Journal of the Serbian Society for Computational Mechanics / VVol. 6 / No. 2, 2012 / pp 1-18

(UDC: 519.673:622.24)

Parallel simulations of 3d DC borehole resistivity measurements with goal-
oriented self-adaptive hp finite element method

M.Paszynski'", D.Pardo?, V.Calo®

LAGH University of Science and Technology, Krakow, Poland
paszynsk@agh.edu.pl

“The University of the Basque Country, Bilbao, Spain

and IKERBASQUE (Basque Foundation of Science)

dzubiaur@gmail.com

?King Abdullah University of Science and Technology, Thuwal, Saudia Arabia
victor.calo@kaust.edu.sa

*Corresponding author

Abstract

In this paper we present a parallel algorithm of the goal-oriented self-adaptive hp Finite
Element Method (hp-FEM) with shared data structures and with parallel multi-frontal direct
solver. The algorithm generates in a fully automatic mode (without any user interaction) a
sequence of meshes delivering exponential convergence of the prescribed quantity of interest
with respect to the mesh size (number of degrees of freedom). The sequence of meshes is
generated from the prescribed initial mesh, by performing h (breaking elements into smaller
elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on
selected finite elements. The new parallel implementation utilizes a computational mesh shared
between multiple processors. We describe the parallel self-adaptive hp-FEM algorithm with
shared computational domain, as well as its efficiency measurements. The presentation is
enriched by numerical simulation of the problem of through casing 3D DC borehole resistivity
measurement simulations in presence of invasion.

Keywords: hp Finite Element Method, goal-oriented adaptivity, shared data structure

1. Introduction

The self-adaptive hp Finite Element Method (hp-FEM) for two and three dimensional elliptic
and Maxwell problems were designed and implemented by the group of Leszek Demkowicz
[Demkowicz 2006; Demkowicz et al. 2007]. The codes generate a sequence of hp meshes
providing exponential convergence of the numerical solution with respect to the mesh size. The
parallel version of the two and three dimensional algorithms have been designed and
implemented based on the distributed domain decomposition paradigm, illustrated on the left
panel of Fig. 1. [Paszynski et al. 2006; Paszynski and Demkowicz 2006]. The main
disadvantage of the distributed domain decomposition based parallel code were the huge
complexity of the mesh transformation algorithms executed over the computational mesh stored
in distributed manner. There exist the following mesh regularity rules: 1) the one irregularity
rule, preventing a finite element from being broken two consecutive times without first
breaking larger adjacent elements, and 2) the minimum rule, which states that the order of
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approximation over a face must be the minimum of the corresponding orders of approximation
from adjacent element interiors, and the order of approximation over an edge must be the
minimum of the corresponding orders of approximation from adjacent faces. The main technical
difficulty in previous implementations was to maintain these mesh regularity rules over the
computational mesh partitioned into sub-domains, e.g. a refinement performed over one sub-
domain may require a sequence of additional refinements over adjacent elements, possibly
located at adjacent sub-domains. A partial solution to the problem was the introduction of ghost
elements in order to simplify mesh reconciliation algorithms [Demkowicz et al. 2007; Paszynski
and Demkowicz 2006]. However, ghost elements increased the communication cost, especially
after many refinements, since a layer of initial mesh elements, possibly broken into many
smaller elements, had to be exchanged between adjacent sub-domains.

Fig. 1. The shared domain decomposition where the copy of computational mesh is duplicated
on every processors, but degrees of freedom are stored in distributed manner. The data structure
takes no more than 10% of the total memory utilized during the solver call

Processor Processor Processor Processor
1 2 3 4

Processor Processor Processor Processor
5 6 7 8

In this paper we propose an alternative parallelization technique, based on the shared domain
decomposition paradigm, illustrated on the right panel in Fig. 1. The entire data structure with
the computational mesh is stored on every processor. However, the computations performed
over the mesh are shared between processors. It is done by assigning the so-called processor
owners to particular mesh elements, and executing computations over these elements by
assigned processors. This is usually performed by sharing the algorithm’s loops by many
processors, followed by mpi allreduce call merging results.

The paper is an extended version of the presentation for the International Conference on
Computational Science ICCS 2012 [Calo et. al. 2011]. The structure of the paper is the
following. In Section 2 entitled Automatic hp Adaptivity we introduce an overview of the self-
adaptive goal-oriented algorithm. In the following Section 3 entitled Data Structure supporting
mesh refinements we introduce details of the classes necessary to implement the hp adaptive
algorithm. Section 4 entitled Parallel fully automatic goal-oriented hp Finite Element Method
deals with the parallelization of the self-adaptive goal-oriented algorithm. Finally, Sections 5
and 6 entitled Computational problem formulation and Numerical results present the simulation
results and the scalability of the parallel algorithm.

2. Automatic hp adaptivity

A general sequential algorithm for the fully automatic hp adaptation can be described is the
following steps.

(1) Algorithm starts with the coarse initial mesh with uniform order of approximation.
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(2) The computational problem is solved over the coarse mesh and the approximate
solution uy,, is obtained.

(3) The coarse mesh is globally hp-refined in order to produce the fine mesh. It is done by
breaking each finite element into four son elements and increasing the polynomial
order of approximation by one. This will be the reference mesh used for calculation of
the interpolation error over the coarse mesh.

(4) The computational problem is solved on the fine mesh and the approximate solution
u%vp+1 is obtained.

(5) As the relative error estimator for the coarse mesh, the difference (in H'-seminorm)
between the coarse and the fine mesh solutions is taken. The optimal refinements are
selected based on the calculated error estimators for the subset of the coarse mesh
elements with higher relative error estimators. Selected elements are either broken into
smaller son elements (this is so called h-refinement) isotropically (4 sons) or
anisotropically (2 sons in the same direction) or the polynomial order of approximation
is increased on element edges or interiors (this is so called p-refinement), or both. This
is illustrated in Fig. 2.

The optimal refinements are selected independently over each coarse mesh element. It is
done in a way to provide maximal error decrease rate given by:

u%,p+1 —Uh'p 1 - u%,p+l _Wﬂl

Anrdof

rate = max

1
where Anrdof is the number of added degrees of freedom during the considered refinement, w

is the solution for proposed refinement strategy, obtained by utilizing the projection based
interpolation (Demkowicz 2004) from the fine mesh solution UV nil into the considered
%

is the relative error estimation over the current coarse mesh

u%,pﬂ _W‘

strategy proposed for the coarse mesh element with respect to the fine mesh. Thus, we seek for
a refinementproviding the best error decrease rate with a minimum increase in the number of
degrees of freedom.

refined element,

u%,p+l ~Unp

with respect the fine mesh and is the relative error estimation for the refinement

(1) The selected refinements are executed over the coarse mesh to obtain the new optimal
mesh.

(2) The new optimal mesh becomes a coarse mesh for the next iteration, and the entire
procedure is repeated as long as the global relative error estimation is larger than the
required accuracy of the solution.
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Fig. 2. Many possible refinements of a coarse mesh element

The selection of the optimal refinements for the coarse mesh finite elements is actually
performed in two steps, in order to limit the number of possibilities considered in point 6). First,
the optimal refinements are selected for finite element edges, and then the optimal refinements
for element interiors are selected, with restriction to known optimal refinements for element
edges. The relative error measurements over element edges are performed in the H” seminorm.

The above energy-norm based adaptive algorithm has been further generalized to the case
of goal-oriented adaptivity. The necessary modifications included solving the so-called “dual”
problem over the same coarse and fine grids, and estimate goal-oriented errors as a combination
of the solutions of both direct and dual problems. From the parallel data structures point-of-
view, these modifications implied duplicating the number of degrees-of-freedom in order to
accommodate solution of the dual problem.

3. Data Structure supporting mesh refinements

In this section we introduce data structure supporting mesh h and p refinements performed by
the self-adaptive hp finite element method algorithm.

In the following part of the section, the element, node and vertex classes are introduced

Class:

Element

Attributes:

character(5) : type - 'quadr’, 'trian’ the information about type of the element (currently, the code
supports only quadrilateral elements)

integer(4) : neighbors — pointers to 4 adjacent elements stored in ELEMS table
integer(4) : vertices — pointers to 4 vertices stored in VERTS table

integer(5) : nodes - pointers to 4 edge nodes and 1 middle node
stored in NODES table

integer(4) : bcond - boundary conditions for 4 element edges
(0 non /1 Drichlet / 2 Cauchy)
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integer : processor_owner - processor owning the element
Class:

Vertex

Attributes:

double(2) : geom_coord — geometrical coordinates of the node
integer : father — pointer to father node in NODES table

integer : father_iel - pointer to father initial mesh element
in ELEMS table (if any)

double : solution d.o.f. - degree of freedom (coefficient of local shape functions) utilized for
local approximation of the solution

integer(4) : processor_owners - list of processors owning the vertex
integer :: nr_processor_owners — size of the list

Class:

Node

Attributes:

character(4) : type - type of the node: 'medg’ for edge node,

'mdlq’ for middle node

integer : order - order of approximation

integer : father — pointer to father node in NODES table

integer : ref_kind — flag coding refinement type of the node

integer, dimension(:) : vertex_sons - dynamically allocated table storing pointers to all son
vertices for broken edge or interior nodes

integer, dimension(;) : edge_sons - dynamically allocated table storing pointers to all edge son
nodes for broken edge or interior nodes

integer, dimension(:) : interior_sons - dynamically allocated table storing pointers to all interior
son nodes for broken interior nodes

double, dimension(:,:) : geometry d.o.f. - geometrical degrees of freedom utilized to express
geometry of curvilinear edges, expressed as a combination of node shape functions

double, dimension(:,:) : solution_d.o.f. - degrees of freedom

(coefficients of local shape functions) utilized for local approximation of the solution
integer : kref - required refinement for the node, used during the virtual refinements
integer(4) : processor_owners - list of processors owning the vertex

integer :: nr_processor_owners - size of the list



6 M.Paszynski et al: Parallel simulations of 3d DC borehole resistivity measurements

Element
Vertex i + type : char [5 nodes
+ geom_coord : double [2] w + bycpona “int [[4]] ot
4 : 5
4 nieghbors
Element

Fig. 3. Relations between Element, Node and Vertex

The classes are stored in the following ELEMS, VERTS and NODES collections
Collections of objects:

type(Element), pointer, dimension(:) :: ELEMS

dynamically allocated table of Element class objects

type(Node), pointer, dimension(:) :: NODES

dynamically allocated table of Node class objects

type(Vertex), pointer , dimension(:) :: VERTS

dynamically allocated table of Vertex class objects

The Element class objects are created for initial mesh elements only. Each initial mesh
element may have up to four adjacent initial mesh elements. The pointers to neighbors (actually
indices of neighbors in ELEMS collection) are stored in bcond array. Let us discuss relations
between Element, Node and Vertex classes presented in Figure 3.

Each element consists of four vertices, four edges and one interior. Element vertices
correspond to Vertex class objects. Each Element class object aggregates the vertices
list of four Vertex objects. Each Element class object aggregates the nodes list of four
Node objects of ‘medg’ type and one Node object of ‘mdle’ type. Four Node class
objects are related to element edges, and these objects have attribue type='medg’. One
Node class object is related to element interior, and this Node class object has attribue
type='mdle’. Each Element class object aggregates the nodes list of four Node
objects of ‘medg’ type and one Node object of ‘mdle’ type. The links from element
vertices, edges and interiors to father initial mesh element are stored in father iel
attribute. Element vertices are never broken. However, Vvertex class objects are created as a
result of breaking of element edges or interiors. Thus, Vertex class object created as a result
of mesh refinements keeps father link to father Node objects, while initial mesh elements
vertices keeps father iel link to the initial mesh element, which is illustrated in Figure 4.
We utilize here the Unified Modelling Language notation [Booch et al. 1994].
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Fig. 4. Links stored by Vertex class object

When an element edge is broken, one new graph vertex representing element vertex and two
new graph vertices representing element edges are created. These newly created graph vertices
are again represented by one Vertex class object and two Node class objects, with type="medg’.
The Node class object with type="medg’, representing element edge, aggregates a list of
vertex_sons and edge_sons. When the edge is broken, the ref _kind attribute of the Node class
object is set to 1, and references to newly created Vertex class and Node class objects are stored
on these lists. This is illustrated in Figure 5.

When an element interior is broken in both, horizontal and vertical directions, one new
graph vertex representing element vertex, four new graph vertices representing element edges,
and four new graph vertices representing element interiors are created. These newly created
graph vertices are again represented by one Vertex class object, four Node class objects, with
type="medg’ and four Node class objects, with type="mdle’. The Node class object with
type="mdle’, representing element interior, aggregates a list of vertex_sons, edge_sons and
interior_sons. When the interior is broken in both directions, the ref _kind attribute of the Node
class object is set to 11, and references to newly created Vertex class and Node class objects are
stored on these lists. This is illustrated in Figure 6.

The application supports also anisotropic mesh refinements, thus, element interior can be
broken in one direction. When an element interior is broken in one direction, one new graph
vertex representing element edge, and two new graph vertices representing element interiors are
created. These newly created graph vertices are again represented by one Node class objects,
with type="medg’ and two Node class objects, with type="mdle’. The Node class
object with type="mdle’, representing element interior, aggregates a list of
vertex sons, edge sons and interior sons. When the interior is broken in one
direction, the ref kind attribute of the Node class object is set to 1 or 10, depending on the
direction, and references to newly created Node class objects are stored on these lists. This is
illustrated in Figure 7.
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type="'medg’
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Fig. 5. Relations between Element, Node and Vertex class objects for broken element edge

4. Parallel fully-automatic goal-oriented hp Finite Element Method

In this section, we present the parallel version of the fully automatic goal-oriented hp adaptivity,
implemented under the shared domain decomposition paradigm. The new parallel algorithm can

be summarized in the following steps:

type='mdlq'
ref_kind=11

interior broken into 4 new interiors

Node

Element

father_iel

Vertex |

1 vertex_sons

Node

+ type : char [4] edge_sons Hode

+ ref_kind : int 1

4 interior_sons

Node

Fig. 6. Relations between Element, Node and Vertex class objects for element interior
broken in horizontal and vertical directions
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Fig. 7. Relations between Element, Node and Vertex class objects for element interior

(1)

()

broken in one direction

The coarse initial mesh is generated on every processor. The initial mesh elements are
assigned to different processors, by filling processor_owner attribute of the element
object. It is performed either by interfacing with the ZOLTAN library (ZOLTAN), or
by utilizing simple row-wise mesh partitioners for two dimensional meshes. The
element’s processor_owner attribute is filled on every processor, in other words, each
processor knows processor owners of all elements. The element edges and vertices are
assigned to processor owners. It is performed by browsing all elements and filling
processor_owners lists located at element node or vertex objects. This is illustrated in
Figure 8. The element_refined objects are created for each active finite element. This is
illustrated in Figure 9. The middle_node links are related with interior nodes of active
finite elements, represented by node objects with type="mdlq’. The edge refined
objects are created for all active finite element edges. The edge _node links are related
with element edge nodes, represented by node objects with type="medg’. Notice, that
element_refined objects (related to active finite elements) do not correspond to element
objects (related to the initial mesh elements only).

The computational problem is solved over the current coarse mesh, by utilizing multi-
frontal parallel direct solver [Paszynski et al. 2010; Paszynski and Schaefer 2010].
Each processor stores the local solution vector at its active finite element node and
vertex objects, in the solution d.o.f. attribute, see Figure 8. The coarse
mesh solution d.o.f. are also recorded at coarse mesh solution arrays of
elements refined objects.

node
solution_d.o.f. vertex
geometry_d.o.f. element coordinates
processor_owners <« processor_owner [C———| solution_d.o.f.
type 5 4 processor_owners
order_of_approximation

Fig. 8. Additional attributes storing the partition of the mesh
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error edges
isotropy_flag
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coarse_mesh_solution T
l mididle_node edge_node
node node

type = 'mdiq’' type = 'medg’

Fig. 9. Additional data structure managing mesh refinements over the distributed data structure

(1)

()

3)

(4)

The global hp refinement is executed over the coarse mesh in order to construct the
reference fine mesh. This is performed by every processor over the entire data
structure. Each finite element from the coarse mesh is partitioned into four new finite
elements, and the polynomial order of approximation is uniformly raised by one. This
is done by executing isotropic h refinement over each element interior node object,
as well as refinement over each element edge node object. Also, the
order of approximation attribute is increased for each active node (for each
leaf node object).

The processor owners of newly created node and vertex objects are filled
based on the information inherited from father node objects.

The computational problem is solved again over the fine mesh by utilizing the multi-
frontal parallel direct solver [Paszynski et al. 2010; Paszynski and Schaefer 2010].
Each processor stores the local solution vector at its active finite element node and
vertex objects, in the solution d.o.f. attribute. Notice that the coarse mesh
solution is still stored at parent nodes as well as at elements refined objects.
For the case of goal-oriented adaptivity, we also solve for the “dual” problem.

Each processor loops through its active elements and computes the relative error
estimation over the element

u. —u
hp %,p+1 it

u
7erhe @

with uy,, being the coarse mesh solution restored from the element refined objects, and

UV bi1 being the fine mesh solution restored from the solution d.o.f. attribute of active
o

finite element node and vertex objects. The relative error is stored in the error attribute
of the element refined objects. For the case of goal-oriented adaptivity, the relative error
estimation over the element also incorporates terms corresponding to the solution of the dual

problem.

(1)

The maximum element relative error is computed, and elements with the relative error
estimation larger than 33% of the maximum error are to be refined.
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(2) For elements with strong gradient of the error in one direction, the isotropy flag
attribute of the element refined object is set to enforce the element refinement in
one direction.

(3) Different refinement strategies are considered for element edges, by utilizing the
formula

1K u%,pu_uh,p YK _u%,pu_M%K u%,pﬂ_w}/TK
m Anrdof ?)

u%,pﬂ - uth

with K denoting an element, u,, the coarse mesh solution restored from the

element refined objects, UV o4l the fine mesh solution restored from active finite
5

element node and vertex objects, and w being the projection based interpolant of the fine
mesh solution u%,,m into the considered edge refinement. Tilde symbol denotes solution of
the “dual” problem needed for goal-oriented adaptivity. The H” seminorm is utilized to measure
the relative error over an element edge. The selected refinement is stored in edge refined
object. If an element edge is going to be p refined, the ref flag attribute for the edge is set
to 1, and the proposed order of approximation is stored at order attribute. If an element edge
is going to be h refined, the ref flag attribute for the edge is set to -1, and the proposed
orders of approximation for son edges are stored at orders attribute array. These estimations
are performed by every processor over active finite elements assigned to the processor. Thus,
the optimal refinement information is stored in distributed manner in element refined
and edge refined objects. These estimations are performed only for edges of elements
with relative error estimation larger than 33% of the maximum relative error.

(1) The proposed refinement data (ref flag, order and orders attributes of
edge refined object as well as isotropy flag of element refined
object) are broadcasted to all processors.

(2) The fine mesh is deallocated and the coarse mesh is restored.

(3) The selected optimal refinements are executed for element edges. This is done by all
processors over the entire data structure. It can be done, since we broadcasted the
proposed refinement data. Some edges are h refined: one new vertex object and
two new edge node objects are created are connected to the original edge node. The
order of approximation for new node objects is taken from orders attribute array
of edge refined object. Some edges are p refined, and the new order of
approximation is taken from order attribute of edge refined object. Some edge
refinements are  modified based on the isotropy flag from
element refined objects.

(4) Different element interior node refinements are considered for elements. This is done
by utilizing the formula

z u%,p+1 - uh‘P 1k u%‘pﬂ - uhvp Lk u%,p+l —W 1k u%,p+1 —W 1k
K Anrdof )
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with K denoting an element u,, the coarse mesh solution restored from the

element refined objects, u/ pid the fine mesh solution restored from active finite

h

5
element node and vertex objects, and w being the projection based interpolant of the fine
mesh solution “%,,Hl into the considered element refinement. Tilde symbol denotes solution of
the “dual” problem needed for goal-oriented adaptivity. The H' seminorm is utilized to measure
the relative error over an element interior. These estimations are performed by every processor
over active finite elements assigned to the processor. The selected refinement is stored in
element refined object. The type of refinement is coded within refinement flag,
and new orders of approximation for son nodes are coded within orders array. Thus, the
optimal refinements information is stored in distributed manner in element refined and
edge refined objects. These estimations are performed only for edges of elements with
relative estimated error above 33% of the maximum relative error.

(1) The proposed interiors refinement data (refinement flag and orders
attributes of element refined objects) are broadcasted to all processors.

(2) The selected optimal refinements are executed for element interiors. This is done by all
processors over the entire data structure. Some elements are h refined: new edge and
interior node objects and vertex objects (for isotropic h refinement) are created and
connected to the original interior node. The order of approximation for new node
objects is taken from orders attribute array of element refined object. Some
elements are p refined, and the new orders of approximation are taken from orders
attribute of element refined object.

(3) The minimum rule is enforced over the entire data structure: the order of
approximation over element edges is set to be equal to the minimum of orders for
adjacent element interiors. This is done by all processors over the entire data structure.
Thus, an identical copy of the new optimal mesh is stored on every processor.

(4) The element refined and edge refined objects are deallocated.

If the maximum error is still greater than the required accuracy of the solution, the new
optimal mesh becomes a coarse mesh and the next iteration is executed.

5. Computational problem formulation

In this section we present exemplary parallel simulations for the 3D DC resistivity logging
measurement simulation problem. The problem consists in solving the conductive media
equation

Vo (o-Vu) =—VoJm™ (5)

in the 3D domain with different formation layers presented in Fig. 10. There is a logging tool
with one transmitter and two receiver electrodes in the borehole. The tool is shifted along the
borehole. The reflected waves are recorded by the receiver electrodes in order to determine
location of the oil formation in the ground. Of particular interest to the oil industry are 3D
simulations with deviated wells, where the angle between the borehole and formation layers is

sharp (6, # 90). This 3D problem can be decomposed as a sequence of coupled 2D problems
by considering the non-orthogonal system of coordinates presented in Fig. 10. Following [Pardo
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et al. 2010], the variational formulation in the new system of coordinates consists in finding
U €Uy +Hp (Q) such that:

a L\ .
<6§ , O'a§> o = <V, f >L2(Q) VYveH D (Q) (6)

. 14T .
where new electrical conductivity of the media 6 =J ‘cd ™ |J| and f = f|J| with
f = VJ"™ being the gradient of the impressed current, and

_ 004, %0%)
8(41142153) (7)

stands for the Jacobian matrix of the change of variables from the Cartesian reference to non-
orthogonal systems of coordinates, and |J| = det(J) is its determinant. We take Fourier series

expansions in the azimuthal &, direction

|=+

u(¢,.62.85)= Zu (& &5 e

©))
411412,4/3 min' gl'gs)elmﬁz

©)
f(41.62.¢5)= Iff, (G Cs e
- (10)

o1 211 211 .. . .
where =% Iue""@dgz Vo :% J'(,e—imczdgz and ¢, :%J.fe*“,[zdé’z and j is the imaginary
0 0

unit. We introduce symbol F, such that applied to a scalar function u it produces the I™ Fourier
modal coefficient u, , and when applied to a vector or matrix, it produces a vector or matrix of

the components being 1™ Fourier modal coefficients of the original vector or matrix
components.

Using the Fourier series expansions we obtain the following variational formulation:

Find F(u)e F (up )+ Hp () such that:

ou AN (lem £hi
<F'(a§}':’“(g)0§ej(l )§Z>LZ(Q ):<V’F|(f)EJI:Z>LZ(QZD) weHL(Q) »

The Einstein’s summation convention is applied with respect to —o<Il,m<o. We select a
mono-modal test function v:vkeM2 . Thanks to the orthogonality of the Fourier modes in L?,
the variational problem defined in Eq. (11) reduces to

Find F,(u)e F (up )+ Hp(Q) such that:
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n=k-2

(12)

since five Fourier modes are enough to represent exactly the new material coefficients. We refer
to [Pardo et al. 2010] for more details.

6. Numerical results

We conclude the presentation by describing a numerical example of parallel computations on
the lonestar (LONESTAR) linux cluster of the 3D DC borehole resistivity measurement
simulations in deviated wells. Figure 11 presents the logging curves for the resistivity logging
measurement simulations in zero, 30, 45 and 60 degrees deviated wells. The results are an
extension of [Pardo et al. 2008] and they include also the case in presence of 10 cm and 50 cm
invasion. The problem geometry can be described by using cylindrical coordinates (p,(p, z )

SUBDOMAIN 2

SUBDOMAIN 3

SUBDOMAIN 1

Fig. 10. Left panel: The borehole, the tool with receiver and transmitter electrodes and the
deviated formation layers. Right panel: The non-orthogonal system of coordinates

(1) Four (one current and three voltage) 2 x 5-cm ring electrodes located 8 cm from the
axis of symmetry and moving along the vertical direction (z axis). Voltage (collector)
electrodes are located 100, 125, and 150 cm above the current (emitter) electrode,
respectively.

(2) Borehole: a cylinder Q, of radius 10 cm surrounding the axis of symmetry
Qx={(x¢,2): p<10cm } with resistivity R=0.1Q-m.

(3) Casing: a pipe (cylindrical shell) Qg of thickness 1.27 cm surrounding the axis of
symmetry Qg = {(X,¢,2):10cm< p <11.27cm }, with resistivity R=10"Q-m.

(4) Formation material 1 a subdomain Qc defined by
Q¢ ={(x,¢,2): p>11.27cm,0cm< z <100cm } with resistivity R =10* Q-m.

(5) Formation material 2: a subdomain Qp defined by
Qp ={(x,¢,2): p>11.27cm,-50cm< z < 0cm } with resistivity R=0.01Q-m
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(6) Formation material 3: a subdomain Q¢ defined by
Qe ={(x,¢,2): p>11.27cm or z >100cm } with resistivity R=5Q-m.

Notice that each point on the plot requires a solution of the 3D problem, and the point
corresponds to the value of the solution at receiver electrode, computed with a very high
accuracy thanks to the goal-oriented hp adaptive methodology. The logging tool has been
shifted along the borehole, from the relative position of 2meters down to -2meters, and we
perform a new simulation for each position of the logging tool. We refer to [Pardo et al. 2008]
for more details. Figure 12 presents the scalability tests of the parallel solver algorithm. The
parallel version of the solver has been tested on the two dimensional mesh with 576 finite
elements with uniform polynomial order of approximation p=2 and 10 Fourier modes utilized to
approximate the solution in its third direction (thus, total number of d.o.f. per node is equal to
20). We refer to [Paszynski et al. 2010; Paszynski and Schaefer 2010; Paszynski et. al. 2010a]
for more details on the solver algorithm. The total number of d.o.f. over the entire mesh is
210,370. The parallel solver reduces the execution time from 211 seconds on a single processor
to less than 2 seconds on 192 processors. Notice that the scalability test corresponds to a single
position of a receiver antenna.
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——NO INV ——NO INV
-+-10 cm INV -+=10 cm INV |
15 -~ 50 cm INV | 15 - 50 cm INV
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Fig. 11. Logging curves for through casing resistivity logging measurement simulations in
deviated wells
7. Conclusions

In this paper we presented the parallel goal-oriented self-adaptive hp finite element method
platform for resistivity logging simulations. We solved the through-casing resistivity logging
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simulation problem in presence of invasion. This is the first existing simulation of the through-
casing resistivity logging simulation in the presence of invasion. This is due to large numerical
contrast (6 orders of magnitude from 10™ to 10°°) that can be resolved only by utilizing the hp
adaptive goal oriented methodology. The developed parallel version of the solver algorithm
with shared data structure allows for a fast solution, and the solver algorithm scales well up to
128 processors.

[— Time[s] ||

— speedup =T1/Tp |

50/

25

Time [s] (log scale)

1 2 4 8 16 32 64 128192 25 o 50 100 150 200 250 300
Number of processors (log scale) Number of processors

Fig. 12 Left panel: Parallel solver execution time [s] up to 256 processors. Right panel:

Speedup of the solver. Logarithmic scales are utilized on both axes
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Pe3ume

VY 0BOM pajy M3NaXeMO jeaH alropuTaM LUJBHO OpHMjeHTHCaHe camoalanTuBHe hp merone
konaunux enemeHara (hp-MKE) ca auctpuOyupaHoM CTPyKTypOM [OjaTaka W MYJITH-
(pOHTATHUM AUPEKTHUM COJBEPOM. AJITOpPUTaM TEHEPHIIEe y IMOTIYHO ayTOMAaTH30BaHO]
¢dopmu (0e3 OmI0 KakBe MHTEpaKIHje KOPHUCHHWKA) HU3 Mpeka Koje Majy eKCIIOHCHITHjalTHy
KOHBEPIeHIIN]Y 3a/1aTe BEJIMYMHE Y OJHOCY Ha BENHMUYUHY Mpexke (0poj crenenu crmodone). Huz
Mpeska ce TeHEepHIIle Ha OCHOBY 3a/laTe WHHUIIMjaHE Mpeske, myTeM h (mesbemeM eeMeHara Ha
Mame eleMeHTte), Wi P (mpuiarohasameM pena anpokcumarje) wiam hp (006a mocrymnka)
MpOMEHOM omabpaHnx enemeHata. HoBa mapanenn3oBaHa NpUMEHa KOPUCTH MPEKY 3a
pauyHame Koja ce jgenu usMmely Buime mnporecopa. Omucyjemo mapanenuszosanu hp-MKE
aNropuTaM ca 3ajeJIJHHYKHM pAYyHCKHM JOMEHOM, Kao M IbEeroBe Mepe e(QUKACHOCTH.
IIpe3enranuja je oboraheHa HyMEpHYKOM CHUMYyJanujoM mpobOiema Mepewma 3J] ormopa
JEeIHOCMEpHE CTpyje 3a OYIIOTHHY Y3 OCTOjarh¢ HHBA3H]C.

Kmwyuyne peun: hp MeTon KOHaYHUX eJeMEHAaTa, LUJBHO OpPHjEHTHCAHA aIalNTHUBHOCT,

pacnopebeHa CTpyKTypa nojaTaka
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