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Abstract 

The meshless analog equation method (MAEM) is employed for 3D analysis of thick 
functionally graded nonhomogeneous anisotropic plates. In this case the response of the plate is 
governed by three coupled partial differential equations (PDEs) of second order with variable 
coefficients in terms of displacements, i.e. the counterpart of the Navier equations for the 
general nonhomogeneous anisotropic body. The system of equations is solved using the new 
truly meshless method for solving elliptic PDEs developed by Katsikadelis. This method is 
based on the concept of the analog equation, which converts the original coupled PDEs into 
three uncoupled Poisson’s equations with fictitious sources, under the original boundary 
conditions. The fictitious sources, unknown in the first instance, are approximated by multi-
quadrics radial basis functions (MQ-RBFs) series. Integration of the substitute equations allows 
the approximation of the sought solution by new RBFs, which approximate accurately not only 
the solution but also its derivatives. This permits a strong formulation of the problem. Thus, 
inserting the approximate solution in the PDEs and in the boundary conditions (BCs) and 
collocating at a predefined set of mesh-free nodal points yield a system of linear equations, 
which permit the evaluation of the expansion coefficients of radial basis series, which represent 
the solution. Numerical results are given which validate the efficiency and the accuracy of the 
developed solution procedure. 

Keywords: Meshless method, thick plates, nonhomogeneous anisotropic elasticity, radial basis 
functions, analog equation method 

1. Introduction 

For many technical applications the classical thin plate theory (Kirchhoff’s theory) yields 
sufficiently accurate results (Timoshenko, 1959). The accuracy of the classical plate theory 
decreases and its validity is lost with growing thickness. It may also result in serious errors 
regarding the distribution of the internal stresses, especially in the edge zone as well as the 
magnitude of the reactions. Besides, in classical plate theory transverse shear deformation is 
neglected. The imperfections of the classical plate theory prompted various researchers to 
develop more accurate theories which take into consideration shear deformation (Wang et al. 
2000, Kienzler 2002). In these theories the displacements are usually expanded in polynomial 
series. The order of the truncated terms categorizes the order of the approximate theory. The 
higher the order of the theory, the more difficult is the solution of the resulting equations and 
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the realization of the consistent associated boundary conditions. The Mindlin and Reissner 
theories have given good approximations as second order theories and several solutions have 
been developed (e.g. Katsikadelis and Yiotis, 1993). The researcher realized early that all these 
shortcomings could be overcome if the plate was analyzed a 3-D prismatic body. Three-
dimensional structures are governed by the Navier equations of equilibrium and can be 
analyzed numerically either by domain methods (e.g., finite difference and finite element 
methods) or by the boundary methods (e.g. boundary element method). However, the above 
mentioned numerical methods seem not efficient, when the material is nonhomogeneous 
anisotropic due to the fact that the differential equations that must be solved have variable 
coefficients. An alternative to these methods could be the so called meshless or mesh-free 
methods. The radial basis function methods offer an efficient computational tool to solve 
complicated differential equations (Kansa, 1990) using only nodal points arbitrarily distributed 
in the domain and on the surface of the body. This method is alleviated from element 
discretization, as in FEM, or from establishing the fundamental solution, as in BEM. Among 
them the standard MQ-RBF (multiquadrics radial basis functions) method has been applied to 
solve several problems. However, this method exhibits certain major disadvantages. The 
resulting coefficient matrix becomes ill-conditioned as the number of the nodes increases and 
special techniques are required to circumvent this shortcoming (Kansa and Hon 2005). On the 
other hand, due to inaccuracy of the derivatives of the approximated solution the strong 
formulation of the problem may be problematic. More over the accuracy of the solution 
depends on the shape parameter of the MQs, which, however, can not be specified a priori for 
an optimum solution. The above drawbacks are overcome by the new meshless RBFs method, 
the MAEM (Katsikadelis 2006). This method is based on the concept of the analog equation of 
Katsikadelis, according to which the original equation is converted into a substitute equation, 
the analog equation, under a fictitious source. The fictitious source is represented by radial basis 
functions series of multiquadric type. Integration of the analog equation yields the sought 
solution as series of new radial basis functions. The major advantage of the presented 
formulation is that it results in coefficient matrices, which are not ill-conditioned and thus they 
can be always inverted. Moreover, since the accuracy of the solution depends on a shape 
parameter of the MQs, the position of the nodal points as well as of the two arbitrary integration 
constants of the analog equation, a procedure is developed to optimize these parameters. This is 
achieved by minimizing the functional that produces the PDE as an Euler-Lagrange equation 
(Katsikadelis 2008) under the inequality constraint that the condition number of the coefficient 
matrix ensures invertibility. This procedure requires the evaluation of a domain integral during 
the minimization process. This is facilitated by converting the domain integral to a boundary 
integral using DRM (Katsikadelis 2002). The proposed method is applied here to solve the 
system of three coupled equations describing the response of an nonhomogeneous anisotropic 
elastic prismatic body representing the thick plate. Numerical examples are presented, which 
illustrate the efficiency and accuracy of the method. 

The structure of the remaining paper is as follows. In Section 2, the equations governing 
the response of the nonhomogeneous and anisotropic three dimensional elastic body are derived 
in a form amenable to the MAEM solution. In Section 3, the MAEM is presented as applied for 
the solution of the problem at hand. In Section 4, two thick plates are analyzed and numerical 
results are given in tabular and graphical form as compared with those obtained from other 
solutions. The last Section, summarizes some conclusions drawn from this investigation. 
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2. Derivation of the Governing Equations 

Consider the 3-D inhomogeneous anisotropic linear elastic body occupying the domain V  of 
the xyz  space with boundary S . The equations governing the elastostatic response of the body 
are 

Equilibrium equations: ˆ T  f 0   (1a) 

Constitutive relations   C   (1b) 

Kinematic relations  ˆ u   (1c) 

Total potential: 1

2 t

T T

V S
dV ds

         C f u t u   (1d) 

where ,( , 1,2 ,6)ijC i j C   is the constitutive matrix; tS  is the part of the boundary where 

tractions are prescribed. The operator ̂  yields the kinematic relations and is given as 
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are the vectors of the displacement, stress and strain components and body forces, respectively. 
Since the body is nonhomogeneous the constitutive matrix is position dependent, that is 

( , , )x y zC C . This matrix is symmetric, TC C , and nonsingular, det( ) 0C .  

Introducing Eq. (1b) into (1a) and using (1c) we obtain the equilibrium equations in terms 
of the displacements 

      11 12 13 0xL u L v L w f     (3a) 

      21 22 23 0yL u L v L w f     (3b)  

      31 32 33 0zL u L v L w f     (3c) 

where the operators ijL  are given as 
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The boundary conditions on a part of the boundary may be of the following type: 

 , ,u u v v w w       on uS  (5a) 

 , ,x x y y z zt t t t t t        on tS  (5b) 

where , , , , ,x y zu v w t t t  are prescribed quantities. Mixed type boundary conditions may be also 

specified on a part of the boundary, namely combinations of three components, such as two 
displacement and one traction component or one displacement and two traction components. 
Attention should be paid if tS  is the whole surface. In this case, the boundary tractions can not 
be prescribed arbitrarily, but they must ensure the overall equilibrium of the body. For this type 
of boundary conditions, the solution of Eqs (3) is not uniquely determined, because it contains 
an arbitrary rigid body motion. Therefore, the rigid body motion should be restrained in order to 
obtain the solution (Katsikadelis 2002). The traction components on the boundary are given as 

  t n  (6) 

where ( , , )x y zn n nn  is the unit vector normal to the boundary. Using (1b) and (1c), Eqs (6) give 

 11 12 13( ) ( ) ( )xt T u T v T w    (7a) 

 21 22 23( ) ( ) ( )yt T u T v T w    (7b) 

 31 32 33( ) ( ) ( )zt T u T v T w    (7c) 
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where the operators ijT  are given as  
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The expression of the total potential, Eq. (1d), is written in terms of displacements as 
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where , ,x y sS S S  are the parts of the boundary on which the tractions , ,x y zt t t  are prescribed. 

Note that in general it is x y zS S S  . 

3. The MAEM solution 

Let , ,u v w  be the sought solution. These functions are twice differentiable in V  and once on 
the surface S . Applying the Laplacian operator 2  we obtain the analog equations 

 2
1( )u b  x                        2

2( )v b  x                        2
3( )w b  x  (10a,b,c) 

where ( ), 1,2, 3i ib b i x  are unknown fictitious sources. Eqs (10) under the boundary 

conditions (5) can give the solution of the problem provided that the fictitious sources 
( )i ib b x  are first established. In this context the fictitious sources are approximated by MQ-

RBFs series. Thus, for the displacement u  we can write 

 2 (1)

1

M N

jj
j

u a f




   (11) 

where 2 2
jf r c  , jr  x x , c  is the shape parameter and ,M N  represent the 

number of collocation (nodal) points inside V  and on S , respectively. Equation (11) is 
integrated to yield the solution in the form 

 (1)

1

ˆ
M N

jj
j

u a u



  (12) 

where ĵu  is the solution of 

 2
ĵ ju f   (13) 

Eq. (13) is readily integrated as follows. 

Since ( )j jf f r  depends only on the radial distance r , it will be also ˆ ˆ ( )j ju u r . 
Consequently, we can write Eq. (13) in spherical coordinates as 

  1/2
2 2 2

2

ˆ1

)

d du
r r c

dr drr

       
 (14) 

which yields after consecutive integration 

 
 2 24 2 3

ˆ ln
8 24

j

f c fc r f G
u F

r c r

         
 (15) 

where 0G   for 0r  , and arbitrary for 0r  . The arbitrary constants G  and F  may play 
an important role in the method, because they, together with the shape parameter c , control the 
conditioning of the coefficient matrix and the accuracy of the results. Therefore, on the basis of 
Eq. (11) the solution is approximated by the expressions 
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which are forced to satisfy the governing equations and the boundary conditions. For this 
purpose Eqns (16) are inserted into Eqns (3) and (5) to yield the system of linear equations 

 Aa b  (17) 

which permit the evaluation of the 3( )M N  coefficients (1) (2) (3), ,j j ja a a  ( 1,2, , )j M N  . 
Then the solution is given from Eqs. (16), which can be differentiated and inserted in Eqs (1b) 
and (1c) to give the strains and stresses at the nodal points. Optimal values of the shape 
parameter and centers of the multiquadrics as well as of the integration constants G  and F  can 
be obtained by minimizing the total potential, Eq. (9), while controlling the condition number of 
the matrix A   to ensure its invertibility. This procedure also minimizes the error of the solution. 

4. Numerical Examples 

The method is illustrated by the examples below. The thick plate is represented by a three 
dimensional prismatic body. The interior nodal points are distributed on layers symmetrically 
placed with respect to the middle surface. The same distribution of the nodal points is employed 
on the upper and lower surfaces of the plate, while the nodal points on the lateral boundary 
surface are distributed along line normal to the middle surface. This distribution permits the 
simulation of the conventional plate boundary conditions. The results have been obtained by 
programming the previously presented solution procedure in MATLAB language and using its 
ready-to-use functions for matrix manipulation and minimization. Two square plates, one 
clamped and one simply supported, have been analyzed. 

Example 1. A uniformly loaded clamped square plate 

A homogeneous square clamped plate of side m1a   and thickness h  has been analyzed (
0 1x  , 0 1y  , 0 z h  ). The material constants are: 2kN / m51.1 10E    and 

0.3  , while the uniform load is 2kN / m1000q  . In Table 1, the computed by the MAEM 
non-dimensional central deflection w  of the plate for different thickness-to-side ratios /h a ; 

3 2/ 12(1 )D Eh    is shown as compared with other available thick plate solutions. The 
numerical results have been obtained using 1880 nodal points (N=680 surfaces nodal points and 
M=1200 internal points distributed on 12 equidistant layers). 
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2 410 / ( / )w w qa D  

Classical theory 
[Timοsh. & 
W. Krieger] 

Reissner 
[Kats & Yiot. 

1993] 

MAEM 
[present] 

3-D 
BEM 
[Ye & 
Zhang] 

FEM 

0.20 0.1265 0.2107 0.2116   0.2119 (12800) 

0.30  0.3151 0.3175 0.3189 0.3119 (11560) 

0.40  0.4613 0.4423 0.4444 0.4448 (6700) 

0.50  0.6493 0.5968 0.6100 0.6094 (400) 

Table 1: Central deflection of a uniformly loaded clamped square plate 

The FEM solution was obtained using the NASTRA code with solid elements (their number is 
shown in parenthesis in the Table). Moreover, in Fig. 1 through Fig. 7 the variation of the 
displacements and stresses along the thickness for the case 1, 0.5a h   are presented as 
compared with a FEM solution. The load 2kN / m1000q   acts on the surface 0z  .  

 
Figure 1. Variation of the transverse displacement w  along the 

thickness at the center of the plate. 
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Figure 2. Variation of the stress z  along the thickness at the center of the 
plate. 

 

Figure 3. Variation of the stress x  along the thickness at the center of 
the plate. 
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Figure 4. Variation of the displacement u  along the thickness at point 

0.75, 0.5x y   of the plate. 

 
Figure 5. Variation of the transverse displacement w  along the thickness at 

point 0.75, 0.5x y   of the plate. 
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Figure 6. . Variation of the stress z  along the thickness at point 
0.75, 0.5x y   of the plate. 

 

Figure 6. . Variation of the stress x  along the thickness at point 
0.75, 0.5x y   of the plate. 

Example 2. A functionally graded simply supported square plate 

A square simply supported plate made of nonhomogeneous isotropic material is analyzed. The 
side of the plate is 1a   and thickness 0.25h  . We use a Cartesian coordinate system xyz , 
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(transverse load) 0 sin( )sin( )q q x y   is applied on the upper surface, while the lower 
surface is traction free. The material is nonhomogeneous and exponentially graded through the 
thickness, that is ( / 1/2)

0
k z hEz E e  , 0x yE E E  ; k  is a parameter that dictates the material 

variation profile through the plate thickness and takes values greater than zero. In the case 
0k  , the plate is fully homogeneous. The numerical results have been obtained with 

5
0 1.1 10E   , 0.3   and 2kN / m0 1000q   using N=238 surface nodal points and 

M=245 internal nodal points distributed at five layers. Table 2 shows the nondimensional 
central deflections for various values of the parameter k  as compared with those given in Ref. 
(Zenkour 2007). 

 4 3
0 010 / ( / )w w q a E h  

k 0.1 0.3 0.5 0.7 1.0 1.5 

MAEM 0.3580 0.31638 0.27680 0.24063 0.22534 0.18054 

(Zenkour 2007) 0.3490  0.31677 0.28747  0.26083 0.22535 0.18054 

Table 2: Central deflection of a functionally graded simply supported square plate. 

5. Conclusions 

In this paper, thick plates made of nonhomogeneous functionally graded and anisotropic 
material have been modeled as three dimensional prismatic bodies. The analysis has been 
performed using the MAEM (Meshless Analog Equation Method). The method has been 
applied successfully to analyze thick clamped and simply supported plates with various 
thickness-to-side ratios. It incorporates all the advantages of truly meshless methods, while it 
circumvents the drawbacks due to the use of MQ-RBFs. The efficiency and accuracy of the 
method is demonstrated by comparing the results with those obtained from other methods 
developed for thick plate analysis. 
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Извод 

Функционално распоређене нехомогене анизотропне дебеле плоче. 
Безмрежна 3Д анализа 

M.S. Nerantzaki 

School of Civil Engineering, National Technical University of Athens Email: 
majori@central.ntua.gr 

Резиме 

Метода безмрежне аналогне једначине (MAEM) је коришћена за 3Д анализу дебелих 
функционално нехомогених анизотропних плоча. У овом случају одзив плоче је заснован 
на три спрегнуте парцијалне диференцијалне једначине (ПДЕ) другог реда са 
променљивим коефицијентима зависних од померања, тј. ово одговара Навиеовим 
једначинама за опште нехомогено анизотропно тело. Систем једначина је решен 
користећи потпуно нову безмрежну методу за решавање елиптичних ПДЕ развијену од 
стране Кацикаделиса (Katsikadelis). Метода се заснива на концепту аналогне једначине, 
која преводи оригиналне спрегнуте ПДЕ у неспрегнуте Поасонове једначине са 
фиктивним изворима, а са оригиналним граничним условима. Фиктивни извори, 
непознати у почетку, се апроксимирају са мулти-квадратним низовима функција са 
радијалном базом (MQ-RBFs). Интеграција ових једначина-замена допушта 
апроксимацију траженог решења новим  RBF низовима, који не само да тачно 
апроксимирају решење већ и његове изводе. Ово допушта јаку формулацију проблема. 
Према томе, уметање приближног решења у ПДЕ једначине и у граничне услове и 
колоцирање у унапред дефинисаном скупу од мреже слободних чворова, даје систем 
линеарних једначина које допуштају одређивање коефицијената развијеног низа са 
радијалном базом, што представља решење. Дати нумерички резултати потврђују 
ефикасност и тачност развијеног поступка решавања.  

Књучне речи: Безмрежна метода, дебеле плоче, нехомогена анизотропна еластичност, 
функције са радијалном базом, метода аналогне једначине  
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