for rigid and deformable pipes.
Two options can be used for this element: a) one, based on the Hagen-Poiseuille equation (PE),
and b) another, by using a consistently derived 1D Navier-Stockes equations (NS). The PE
formulation is computationally more efficient since it does not require numerical integration; as
such, it is attractive to be implemented in large pipe systems, as can be met in modeling blood
flow within body organs or tumors. In a simplified form, the PE formulation is applicable to
pipes with deformable walls. Further investigations can lead to specific parameters showing
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accuracy of both PE and NS formulations. Our finding that use of Lagrange multipliers to
enforce continuity conditions at branching, in case of using deformable pipe and the NS
formulation, does not significantly contribute to the solution accuracy, and might serve as a
useful information for further research in this field.
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H3Bong

1/l KoHAYHH eJIeMeHT 1[eBU €a KPYTUM U JedopMaduIHNM 3U10BUMA

M. Kojnhl’2'3*, M. Munomesuh®, B.Cumuh®, M. Ferrari?

! Vuusepsuter Merpononutan Beorpan — McTpakuBauko pasBojHH [IEHTap 3a
ononmkemepuHr biuolPL] Kparyjesar, [IpBocmaBa CrojanoBuma 6, 3400 Kparyjesam, Cpouja
2 The Methodist Hospital Research Institute, The Department of Nanomedicine, 6670 Bertner
Ave., Houston, TX 77030

3 Cpncka Axkagemuja Hayka u Ymetnoctn, Kaes Muxawmmnosa 35, 11000 Beorpax, Cp6uja

* aymop 3a KopecnoHOeHyujy

Re3ume

AyTopu cy y OBOM pajy NpeACTaBWIM jeAHOCTaBaH W edukacaH 1J[ koHauyHM eJeMeHT 3a
CIIPETHYTO CTPYjale TEYHOCTH U MPOBOhEHE TOIMJIOTE WIIM TPAHCHOPT Mace myTeM Tudysuje.
OBaj KOHAuHM €JIEMEHT je pauyHCKH e()MKacaH M MOrOAaH 32 MOJEIUPamhe CI0KEHUX CHCTeMa
KOjU Ce cacToje M3 BEJIHKOr Opoja cerMeHara IeBH. MoOTHBaIMja 3a pa3BOj OBOI €JIEMEHTaA je
NpOUCTEKIa U3 MoTpebe 3a eQUKACHUM PAYyHCKHM MOJeNHMa KOju OW ce KOPHCTHIM 3a
TPAHCIIOPT Y CJIOKEHUM OHOJIOIIKMM CHCTEMHMa, Kao IITO Cy MpeXa KPBHHUX CYIOBa WIH
KalujiapHa Mpexa y TyMmopy. Y paay je IpHKa3aHO JAeTaJbHO H3BOhEmEe OCHOBHHX
TPaHCIIOPTHUX jeTHAUMHA, 33jeTHO ca NMPUMEpUMa KOjU TOKa3yjy TadHOCT MpeicTaBbeHor 1/J]
KOHAYHOT €JIEMEHTA.

Kibyune peun: 1D KOHa4HM €JlEMEHT, CTpYjame Kpo3 ILEBH, KPYTH 3UI0BH, JedopmabuiIHu
3UII0BH, AU Y3HOHN TPAHCIOPT
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