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Abstract

The meshless analog equation method (MAEM) is employed for 3D analysis of thick
functionally graded nonhomogeneous anisotropic plates. In this case the response of the plate is
governed by three coupled partial differential equations (PDESs) of second order with variable
coefficients in terms of displacements, i.e. the counterpart of the Navier equations for the
general nonhomogeneous anisotropic body. The system of equations is solved using the new
truly meshless method for solving elliptic PDEs developed by Katsikadelis. This method is
based on the concept of the analog equation, which converts the original coupled PDEs into
three uncoupled Poisson’s equations with fictitious sources, under the original boundary
conditions. The fictitious sources, unknown in the first instance, are approximated by multi-
quadrics radial basis functions (MQ-RBFs) series. Integration of the substitute equations allows
the approximation of the sought solution by new RBFs, which approximate accurately not only
the solution but also its derivatives. This permits a strong formulation of the problem. Thus,
inserting the approximate solution in the PDEs and in the boundary conditions (BCs) and
collocating at a predefined set of mesh-free nodal points yield a system of linear equations,
which permit the evaluation of the expansion coefficients of radial basis series, which represent
the solution. Numerical results are given which validate the efficiency and the accuracy of the
developed solution procedure.

Keywords: Meshless method, thick plates, nonhomogeneous anisotropic elasticity, radial basis
functions, analog equation method

1. Introduction

For many technical applications the classical thin plate theory (Kirchhoff’s theory) yields
sufficiently accurate results (Timoshenko, 1959). The accuracy of the classical plate theory
decreases and its validity is lost with growing thickness. It may also result in serious errors
regarding the distribution of the internal stresses, especially in the edge zone as well as the
magnitude of the reactions. Besides, in classical plate theory transverse shear deformation is
neglected. The imperfections of the classical plate theory prompted various researchers to
develop more accurate theories which take into consideration shear deformation (Wang et al.
2000, Kienzler 2002). In these theories the displacements are usually expanded in polynomial
series. The order of the truncated terms categorizes the order of the approximate theory. The
higher the order of the theory, the more difficult is the solution of the resulting equations and
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the realization of the consistent associated boundary conditions. The Mindlin and Reissner
theories have given good approximations as second order theories and several solutions have
been developed (e.g. Katsikadelis and Yiotis, 1993). The researcher realized early that all these
shortcomings could be overcome if the plate was analyzed a 3-D prismatic body. Three-
dimensional structures are governed by the Navier equations of equilibrium and can be
analyzed numerically either by domain methods (e.g., finite difference and finite element
methods) or by the boundary methods (e.g. boundary element method). However, the above
mentioned numerical methods seem not efficient, when the material is nonhomogeneous
anisotropic due to the fact that the differential equations that must be solved have variable
coefficients. An alternative to these methods could be the so called meshless or mesh-free
methods. The radial basis function methods offer an efficient computational tool to solve
complicated differential equations (Kansa, 1990) using only nodal points arbitrarily distributed
in the domain and on the surface of the body. This method is alleviated from element
discretization, as in FEM, or from establishing the fundamental solution, as in BEM. Among
them the standard MQ-RBF (multiquadrics radial basis functions) method has been applied to
solve several problems. However, this method exhibits certain major disadvantages. The
resulting coefficient matrix becomes ill-conditioned as the number of the nodes increases and
special techniques are required to circumvent this shortcoming (Kansa and Hon 2005). On the
other hand, due to inaccuracy of the derivatives of the approximated solution the strong
formulation of the problem may be problematic. More over the accuracy of the solution
depends on the shape parameter of the MQs, which, however, can not be specified a priori for
an optimum solution. The above drawbacks are overcome by the new meshless RBFs method,
the MAEM (Katsikadelis 2006). This method is based on the concept of the analog equation of
Katsikadelis, according to which the original equation is converted into a substitute equation,
the analog equation, under a fictitious source. The fictitious source is represented by radial basis
functions series of multiquadric type. Integration of the analog equation yields the sought
solution as series of new radial basis functions. The major advantage of the presented
formulation is that it results in coefficient matrices, which are not ill-conditioned and thus they
can be always inverted. Moreover, since the accuracy of the solution depends on a shape
parameter of the MQs, the position of the nodal points as well as of the two arbitrary integration
constants of the analog equation, a procedure is developed to optimize these parameters. This is
achieved by minimizing the functional that produces the PDE as an Euler-Lagrange equation
(Katsikadelis 2008) under the inequality constraint that the condition number of the coefficient
matrix ensures invertibility. This procedure requires the evaluation of a domain integral during
the minimization process. This is facilitated by converting the domain integral to a boundary
integral using DRM (Katsikadelis 2002). The proposed method is applied here to solve the
system of three coupled equations describing the response of an nonhomogeneous anisotropic
elastic prismatic body representing the thick plate. Numerical examples are presented, which
illustrate the efficiency and accuracy of the method.

The structure of the remaining paper is as follows. In Section 2, the equations governing
the response of the nonhomogeneous and anisotropic three dimensional elastic body are derived
in a form amenable to the MAEM solution. In Section 3, the MAEM is presented as applied for
the solution of the problem at hand. In Section 4, two thick plates are analyzed and numerical
results are given in tabular and graphical form as compared with those obtained from other
solutions. The last Section, summarizes some conclusions drawn from this investigation.
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2. Derivation of the Governing Equations

Consider the 3-D inhomogeneous anisotropic linear elastic body occupying the domain V' of
the zyz space with boundary S. The equations governing the elastostatic response of the body

are

Equilibrium equations: Vie+f=0 (1a)

Constitutive relations o =Ce (1b)

Kinematic relations e=Vu (1c)
inl- _ 1 T T T

Total potential: 1= fv[Qe Ce—f'u dV—fSlt uds (1d)

where C = Cj,(4,j = 1,2...,6) is the constitutive matrix; S; is the part of the boundary where

tractions are prescribed. The operator V vyields the kinematic relations and is given as
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are the vectors of the displacement, stress and strain components and body forces, respectively.
Since the body is nonhomogeneous the constitutive matrix is position dependent, that is

C = C(z,y,2) . This matrix is symmetric, C = C", and nonsingular, det(C) = 0.

Introducing Eq. (1b) into (1a) and using (1c) we obtain the equilibrium equations in terms
of the displacements

L (’LL) + Lo (U) + Lus (’w> +£=0 (3a)
Lot () + Loz (0) + L (w) + f, = 0 (30)
L (U) + Ls, (U) + Ls; (w) +£=0 (3¢c)

where the operators L; are given as
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The boundary conditions on a part of the boundary may be of the following type:

u=u, v=v, w=w onJSg, (5a)

t,=t, t,=t, .=t onsg, (5b)

where u,v,w,t,,t,,t. are prescribed quantities. Mixed type boundary conditions may be also

specified on a part of the boundary, namely combinations of three components, such as two
displacement and one traction component or one displacement and two traction components.

Attention should be paid if S; is the whole surface. In this case, the boundary tractions can not
be prescribed arbitrarily, but they must ensure the overall equilibrium of the body. For this type
of boundary conditions, the solution of Eqgs (3) is not uniquely determined, because it contains
an arbitrary rigid body motion. Therefore, the rigid body motion should be restrained in order to
obtain the solution (Katsikadelis 2002). The traction components on the boundary are given as

t=0-'n (6)

where n(n,,n,,n.) is the unit vector normal to the boundary. Using (1b) and (1c), Egs (6) give
t, = Ti(u) + Ta(v) + Tis (w) (72)

ty = Ton(u) + Tas (v) + Tos(w) (7b)

t. = Tn(u) + T (v) + Tz (w) (7¢)
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where the operators T); are given as

T = (Cun, + Cuny, + Cen. Ju,, +(Cun, + Cuny, + Cin. )u,,
+(Cions + Casny + Cosn u,
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Tis = (Cisn, + Casny + Coon. )w,, +(Cisny + Casny + Csem )w,y
+(Cun, + Csuny, + Csen. w, .

T = (Cuun, + Crony + Cisn Juye HCuny + Couny + Cusn Yy,
+(Cusnz + Coxny + Csen u,.

Too = (Cuny + Couny + Cisne vy, H(Corny + Coany + Cosni vy,
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The expression of the total potential, Eq. (1d), is written in terms of displacements as
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where S,,S,,S; are the parts of the boundary on which the tractions t,,t,,t. are prescribed.

Note that in general itis S, =S, = S..

3. The MAEM solution

Let u,v,w be the sought solution. These functions are twice differentiable in V' and once on
the surface S . Applying the Laplacian operator V> we obtain the analog equations

Viu = bi(x) V20 = by(x) Viw = by(x) (10a,b,c)

where b =b;(x), i =1,2,3 are unknown fictitious sources. Eqgs (10) under the boundary

conditions (5) can give the solution of the problem provided that the fictitious sources
b = bi(x) are first established. In this context the fictitious sources are approximated by MQ-
RBFs series. Thus, for the displacement « we can write

M+N

Viu ) al'f (11)
j=1

where f =+r’ +¢*, r :”x—x,", ¢ is the shape parameter and M,N represent the

number of collocation (nodal) points inside V' and on S, respectively. Equation (11) is
integrated to yield the solution in the form

Vi, (12)

where 4; is the solution of

Y = f, (13)
Eq. (13) is readily integrated as follows.

Since f; = fi(r) depends only on the radial distance r, it will be also 4; = 4;(r) .
Consequently, we can write Eq. (13) in spherical coordinates as

1d

1df,di
r dr

o)) s

which yields after consecutive integration

4 2% 4+ 3¢
%§”V+q+(fLC”9+F (15)
T T

C

where G = 0 for » = 0, and arbitrary for r = 0. The arbitrary constants G and F' may play
an important role in the method, because they, together with the shape parameter ¢, control the
conditioning of the coefficient matrix and the accuracy of the results. Therefore, on the basis of
Eqg. (11) the solution is approximated by the expressions



26 M.S.Nerantzaki: Functionally graded nonhomogeneous anisotropic thick plates. A meshless 3d analysis
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u E a\Ma, v a;’'; w a
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which are forced to satisfy the governing equations and the boundary conditions. For this
purpose Eqns (16) are inserted into Eqns (3) and (5) to yield the system of linear equations
Aa=D 17)
which permit the evaluation of the 3(M + N) coefficients a\”,a\”,al" (j =1,2,....M + N).
Then the solution is given from Egs. (16), which can be differentiated and inserted in Eqgs (1b)
and (1c) to give the strains and stresses at the nodal points. Optimal values of the shape
parameter and centers of the multiquadrics as well as of the integration constants G and F' can
be obtained by minimizing the total potential, Eq. (9), while controlling the condition number of
the matrix A to ensure its invertibility. This procedure also minimizes the error of the solution.

4. Numerical Examples

The method is illustrated by the examples below. The thick plate is represented by a three
dimensional prismatic body. The interior nodal points are distributed on layers symmetrically
placed with respect to the middle surface. The same distribution of the nodal points is employed
on the upper and lower surfaces of the plate, while the nodal points on the lateral boundary
surface are distributed along line normal to the middle surface. This distribution permits the
simulation of the conventional plate boundary conditions. The results have been obtained by
programming the previously presented solution procedure in MATLAB language and using its
ready-to-use functions for matrix manipulation and minimization. Two square plates, one
clamped and one simply supported, have been analyzed.

Example 1. A uniformly loaded clamped square plate

A homogeneous square clamped plate of side a = 1m and thickness 2 has been analyzed (
0<z<1,0<y<1, 0<z<h). The material constants are: £ =1.1x10°kN/m?  and
v = 0.3, while the uniform load is ¢ = 1000kN / m?. In Table 1, the computed by the MAEM
non-dimensional central deflection w of the plate for different thickness-to-side ratios » / a;
D = ER’ /12(1—v*) is shown as compared with other available thick plate solutions. The
numerical results have been obtained using 1880 nodal points (N=680 surfaces nodal points and

M=1200 internal points distributed on 12 equidistant layers).
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w=10’w/(qa* / D)

h/a Classical theory Reissner MAEM E?EE\)/I

[Timosh. & [Kats& Yiot. | oo | [veg FEM

W. Krieger] 1993] Zhang]
0.20 0.1265 0.2107 0.2116 0.2119 (12800)
0.30 0.3151 0.3175 0.3189 0.3119 (11560)
0.40 0.4613 0.4423 0.4444 0.4448 (6700)
0.50 0.6493 0.5968 0.6100 0.6094 (400)

Table 1: Central deflection of a uniformly loaded clamped square plate

The FEM solution was obtained using the NASTRA code with solid elements (their number is
shown in parenthesis in the Table). Moreover, in Fig. 1 through Fig. 7 the variation of the
displacements and stresses along the thickness for the case a =1, h = 0.5 are presented as
compared with a FEM solution. The load ¢ = 1000kN / m? acts on the surface z = 0.

Deflection w at x=0.5 y=0.5

05 :
—e— MAEM
—=—FEM
0.4
03
£
N
0.2
0.1
0
0 2 4 6 8
w (m) x10°

Figure 1. Variation of the transverse displacement w along the
thickness at the center of the plate.
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o, atx=0.5y=0.5
0.5

0.4

MAEM
0.3
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H
<

0.2

0.1

0
1000 -800 -600  -400  -200 0 200
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Figure 2. Variation of the stress ¢, along the thickness at the center of the
plate.

o, at x=0.5 y=0.5

0.5
0.4 —-8— MAEM [ ]
—8—FEM
03
E
N
0.2
0.1
0
-1500 -1000 -500 0 500 1000

o, (kN/m?)

Figure 3. Variation of the stress o, along the thickness at the center of
the plate.
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u at x=0.75 y=0.5

z (m)

i 05 0 05 1
u (m) x107

Figure 4. Variation of the displacement u along the thickness at point
x = 0.75, y = 0.5 of the plate.

w at x=0.75 y=0.5

0.5 T
- MAEM
== FEM
0.4
_ 0.3
E
N
0.2
0.1
0
0 1 2 3 4 5 6
w (m) x10°

Figure 5. Variation of the transverse displacement w along the thickness at
point x = 0.75, y = 0.5 of the plate.
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o, atx=0.75y=0.5

0.5 T I
—6— MEAM
04 —8— FEM
03
E
N
0.2
0.1
0
-1000 -800 -600 -400 -200 0
o, (kN/m?)

Figure 6. . Variation of the stress . along the thickness at point
x = 0.75, y = 0.5 of the plate.

o, atx=0.75y=0.5

0.5
D
0.4 —6— MAEM
—&— FEM
03
E
N
0.2
0.1 /r
0 sl
-600 -400 -200 0 200

o, (KN/m?)

Figure 6. . Variation of the stress o, along the thickness at point
x = 0.75, y = 0.5 of the plate.

Example 2. A functionally graded simply supported square plate

A square simply supported plate made of nonhomogeneous isotropic material is analyzed. The
side of the plate is a =1 and thickness h = 0.25. We use a Cartesian coordinate system zyz,

with the plane z =0 coincident with the middle surface of the plate. A normal traction
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(transverse load) ¢ = qo sin(7z)sin(wy) is applied on the upper surface, while the lower
surface is traction free. The material is nonhomogeneous and exponentially graded through the
thickness, that is Ez = Eye'“/"*"/?  E, = E, = E,; k is a parameter that dictates the material

variation profile through the plate thickness and takes values greater than zero. In the case
k=0, the plate is fully homogeneous. The numerical results have been obtained with

Ey =1.1x10", v =0.3 and ¢, = 1000kN /m? using N=238 surface nodal points and
M=245 internal nodal points distributed at five layers. Table 2 shows the nondimensional

central deflections for various values of the parameter k£ as compared with those given in Ref.
(Zenkour 2007).

w=10w / (ga* / Eoh®)

k 0.1 0.3 0.5 0.7 1.0 1.5
MAEM 0.3580 0.31638 0.27680 0.24063 0.22534 0.18054
(Zenkour 2007) 0.3490 0.31677 0.28747 0.26083 0.22535 0.18054

Table 2; Central deflection of a functionally graded simply supported square plate.

5. Conclusions

In this paper, thick plates made of nonhomogeneous functionally graded and anisotropic
material have been modeled as three dimensional prismatic bodies. The analysis has been
performed using the MAEM (Meshless Analog Equation Method). The method has been
applied successfully to analyze thick clamped and simply supported plates with various
thickness-to-side ratios. It incorporates all the advantages of truly meshless methods, while it
circumvents the drawbacks due to the use of MQ-RBFs. The efficiency and accuracy of the
method is demonstrated by comparing the results with those obtained from other methods
developed for thick plate analysis.
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Pe3nme

Merozna Oesmpexne aHanorde jenHaundne (MAEM) je kopumihena 3a 31 anHanu3y aeGenux
(DYHKIIMOHAJIHO HEXOMOTEHHUX aHM30TPOITHUX IIJI0Ya. Y OBOM CIIy4ajy OZ3MB ILUIOUE j& 3aCHOBaH
Ha TpH crpernyre mnapuujandHe gudepenumjanne jenuaumne (ITJE) npyror penma ca
NIPOMEHJPMBUM KOC(HIMjEeHTUMa 3aBUCHUX OJ IIOMEpama, Tj. O0BO oaroeapa HaeueoBum
jenHayMHaMa 3a OIITE HEXOMOTCHO aHW30TPONHO Teno. CHCTeM jeHayMHa je pelleH
KoprcTehu TOTIyHO HOBY Oe3MpekHYy METOny 3a pemaBame enuntuaaux [1JIE pasBujeny on
crpane Kanmkanenuca (Katsikadelis). Metona ce 3acHuBa Ha KOHIIETITY aHAJIOTHE jeIHAYHHE,
Koja mpeBomu opurnHamHe cupernyte I[IJIE y Hecmpernyre IloacoHoBe jemHaumHe ca
(UKTHBHUM H3BOpUMA, a Ca OPHUTHMHAIHMM TpaHUYHUM YyciioBuMa. (OHUKTUBHH W3BOPH,
HEMO3HaTH y TOYETKY, CE€ alpOKCUMHpPajy ca MYJITH-KBAaJpaTHUM HU30BMMa (yHKIHja ca
pamujaaaom  6asom  (MQ-RBFS). UHrerpanuja OBHX  jeJHAYMHa-3aMeHa  JOMyINTa
aNpOKCUMAIIMjy TpaXXCHOT peniekha HoBuM  RBF HH30BMMa, KOju HE camMo Ja TadHO
anpokcuMupajy pememe Beh u mweroe u3Bone. OBo jgomymTa jaky (GopMynaimjy mpobdiaema.
[Ipema Tome, ymerame npuOmmkHOr pemiewa y IIJIE jenHaunHe M y rpaHu4HE YCIIOBE H
KOJIOLMpAamke y YHAIpea NeGHUHHCAHOM CKYIy OJf Mpeke cJI000JHHX YBOpOBA, Jlaje CHCTEM
JVHEapHHUX jeJHauYMHA KOje IOoIMymTajy oapehuBame KkoeduimjeHaTta pa3BHjEeHOI HHM3a ca
panujamHOM 0a30M, IITO TIpeNCTaBjba peleme. JlaTh HyMEpHUKH pe3yiaTaTH IOTBphyjy
e(pUKACHOCT U TAYHOCT Pa3BHjEHOT MTOCTYTIKA PEIIaBama.

Kmyune peun: besmpexna merona, neberne mrodye, HEXOMOTeHa aHU30TPOIHA €IACTHYHOCT,
(yHKTIHje ca panujarHOM 6a30M, METO1a aHAIIOTHE jeTHAUYNHE
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