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Abstract 

Arterial geometry variability is present both within and across individuals. To analyze the 

influence of geometric parameters, blood density, dynamic viscosity and blood velocity on wall 

shear stress (WSS) distribution in the human carotid artery bifurcation and aneurysm, the 

computer simulations were run to generate the data pertaining to this phenomenon. In our work 

we evaluate two prediction models for modeling these relationships: neural network model and 

k-nearest neighbor model. The results revealed that both models have high prediction ability for 

this prediction task. The achieved results represent progress in assessment of stroke risk for a 

given patient data in real time. 

1. Introduction 

After heart disease and cancer, the third most common cause of death is stroke. The carotid 

bifurcation stenosis is a significant cause of stroke, producing the infarction in the carotid 

region by embolization or thrombosis at the site of narrowing. The thrombosis development and 

embolization is conditioned by the local hemodynamics which can be investigated 

experimentally and/or by computer modeling. 

There are many factors which increase the stroke risk like age, systolic and diastolic 

hypertension, diabetes, cigarette smoking, etc. It has been shown that changes of the 

geometrical vessel dimensions in the region of the carotid artery bifurcation certainly affect the 

blood flow and may lead to stenosis process [Schulz and Rothwell 2001], [Schulz and Rothwell 

2001].  

Kolachalama used Bayesian Gaussian process emulator to access the relationship between 

geometric parameters and Maximal Wall Shear Stress (MWSS) and to obtain geometries having 

maximum and minimum values of the output MWSS [Kolachalama et al. 2007].  

Large changes in the magnitude of maximal wall shear stress can play a role in the embolic 

mechanism by which carotid lesions can induce stroke [Lorthois et al. 2000]. 

It has been shown that many data mining algorithms like neural networks (NN), linear 

regression, k-nearest neighbors (k-NN), random forest, and support vector machine have high 
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potential for modeling relationship between geometric parameters of the carotid bifurcation and 

the MWSS [Radovic et al. 2010]. 

The rupture of aneurysm, can cause severe hemorrhage, other complications or death. It has 

been shown that aneurysm growth occurs at regions of low WSS [Boussel et al. 2008].   

An example of data mining application in computational fluid dynamics (CFD) has been 

shown in Filipovic‘s paper [Filipovic et al. 2011]. In this paper, the focus was to combine the 

CFD and data mining methods for the estimation of the wall shear stresses in an abdominal 

aorta aneurysm under prescribed geometrical changes. 

In the present work, we evaluate two data mining prediction models (NN model and k-NN 

model) and test their performance in modeling the relationship between geometric factors, 

blood density, dynamic viscosity and blood velocity and WSS distribution. The basic idea is to 

construct probabilistic models for the input variables which will replace classical CFD 

calculations and to give the output of interest very quickly.  

The present approach can be viewed as a computer-based data mining strategy which 

extracts useful information and synthesizes interesting relationships from data sets generated by 

running computer simulations on selected cases. The human carotid artery bifurcation and 

aneurysm were chosen for analysis.   

2. Methodology 

2.1 Data Sets for Modeling WSS Distribution 

To demonstrate applicability of data mining techniques for assessing relationships between 

geometric parameters, density, viscosity and velocity one hand and WSS distribution on the 

other, data sets containing 4779 different examples for aneurysm and carotid bifurcation models 

are created. Tables I and II show mean values of input variables for two different finite element 

(FE) models. The perturbation of each parameter was taken as 30% of the corresponding mean 

value. 
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Description Mean value Unit 

Length 100 mm 

Aneurysm length 40 mm 

A 30 mm 

Aorta diameter 20 mm 

C 20 mm 

B 20 mm 

Density 0.00105 gr/mm3 

Dynamic 

viscosity 
0.003675 Pa∙s 

Velocity 28.13 mm/s 

Table 1. The average values of input parameters for aneurysm model 
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Description Mean value Unit 

Angle ICA-CCA 25 deg 

Angle ECA-CCA 25 deg 

Diameter of CCA 6.2 mm 

Diameter of CBRE 3.658 mm 

Diameter of CBRI 4.9 mm 

Length of CCA 7.44 mm 

Length of CBR 7.316 mm 

Length of ECA 18.6 mm 

Length of ICA 26.04 mm 

Diameter at end of ICA 4.34 mm 

Diameter of ICB 6.49 mm 

Distance to ICB 5.39 mm 

Density 0.00105 gr/mm 

Dynamic viscosity 0.00367 Pa∙s 

Velocity 233 mm/s 

Table 2. The average values of input parameters for carotid bifurcation model   

A 3D FE models with 3D fluid finite elements (8-node isoparametric elements with velocity 

calculation at all nodes and pressure calculated at the element level) are generated for the 

carotid artery and aneurysm. The CFD post-processing results give an insight into the local 

hemodynamics, as well as the blood mechanical action on the vessel walls, such as distributions 

of shear stress on the wall surfaces. The geometric parameters (Figures 1 and 2) are used for the 

generation of the blood vessel internal surfaces, which are the boundaries for the blood flow 

domain. It is assumed that both, carotid bifurcation and aneurysm, have the symmetry plane, 

hence the FE models are generated for the half of the entire domain. The calculation is 

performed for this half, but the results can be seen for the entire domain. Steady state 

simulations with parabolic inflow velocity profile were undertaken and WSS distribution for 

each geometry was computed. All calculations were performed by using in house software. 
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Fig. 1. Geometrical parameters of aneurysm model: ‘Length‘ is the parameter which defines the 

total horizontal projection of the generated aneurysm model; ‗A‘ is the height of the arc of 

central line; ‗Aorta diameter‘ is the abdominal aorta diameter; ‗B‘ is the radius from the central 

line to the inner wall of the aneurysm; ‗C‘ is the radius from the central line to the outer wall of 

the aneurysm; ‗Aneurysm length‘ is an average length of the aneurysm 

 

Fig. 2. Geometrical data for the carotid artery model. The abbrevations here are: CCA –

common carotid artery, CBR – carotid bifurcation region, CBRE – carotid bifurcation region 

external, ECA- external carotid artery, CBRI- carotid bifurcation region internal, ICA- internal 

carotid artery, ICB- internal carotid bulbus 

FE model of aneurysm contains 375 nodes from which 195 lie on surface. On the other hand, 

FE model of carotid bifurcation contains 1854 nodes from which 642 lie on surface. By using 

CFD simulations WSS values are calculated in surface nodes for each of 4779 different 

geometries for both models. FE models of aneurysm and carotid artery bifurcation are shown on 

Figure 3.  

 

Fig. 3. Finite element models of aneurysm and carotid bifurcation 
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2.2 Multilayer Perceptron Neural Network  

Multilayer perceptron (MLP) neural network  is composed of simple elements called  neurons.  

The basic structure of the MLP, consists of one or more hidden layers and an output layer.  

The objective of the training is to find a set of weights and biases that minimize the error 

between the neural network predictions and the desired outputs. There are different learning 

algorithms. The back-propagation algorithm [Rumelhart et al. 1986] has been the most 

commonly used training algorithm. The basic algorithm is a gradient descent method in which 

the network weights and biases are moved along the negative performance function. An 

iteration of this algorithm can be written as: 

 dX

dperf
lrX 

 (1) 

where X  represents weight and bias variables of the network, lr  is learning rate and perf  is 

performace function which defines how much real outputs disagree with predicted ones (mean 

squared error for example).    

It has problems with local minima and slow convergence. In the literature, a number of 

variations of the standard algorithm have been developed [Haykin 1999]. In this study we used 

backpropagation algorithm with momentum and adaptive learning rate. Each variable is 

adjusted according to gradient descent with momentum: 

 dX

dperf
mlrXmX cprevc 

 (2) 

where cm is momentum constant and 
prevX  is the previous change of the weight or bias. For 

each epoch, if performance decreases toward the goal, then the learning rate is increased by the 

inclr factor. If performance increases by more than the incmax
 

factor, the learning rate is 

adjusted by the factor declr and the change that increased the performance is not made. The 

values of cm , inclr , declr and incmax are given in Table III. 

cm
 inclr

 declr
 incmax

 

0.9 1.05 0.7 1.04 

Table 3. cm
, inclr

, declr
and incmax

Values Used for MLP Training  

MLP with as few as one single hidden layer is indeed capable of universal approximation in a 

very precise and satisfactory sense [Hornik 1991]. 

2.3 K-Nearest Neighbors Algorithm 

K nearest neighbors algorithm belongs to a class of lazy learning methods. When a new 

example is presented to a nearest neighbor predictor, a subset of learning examples most similar 

to the new example is used to make a prediction. This method is described in [Kononenko and 

Kukar 2007]. 
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For regression problems the mean target variable value from the set of nearest neighbors is 

predicted: 
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where k  is the number of nearest learning examples which influence the prediction of k-NN 

algorithm.  

Type of distance measure has big impact on determining which set of learning examples 

are closest to the new example. In the most cases, Euclidean distance is used: 
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In (4), ),( jl ttD  is Euclidean distance between 2 examples lt and 
jt , and a  is the total 

number of attributes. 

Before calculating Euclidean distance all attributes are scaled to the [0,1] interval. For 

continuous attributes the distance between two attributes 
liv ,
 and 

jiv ,
 is defined as: 

 jilijili vvvvd ,,,, ),( 
 (5) 

3. Results 

In this paper we used MLP neural networks trained with backpropagation algorithm and k-NN 

algorithm for predicting wall shear stress distribution for the two different FE models. The 

problem that we are solving is multi-target prediction problem, and because of that for each 

surface node of the models we created one MLP. This means that our model consists of 195 

different neural networks in case of aneurysm model and 642 different neural networks in case 

of carotid bifurcation model, one for each surface node. For training this model and k-NN 

model we randomly chose 70% of the total data (3346 learning examples). Remaining 30% of 

data is used for testing (1433 testing examples). 

MLPs with 5 neurons in hidden layer, bipolar sigmoid activation functions in hidden 

neurons and linear activation function in the output neuron are used. The stopping criterion was 

defined as the maximum number or learning epochs (1000). Input layer has nine input neurons 

(in case of aneurysm model) and fifteen input neurons (in case of carotid bifurcation model) 

corresponding to input parameters (see Tables I and II). The output layer consists of one neuron 

corresponding to WSS value of the node for which MLP is created.  

k-NN model predicts the target values that are averaged from the 5 most similar learning 

examples (nearest neighbors) in the problem space. 

We evaluated the performance of the models by computing their relative mean squared 

error (RMSE). RMSE is computed as a sum of the squared differences between the true and the 

predicted values of the outputs for all of 1433 testing examples and is afterwards normalized 

with the sum of the squared errors of the default predictor (i.e. a model which always predicts 

average values of the outputs). 

For j-th testing example squared error is given as: 
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where n  is the number of surface nodes (195 or 642), ijf ,
ˆ  is the predicted WSS value for i-th 

node for j-th example and 
ijf ,
 is the true value of WSS for i-th node of j-th example. 

In the same way, squared error for default predictor for j-th learning example is calculated 

as: 
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where 
if  is the average value of WSS for i-th node among training examples: 
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where trainN
 

is the number of training examples (3346).  

Finally, RMSE is calculated as: 
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where testN
 

is the number of testing examples (1433).  

The lower RMSE is, the more accurate the model is. The RMSE values for the tested 

models are shown in Tables IV and V for aneurysm and carotid bifurcation model respectively. 

Model RMSE 

MLP 0.0351 

k-NN 0.1008 

Table 4. Relative Mean Squared Error of the Tested Models for Aneurysm Model 

Model RMSE 

MLP 0.0305 

k-NN 0.2416 

Table 5. Relative Mean Squared Error of the Tested Models for Carotid Bifurcation Model 
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Figures 4 and 5 show calculated and predicted WSS distribution for three randomly chosen test 

examples for aneurysm and carotid bifurcation models (Other results are not shown here).  

 

Fig. 4. WSS distribution for aneurysm model (3 randomly chosen geometries out of 1433 

testing ones are shown): left-calculated, middle-MLP predicted, right-k-NN predicted [units Pa] 

 

Fig. 5. WSS distribution for carotid bifurcation model (3 randomly chosen geometries out of 

1433 testing ones are shown): left-calculated, middle-MLP predicted, right-k-NN predicted 

[units Pa] 

From Tables IV and V we can see that both, neural network and k-NN models, showed high 

potential in WSS distribution prediction task. Same thing we can conclude from Figures 4 and 

5, where we can see that calculated and predicted wall shear stress distribution is quite similar. 

For both, carotid bifurcation and aneurysm models neural network model showed higher 

precision in modeling WSS distribution than k-NN model.    
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4. Conclusion 

This work presented an application of data mining methodology to a hemodynamic problem in 

which the relationship between geometric parameters, blood density, dynamic viscosity and 

blood velocity of the human carotid bifurcation and aneurysm, and the wall shear stress 

distribution was modeled. The results obtained from computer simulations were used as training 

data to evaluate two different regression models, which both exhibited capabilities of being 

used for this task. The neural network model showed better results than k-NN model. The 

achieved results can be used to aid the assessment of stroke risk for a given patient‘s data in real 

time. Further research will focus on real life situations where applicability of created data 

mining applications will be tested on real patient data. Also, other regression models like 

support vector machines (SVM) and linear regression will be created and tested.  
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Извод 

Повезивање података добијених из компјутерских симулација за 

моделе анеуризме и каротидне бифуркације 
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Резиме 

Варијабилност геометрије артеријског система је особина индивидуалности. Да би се 

анализирао утицај геометријских параметара, густине крви, динамичке вискозности и 

брзине крви на дистрибуцију смичућег напона зида у бифуркацији и анеуризми људске 

каротидне артерије, компјутерске симулације су урађене да би се генерисали подаци који 

се односе на овај феномен. У овом раду, оцењујемо два предикциона модела за 

моделирање ових релација: модел неуронске мреже и алгоритам к-најближих суседа. 

Резултати су показали да оба модела имају велике могућности предвиђања. Остварени 

резултати представљају прогрес у процени ризика од срчаног удара за испитиване 

пацијенте у реалном времену. 
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