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Abstract 

This paper reviews and investigates the implementation, evaluation and limitations of 

conventional wall functions, based on law of the wall, in combination with linear k  

turbulence model in simple (fully developed channel) and complex (backward facing step) flow 

configurations. The near-wall viscosity-affected layer of a turbulent fluid flow poses a number 
of challenges, from both modeling and numerical viewpoints. Over this thin wall-adjacent 

region turbulence properties change orders of magnitude faster than over the rest of the flow. 

Although the law of the wall and equilibrium assumptions are not valid in the recirculation 

region of the separating and reattaching flows, the general flow behaviour of backward-facing 

step flow is not significantly altered by the particular form of the standard wall functions. The 

results obtained in the case of the backward facing step flow configuration suggest that the 

solution might be found in modification of the linear k model and improvement of 

standard wall functions. 
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1. Introduction  

Wall functions are still used in the majority of industrial turbulent flow CFD calculations. Their 

continued usage is driven by the desire to tackle new, larger, more complex, perhaps 

multiphysics problems rather than simply improve upon the wall resolution of existing 

calculations. The treatment of wall boundary conditions requires particular attention in 

turbulence modeling [Sijerčić (1998)]. The single, most common cause of rapid divergence of 

numerical simulations is the inappropriate specification and implementation of boundary 

conditions. The effect of the wall on turbulence becomes stronger when approaching closer to a 

rigid surface through the viscosity-affected layer. If the flow conditions are not too extreme a 

popular approach that avoids the complications of the viscous region and the need for 

modifying the high-Re form of the turbulence models is to draw on the fact that the important 

mean and turbulent flow quantities are nearly functions just of the normal distance from the 

wall (provided all variables are non-dimensionalized by the wall shear stress, the density and 
the fluid viscosity). Thus, in making calculations of flow over rigid surfaces, all the dependent 
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variables appearing in the closure scheme are matched to the “universal” values at some point 

beyond the viscous region. In this way the viscous region is “bridged” and instead of exact 

boundary conditions at the wall, these are replaced by conditions at the first grid node near to 

the wall (lying outside the viscosity-affected layer) using a set of algebraic relations or wall 

functions, obtained either by prior integration of much simplified forms of the governing 

equations (momentum, energy, turbulence quantities) or by using empirical information about 

the variation of mean velocity, temperature or other scalars, and the required turbulence 
variables in terms of the non-dimensional wall distance. This approach has long been regarded 

as an appealing, economical alternative to integration up to the wall, because, in principle, it 

makes it possible to use unmodified high-Re models and a much coarser computational grid 

then is needed to solve the flow and turbulence equations all the way to the wall.  

However, the standard wall function approach, which is based on the universality of the 

law of the wall, is not satisfactory in all circumstances [Hanjalić and Launder (2011); Hanjalić 

and Jakirlić (2002)]. Transpiration through the wall, steep streamwise pressure gradients, swirl 

(as, for example, near a spinning disc), and steep temperature gradients (due to large imposed 

wall heat fluxes or frictional heating), are just a few of the influences that may cause this region 

to differ from its so-called “universal” behavior presumed to apply in the chosen wall function. 

Many other situations are even more critical, for example, separated and re-attaching flows. 

Various modifications have been proposed to improve and extend the validity of wall functions 
to non-equilibrium and separating flows, but none of the proposals showed general 

improvement. The incorporation of pressure gradient [Ciofalo and Collins (1989); Kiel and 

Vieth (1995); Kim and Choudhury (1995)] lead to some improvement of attached thin shear 

wall flows with pressure gradient, but their validity is confined only to such situations. A more 

general two-layer approach [Chieng and Launder (1980); Johnson and Launder (1982)], is 

based on splitting the wall layer in viscous and nonviscous parts with assumed variations of 

shear stress and kinetic energy in each layer. Formulation based on a three zone scheme 

[Amano, Jensen and Goel (1983); Amano (1984)] introduced a division of the near-wall zone 

into three regions. However, despite some improvement of wall friction and heat transfer behind 

a back step and sudden pipe expansion, the approach still has serious deficiencies. New 

directions in the wall function formulation have recently been taken up, with the aim of 
extending the applicability domain of the wall function approach to the various complex flows 

[Craft, Gant and Iacovides (2005); Gant (2002); Gerasimov (2003)]. 

In this paper two standard wall functions in combination with linear k   model have been 

examined through the calculation of two test cases: fully developed plane turbulent channel 

flow and backward facing step flow, representing from the point of view of wall functions’ 

problem two opposite types of flows. Standard wall functions are based on the law of the wall 

and local equilibrium conditions. Many measured flows do accord closely to the logarithmic 

velocity profile (Eq. (2)), such as boundary layers in weak streamwise pressure gradients and 

channel flows. However, in many near-wall flows with strong pressure gradients, bouyancy 

strains, separated and impinging flows  the mean velocity profile does not exhibit a log-law 

behaviour and consequently local equilibrium conditions are violated. The surest way to 

account for such influences is to extend the calculations up to the wall itself (low-Reynolds 
model approach), but in that case the computations require many more grid points clustered in 

the vicinity of the solid walls, often requiring at least an order-of-magnitude increase in 

computation time. At the practical level there is thus always an issue of whether it is better to 

save computational cost and turn-around time or to use the computational time saved by 

covering the main part of the flow with a finer grid. 
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2. Wall functions formulation 

The term wall functions was first applied by [Patankar and Spalding (1967)] as the collective 

name for the set of approximate formulae linking the values of the effective wall-normal 

gradients of dependent variables between the wall and the wall-adjacent node to the shear stress, 

heat or mass flux at the wall. Wall functions actually represent required inputs (for wall shear 

stress, mean dissipation rate, turbulence energy production rate, wall heat flux, etc.; link to the 

wall is suppressed and source term is modified) to the near-wall cell which covers the whole 
viscosity-affected region  and conditions at the first near-wall grid node which is lying outside 

the viscosity-affected layer. The link between near-wall values of a variable and the associated 

wall fluxes is often the primary connection one needs to establish. The appropriate connections, 

known as wall functions, are obtained either by prior integration of much simplified forms of 

the governing equations or by using empirical information about the variable’s variation. Wall 

functions may just be seen as an extrapolation of the simplification strategy – using very simple 

eddy-viscosity models of turbulence to handle the problematic viscosity-affected layer. 

 

Fig. 1. Universal velocity profile (From Martinelli, 1947.)  

2.1 Structure of a turbulent boundary layer and the law of the wall 

In order to develop a mathematical/numerical framework that can reproduce the effects of near-
wall turbulence on the flow, it is necessary to understand the character of near-wall turbulence 

and the structure of a turbulent boundary layer. The typical “layered” composition for a near-

wall turbulent flow as found in a constant-pressure boundary layer, channel or pipe flow is 

shown in (Fig.1, 2) [Martinelli  (1947); Clauser (1956)] . Although the thickness of this 

viscosity-affected zone is usually two or more orders of magnitude less than the overall width of 

the flow, its effects extend over the whole flow field since, typically, half of the velocity change 

from the wall to the free stream occurs in this region. This thin sub-layer and the adjacent 

transition region extending to the fully turbulent regime is a region where effective transport 

properties change at a rate typically two or more orders of magnitude faster than elsewhere in 

the flow.  

For simple flows (boundary layer at zero pressure gradient and channel flows) two 

characteristic zones (Fig. 3) are considered in the numerical calculation of the near-wall region 
– the viscous sub-layer (“bridged” by wall functions) and the fully turbulent region (where 

k   model is valid) . Deep in the viscous sub-layer there is a linear connection between the 

dimensionless velocity and dimensionless wall distance: 
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 U y    (1) 

Fig. 2. Universal wall law plot for turbulent boundary layers on smooth, solid surfaces (From 

Clauser, 1956.) 

Across the fully turbulent region the dimensionless velocity is proportional to the logarithm 

of the dimensionless wall distance: 

  
1

lnU Ey


   (2) 

The velocity and distance from the wall are non-dimensionalized as: 

 ; ; w
yUU

U y U
U









 

     (3) 

The above equations represent best known and still widely used wall function (“standard wall 
functions”) for the momentum equation, more commonly known as the law of the wall

  U f y  . 

2.2 Equilibrium assumptions 

The idea of a wall function approach is to place the first computational node outside the viscous 

sub-layer so that the near-wall cell covers the whole viscosity-affected region - all of the 

viscous sublayer and part of the fully-turbulent region of the boundary layer (Fig. 3), and make 
suitable assumptions about how the profiles of near-wall mean and turbulence quantities 

behave. 
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Fig. 3. Location of the near-wall node P with reference to viscous sub-layer and fully turbulent 

region 

 

Fig. 4. Assumed profiles of dimensionless velocity, total shear stress and turbulent kinetic 

energy across the near-wall cell 

Standard wall functions are based on several assumptions that are supposed to be valid 

throughout the fully turbulent near-wall layer (Fig. 4): 

1. At
P

y y , the mean velocity component parallel to the wall obeys the logarithmic law 

of the wall (Eq. (2)). 

2. The total shear stress remains constant across the near-wall cell and equal to the wall 

shear stress (
v t w

U
uv const

y
     


     


)  

3. The ratio of the turbulent shear stress and kinetic energy (known as the “structure 

parameter”) is presumed to be constant, i.e. 1 2 0.3uv k C


    (according to 

experimental data). 

4. The turbulent kinetic energy is in local equilibrium, i.e. the net transport by convection 

and diffusion is negligible so that 
k

P   (the generation of k is in equilibrium with the 

destruction of k). 

5. The turbulent length and time scales increase linearly across this flow region, i.e. 
3 2

l
l k C y   and k C y


    (where 3 4

l
C C


  and  1 2C C U

  
 ). 
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These assumptions are reasonably well satisfied in simple wall flows such as the constant-

pressure boundary layer, plane channel or pipe flow, as can be seen from numerous experiments 

and DNS databases [Kim (2011)]. On the basis of the above mentioned assumptions, 

approximate formulae are then supplied as the required input to the near-wall cell (for wall-

shear stress, mean dissipation rate, turbulence-energy production rate, wall heat flux, etc). None 

of these assumptions can be relied on, however, in more complex flows that depart far from 

equilibrium. 

2.3. Wall functions for momentum equation (for wall-parallel velocity) 

In the near-wall control volume, for the velocity component parallel to the wall, the wall shear 

stress is obtained from the log-law (Eq. (2)): 

 

 ln

P

w

P w

U

Ey


 

  
  (4) 

This implicit form of the wall function leads to very poor behavior in flows involving 

separation, stagnation and reattachment, where the wall shear stress falls to zero. One of the 

first improvements, proposed by [Launder and Spalding (1974)], was to replace the 

characteristic turbulent velocity scale 
w
   by 1 4 1 2C k


 on the basis of local equilibrium 

condition, where k is evaluated at near-wall node (at 30y   , 
2 0.3U k


 ), leading to the 

following expression for the wall shear stress: 

 
 

1 4 1 2

1 4 1 2ln

P P

w

P P

C k U

EC k y









  (5) 

The above formula is applied if the near-wall node is within the fully-turbulent region, 

which is defined as 11.63y  . If the viscous sub-layer is large in comparison to the width of 

the near-wall cell  11.63y   , according to the linear-law (Eq. (1)), the expression for the 

wall shear stress is given by: 

 P

w

P

U

y
   (6) 

2.4. Wall functions for turbulent kinetic energy equation 

Boundary-layer solvers (which deal for the most part with flows near local equilibrium) usually 

adopt simply the local turbulent energy equilibrium values of the generation and dissipation 

terms evaluated at the near-wall node P. Since production and dissipation of turbulent kinetic 

energy  are expected to vary greatly across the near-wall region, it is preferable to determine 

their cell-averaged values - average production, 
k

P , and average dissipation,   - which take 

into account the changes in turbulence quantities across the near-wall cell, by direct integration 
over the near-wall control volume. These averaged quantities are approximated differently in 

different wall functions and it is principally through changes in the assumed profiles of 

turbulent shear stress, turbulent kinetic energy and dissipation of turbulent kinetic energy used 

in expressions for 
k

P  and , that improvements in the standard wall functions are achieved 

[Gant (2002)]. 
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2.4.1 Launder & Spalding (LS) 

The average production of turbulent kinetic energy is calculated assuming a constant total shear 

stress across  the near-wall cell and equal to the wall shear stress (

v t w

U
uv const

y
     


     


). At the wall 0uv  and

w

U

y
 





.  Across the 

viscous sub-layer the turbulent shear stress is negligible and the viscous shear stress is the 

dominant. Outside the thin viscous sub-layer, in the fully turbulent part of the boundary layer, 

molecular effects are negligible and the turbulent shear stress is essentially equal to the total 

shear stress. In the fully turbulent region of the zero pressure gradient boundary layer the 

turbulent shear stress is thus equal in magnitude to the wall shear stress, 
w

uv    (Fig. 5). In 

internal fully developed flows, such as pipe or channel flows, the total shear stress varies 

linearly from 
w

  at the wall to the zero at symmetry axis or plane. At high mean flow Re 

numbers the viscous sub-layer is thin enough for the reduction in shear stress across it to be 

negligible. The approximation of uniform total shear stress in the inner region is thus 

reasonable. 

 

Fig. 5. Distribution of the total (viscous + turbulent) shear stress in the wall layers 

The strain-rate ( U y  ) used in the cell-averaged production term is approximated from 

the nodal values of velocity and wall distance: 

 
0

1 ny

P

k w

n P

UU
P uv dy

y y y
 


  


  (7) 

Likewise, the average dissipation rate is obtained by using the same assumptions employed in 

the evaluation of the average production rate: 

 

3 4 3 2

P P

p

C k U

y






  (8) 

2.4.2 Simplified Chieng & Launder (SCL) 

In two-layer approach, based on splitting the wall layer in viscous and turbulent parts with 

assumed variation of turbulent shear stress, kinetic energy and dissipation in each layer (Fig. 6) 

to enable the integration of turbulence production and dissipation over the first control volume 
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next to a wall to be evaluated, the following assumptions are used [Chieng and Launder (1980); 

Johnson and Launder (1982)]: 

1. The turbulent shear stress is zero in the viscous sub-layer, but constant (and equal to 

the wall shear stress) in the fully turbulent region. 

2. The turbulent kinetic energy varies with wall distance according to the parabolic 

profile ( 22 k y const   ) across the viscous sub-layer and is constant (and equal to 

P
k ) in the fully turbulent region. 

3. The dissipation of turbulent kinetic energy is constant in the viscous sub-layer and 

equal to its wall-limiting value (
22

P
k y

 
  ), while in the fully turbulent region   

is assumed to vary inversely with wall distance   3 2

l
k C y  .  

 

 

 

Fig. 6. Assumed profiles of turbulent shear stress, kinetic energy and dissipation rate across the 

near wall cell 

The strain rate ( U y  ) is determined from differentiating log-law.  
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2

1 4 1 2 1 4 1 2

0

1 1
ln

n ny y

w w n

k w

yn n P P n

yU
P uv dy dy

y y y C k y C k y y
   

 
 

 

 
     

  
   (9) 

 
3 2 3 2

2

0

2 21 1
ln

ny y

nP P P P

yn l n l

yk k k k
dy dy

y y C y y y C y



  

 


    
        

     
   (10) 

The sub-layer thickness, y


is determined from assuming a constant sub-layer Reynolds number 

(
1 2 20
P

R k y
 

  ) and 3 4

l
C C


 . Unlike the production rate (the velocity change across 

the viscous sub-layer, where 0uv  , does not contribute to generation of turbulence), the 

dissipation rate is non-zero in the viscous layer [Craft, Gerasimov, Iacovides and Launder 

(2002)].   

2.5 Wall functions for dissipation rate equation 

The transport equation for the dissipation of turbulent kinetic energy could be treated in a 

similar manner as the k equation. However, more common practice is to avoid integration over 

the near-wall cell, but to use its wall-equilibrium point value evaluated at the near-wall node P, 

based on the linear length-scale variation with a distance from the wall (
3 2

l
l k C y  ): 

 
3 2

P

P

l P

k

C y
   (11) 

3. Wall functions numerical implementation  

3.1 Solution procedure 

The numerical calculations are performed in in-house developed finite-volume-based elliptic 

code written in FORTRAN programming language. The governing partial differential equations 

are integrated by the finite-volume method over each of the finite control volumes in the flow 

domain and the resulting integrated transport equations are then discretized, using finite-
difference-type formulas, to give a set of algebraic equations which are solved using an iterative 

method (TDMA). Coupling of the continuity equation and the momentum equations is done by 

using semi-implicit method for pressure-linked equations (SIMPLE) algorithm, while the 

stabilization of iteration procedure is provided by under-relaxation method. A staggered 

Cartesian grid is used with scalars stored at nodal positions and velocities at the cell faces. The 

hybrid-differencing scheme is used for the calculation of main coefficients in the discretized 

equations. Boundary conditions enter the discretized equations by suppression of the link to the 

boundary side and modifications of source terms. The appropriate coefficient of the discretized 

equation is set to zero and the boundary contribution is introduced through source terms 
U

s  and 

P
s . In all cases considerable care has been taken to ensure that results are independent of the 

grid. 

3.2 Momentum equation 

To implement the wall-function formulae (Eq. (5), (6)) for the wall-parallel U-velocity, there 

are two parts. In the first, the link to the boundary side is suppressed by setting the appropriate 

coefficient to zero ( 0
bound

a  ) in the discretized momentum equation. The second part is to 
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modify the source term by introducing the boundary contribution, i.e. the replacement term, 

according to the following expression: 

 
P

w

P

A
s

U


  (12) 

3.3 k-equation 

The k-equation is solved in the near-wall cell with modified production and dissipation terms 

(Eq. (7-10)). Introducing modified source terms into the k-equation is simply a matter of 

removing the old calculated near-wall cell values of production and dissipation, 
k

P  and , from 

the source term of the k-equation and then adding in the wall-function values. The wall function 

values for average production, 
k

P , and average dissipation rate,  , are placed into source terms 

U
s  and 

P
s  as follows: 

  max ,0
U k

s P Vol   
 

 (13) 

 
 min ,0

k

P

P

P
s Vol

k

 
 

   (14) 

3.4 ε -equation 

To set the value of
P
 , source terms are added to the discretized equation as follows: 

 
30 * 3010 10

U P P
s s    (15)  

where 
3010  is an arbitrary large number and 

*

P
  is the wall function value for   at the near-wall 

node (Eq. (11). Substituting these source terms into the discretized equation leads to the 

following expression: 

  30 30 *10 10
P P N N S S E E W W P

a a a a a            (16) 

and, since the neighbouring coefficients N N
a 

, S S
a 

 are much smaller than 
3010 , the 

expression becomes: 

 
*

P P
   (17) 

4. Results and discussion  

4.1 Fully developed channel flow  

The test problem is the fully-developed plane channel flow at high Reynolds number (Fig.7). 

The results of the computations to test the standard wall functions in combination with the 

k   model  are compared with the highest Reynolds number (Re=52000) of Laufer’s 

experiments [Laufer  (1951); Demuren, Sarkar (1993)], based on bulk mean velocity and half 

width of the channel ( 0.0635h m ). A staggered uniform Cartesian grid is used with 1600 

nodes in longitudinal direction and 80 points in transversal direction. This grid was chosen after 

analysis of five different grids with variation of number of grid points both in longitudinal and 
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transversal directions to ensure the independence of numerical results on the grid refinement. 

The calculations use sufficient lengths (120 half-widths) in the longitudinal direction to 

ascertain full flow development.  Profiles of the streamwise velocity are presented in semi-

logarithmic form in (Fig. 8). Both profiles agree well with the log-law: logU A y B    

 5.6 5.75; 4.9 5.5A B     in the inner layer.  

The comparison of the computed and experimental turbulent kinetic energy profiles is 

presented in (Fig. 9). The predictions are in reasonably good agreement with the experimental 

data. The behavior of wall functions (LS and SCL) is almost identical in both cases. 

 

Fig. 7. Fully-developed turbulent channel flow 

 

Fig. 10. Turbulent flow past a backward facing step 

4.2 Backward facing step flow  

Turbulent flow past a backward facing step (Fig. 10) is chosen as a test case in an effort to 

resolve the variety of conflicting results that have been published concerning the performance 

of two-equation models and wall functions [Kim, Kline and Johnston (1980); Mansour, Kim 

and Moin (1983); Speziale and Tuan Ngo (1987)]. In a backward facing step flow, the flow 

faces a sudden expansion due to a step in the original channel and therefore non-equilibrium 

features are present. The flow separates at the corner and is characterized by the presence of a 

large recirculation region. The separated flow reattaches at a downstream location (L). The 
sudden step generates curved streamlines and recirculation zones (primary and secondary 

vortices) which are confined between the step and the reattachment point, which thus becomes a 

key parameter in such flows. Computations were conducted in a channel with an expansion 

ratio (
2 1

3 2H H H H ) of 3:2 at a Reynolds number of  46200 (based on the inlet centerline 

mean velocity (
0

18.2U m s ) and step height ( 0.0381H m )).  
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Fig. 8. Comparison of velocity profiles computed with two standard wall functions (LS and 

SCL) and the linear k  model to the log-law 

 

Fig. 9. Comparison of profiles of the turbulent kinetic energy computed with two standard wall 

functions (LS and SCL) and the linear k    model to experimental data of [Laufer (1951)] 

The computed results of the standard wall functions in combination with the linear k   

model  are compared with experimental data for the backward-facing step flow investigated by 

[Kim, Kline and Johnston (1980)]. Computations are performed on four uniform meshes 

consisting of 400 x 40, 600 x 60, 800 x 80, and 1000 x 100 control volumes in the x and y 

directions, respectively, and the grid 800 x 80 was selected as an optimal choice (Fig. 11).  

The computed streamlines (Fig. 12) indicate a reattachment length in the range of 

5.33 5.84L H  , which underpredicts the experimental data of 7.0L H .  

Streamwise mean velocity profiles at six positions downstream of the step, including both 

the recirculation region (Fig. 13), and the recovery region (Fig. 14), are compared with 

experimental data of [Kim, Kline and Johnston (1980)] The computed profiles in the 

recirculating region are consistent with the strong underprediction of the reattachment point 

[Mansour, Kim and Moin (1983)]. The agreement between calculated and experimental results 
is improved downstream of the recirculation region, at the beginning of the recovery region. 
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Fig. 11. Grid independence study for backward facing step flow configuration (four uniform 

meshes; grid resolution: 400 x 40, 600 x 60, 800 x 80, and 1000 x 100) 

The computed profiles of the turbulent kinetic energy at two axial locations are compared 

(Fig. 15) with the experimental data. In accordance with the results of the mean velocity 
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profiles, the discrepancies are emphasized in the recirculating region, whereas in the recovery 

region the agreement is slightly better. In all cases there is no significant difference in the 

performance of wall functions (LS and SCL). 

The results obtained in the case of the backward facing step flow configuration suggest that 

a proper solution of the problem might be found in modification of the standard k  model 

[Chen and Kim (1987); Stevanović (2008)] and improvement of standard wall functions [Craft, 

Gant and Iacovides (2005) ], but this requires further analysis. 

 

 

Fig. 12. Computed streamlines of the standard k   model in combination with LS wall 

function (up) and SCL wall function (down) 
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Fig. 13. Comparison of the calculated mean velocity profiles in the recirculating region 

 7x H  to the experimental data of [Kim, Kline, Johnston (1980)] 

 

 

Fig. 14. Comparison of the calculated mean velocity profiles in the  recovery region  7x H  

to the experimental data of [Kim, Kline, Johnston (1980)] 
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Fig. 15. Comparison of computed turbulent kinetic energy profiles  to experimental data of 

[Kim, Kline, Johnston (1980)] at two axial locations in recirculation region (up) and recovery 

region (down) 

5. Conclusion  

The standard wall functions approach is formulated on the basis of assumed near-wall profiles 

of mean velocity (known as the law of the wall), turbulence quantities and temperature  in local 

turbulent energy equilibrium.  The assumed velocity and temperature profiles only correspond 

with actual profiles in simple shear flows at high Re numbers. Therefore, these assumptions are 

a limiting factor  in complex non-equilibrium flows (separating and recirculating flows, flows 

with strong pressure gradients, rotating flows, flows where buoyant effects are significant etc.), 
where the velocity profiles are very different from the assumed ones. These premises are 

confirmed by the results in both analyzed cases – the simple flow configuration (fully 

developed channel flow) and complex flow configuration (backward facing step flow). 

However, a dillema remains about the main cause of discrepancies between computed and 

experimental results in the recirculating region of the backward facing step configuration. 

One of the criticisms that has been leveled against most of the k   model calculations for 

the backstep problem lies in the use of wall functions. The wall function approach is not entirely 

satisfactory. The law of the wall doesn’t always hold for flow near solid boundaries, most 

notably for separated flows. However, there is a more subtle danger attending the use of wall 

functions. Specifically, when poor results are obtained with a k   model, researchers 
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sometimes mistakenly blame their difficulties on the use of non-optimum wall functions. This 

assessment is too often made when the wall functions are not the real cause of the problem. For 

example, the standard k   model just doesn’t perform well for backward facing step flow. 

Many articles have appeared claiming that discrepancies between k   model predictions and 

corresponding measurements for backstep problem are caused by wall functions.  

Although the law of the wall and equilibrium assumptions are not valid in the recirculation 

region of the separating and reattaching flows, the general flow behaviour of backward-facing 

step flow is not significantly altered by the particular form of the wall functions. The results 

obtained in the case of the backward facing step flow configuration suggest that a solution of 

the problem could be found in modification of the standard k  model and improvement of 

standard wall functions. 

Nevertheless, the modification of linear k  model is almost firmly established. Probably, 

more unexplored direction into the new investigations  might be found in the improvement of 

standard wall functions, but this would require further analysis. 
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NOMENCLATURE 

, , , ,E W N S P
a -  east, west, north etc. coefficients in 

               the discretized equations 1kgs      

A         -  area of the cell face parallel to the  

              wall 2m      

l
C          -  constant in near-wall length-scale  

              definition    

C
          -  structure parameter       

C


         -  parameter in near-wall time-scale  

               definition 1m s    

E           -  roughness parameter    

h            -  half-width of the channel (channel  

               flow)  m  

1
H         - inlet channel height (step flow)  m  

2
H       - outlet channel height (step flow)  m  

H         -  step height  m  

k           -  turbulent kinetic energy 2 2m s    

k
P        -  average production rate of turbulent 

               kinetic energy 2 3m s      

R


     -  viscous sublayer Reynolds number 

                

Re        -  Reynolds number    

P
s         -  linearized source term 

U
s   - source term in the discretized  

             equation 

uv   -  Reynolds (turbulent) shear stress 

              1 2kgm s       

U  - streamwise mean velocity 

              component 1ms    

0
U       -  free-stream velocity or inlet velocity 

              1ms     

U


      -  friction velocity 1ms    

U        -  dimensionless velocity    
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l            -  turbulent length scale  m  

L          -  reattachment length  m  

k
P         -  production rate of turbulent kinetic 

               energy 2 3m s    

    - rate of dissipation of turbulent 

              kinetic energy 2 3m s    

    - average rate of dissipation of 

               turbulent kinetic energy 2 3m s       

         -  von Karman constant, 0.41     

         -  dynamic viscosity 1 1kgm s     

         -  kinematic viscosity 2 1m s    

         -  density 3kgm    

          -  total shear stress 1 2kgm s     or  

                turbulent time scale  s  

t
         -  turbulent shear stress 1 2kgm s     

v
         -  viscous shear stress 1 2kgm s     

w
        -  wall shear stress 1 2kgm s     

          -  general variable 

 

Subscripts 

 

, , ,E W N S    -  node values of variables 

, , ,e w n s        -  face values of variables 

P      -  value at the near-wall node or  

             current node 

t        -   value in the fully turbulent region 

              

y         -  distance from the wall  m  

y      -  dimensionless distance from the wall 

   

 

Greek symbols 

 

          -  boundary layer thickness  m  

Vol    -  cell volume 3m    

       -  value at the edge of the viscous  

             sublayer or in the viscous sublayer 

w       -  wall value 

        - “friction” value 

 

Superscripts 

 
     -  non-dimensional near-wall value scaled 

by  

            

Acronyms 

 

CFD         - computational fluid dynamics  

CPU         - central processing unit 

DNS         - direct numerical simulation  

LS             - Launder & Spalding wall function 
RANS       - Reynolds-averaged Navier-Stokes  

SIMPLE   - semi-implicit method for pressure-  

                   linked equations 

TDMA      - tri-diagonal matrix algorithm 

SCL          - simplified Chieng & Launder wall 

                   function   

 

 
  



Journal of the Serbian Society for Computational Mechanics / Vol. 8 / No. 1, 2014 

 
21 

Извод 

Процена и ограничења стандардних функција зида у каналу и 

конфигурација корака протока 
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Резиме 

Овај рад се бави истраживањем имплементације, процене и ограничења 

конвенционалних функција зида, на основу закона о зиду, у комбинацији са линеарном 

k  турбуленцијом модела  једноставних (потпуно развијен канал) и комплексних 

(повратних корака) конфигурација протока. Вискозност у близини зида – утиче на слој 

протока турбулентног флуида и поставља бројне изазове, како са гледишта моделирања 

тако и нумеричког гледишта. Преко овог танког зида суседне регије, својства 

турбуленције мењају ред величине брже него у остатку тока. Упркос закону зида и 

равнотеже претпоставке не важе у рециркулационом региону токова одвајања и 

прикључивања, опште понашање протока код протока са повратним корацима није битно 
измењено одређеним обликом стандардних зидних функција. Резултати добијени у 

случају конфигурације протока повратних корака указују да се решење може наћи у 

модификацији линеарног k  модела и побољшања стандардних зидних функција. 

Кључне речи: турбуленција, повратни кораци, k  модел, функције зида 
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