
Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012 / pp 1-18

 (UDC: 519.673:622.24)

Parallel simulations of 3d DC borehole resistivity measurements with goal-

oriented self-adaptive hp finite element method

M.Paszyński
1*

, D.Pardo
2
, V.Calo

3

1AGH University of Science and Technology, Krakow, Poland

paszynsk@agh.edu.pl
2The University of the Basque Country, Bilbao, Spain

and IKERBASQUE (Basque Foundation of Science)

dzubiaur@gmail.com
2King Abdullah University of Science and Technology, Thuwal, Saudia Arabia

victor.calo@kaust.edu.sa

*Corresponding author

Abstract

In this paper we present a parallel algorithm of the goal-oriented self-adaptive hp Finite

Element Method (hp-FEM) with shared data structures and with parallel multi-frontal direct

solver. The algorithm generates in a fully automatic mode (without any user interaction) a

sequence of meshes delivering exponential convergence of the prescribed quantity of interest

with respect to the mesh size (number of degrees of freedom). The sequence of meshes is

generated from the prescribed initial mesh, by performing h (breaking elements into smaller

elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on

selected finite elements. The new parallel implementation utilizes a computational mesh shared

between multiple processors. We describe the parallel self-adaptive hp-FEM algorithm with

shared computational domain, as well as its efficiency measurements. The presentation is

enriched by numerical simulation of the problem of through casing 3D DC borehole resistivity

measurement simulations in presence of invasion.

Keywords: hp Finite Element Method, goal-oriented adaptivity, shared data structure

1. Introduction

The self-adaptive hp Finite Element Method (hp-FEM) for two and three dimensional elliptic

and Maxwell problems were designed and implemented by the group of Leszek Demkowicz

[Demkowicz 2006; Demkowicz et al. 2007]. The codes generate a sequence of hp meshes

providing exponential convergence of the numerical solution with respect to the mesh size. The

parallel version of the two and three dimensional algorithms have been designed and

implemented based on the distributed domain decomposition paradigm, illustrated on the left

panel of Fig. 1. [Paszyński et al. 2006; Paszyński and Demkowicz 2006]. The main

disadvantage of the distributed domain decomposition based parallel code were the huge

complexity of the mesh transformation algorithms executed over the computational mesh stored

in distributed manner. There exist the following mesh regularity rules: 1) the one irregularity

rule, preventing a finite element from being broken two consecutive times without first

breaking larger adjacent elements, and 2) the minimum rule, which states that the order of

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

2

approximation over a face must be the minimum of the corresponding orders of approximation

from adjacent element interiors, and the order of approximation over an edge must be the

minimum of the corresponding orders of approximation from adjacent faces. The main technical

difficulty in previous implementations was to maintain these mesh regularity rules over the

computational mesh partitioned into sub-domains, e.g. a refinement performed over one sub-

domain may require a sequence of additional refinements over adjacent elements, possibly

located at adjacent sub-domains. A partial solution to the problem was the introduction of ghost

elements in order to simplify mesh reconciliation algorithms [Demkowicz et al. 2007; Paszyński

and Demkowicz 2006]. However, ghost elements increased the communication cost, especially

after many refinements, since a layer of initial mesh elements, possibly broken into many

smaller elements, had to be exchanged between adjacent sub-domains.

Fig. 1. The shared domain decomposition where the copy of computational mesh is duplicated

on every processors, but degrees of freedom are stored in distributed manner. The data structure

takes no more than 10% of the total memory utilized during the solver call

In this paper we propose an alternative parallelization technique, based on the shared domain

decomposition paradigm, illustrated on the right panel in Fig. 1. The entire data structure with

the computational mesh is stored on every processor. However, the computations performed

over the mesh are shared between processors. It is done by assigning the so-called processor

owners to particular mesh elements, and executing computations over these elements by

assigned processors. This is usually performed by sharing the algorithm‘s loops by many

processors, followed by mpi_allreduce call merging results.

The paper is an extended version of the presentation for the International Conference on

Computational Science ICCS 2012 [Calo et. al. 2011]. The structure of the paper is the

following. In Section 2 entitled Automatic hp Adaptivity we introduce an overview of the self-

adaptive goal-oriented algorithm. In the following Section 3 entitled Data Structure supporting

mesh refinements we introduce details of the classes necessary to implement the hp adaptive

algorithm. Section 4 entitled Parallel fully automatic goal-oriented hp Finite Element Method

deals with the parallelization of the self-adaptive goal-oriented algorithm. Finally, Sections 5

and 6 entitled Computational problem formulation and Numerical results present the simulation

results and the scalability of the parallel algorithm.

2. Automatic hp adaptivity

A general sequential algorithm for the fully automatic hp adaptation can be described is the

following steps.

(1) Algorithm starts with the coarse initial mesh with uniform order of approximation.

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

3

(2) The computational problem is solved over the coarse mesh and the approximate

solution hpu is obtained.

(3) The coarse mesh is globally hp-refined in order to produce the fine mesh. It is done by

breaking each finite element into four son elements and increasing the polynomial

order of approximation by one. This will be the reference mesh used for calculation of

the interpolation error over the coarse mesh.

(4) The computational problem is solved on the fine mesh and the approximate solution

1,
2

phu is obtained.

(5) As the relative error estimator for the coarse mesh, the difference (in H1-seminorm)

between the coarse and the fine mesh solutions is taken. The optimal refinements are

selected based on the calculated error estimators for the subset of the coarse mesh

elements with higher relative error estimators. Selected elements are either broken into

smaller son elements (this is so called h-refinement) isotropically (4 sons) or

anisotropically (2 sons in the same direction) or the polynomial order of approximation

is increased on element edges or interiors (this is so called p-refinement), or both. This

is illustrated in Fig. 2.

The optimal refinements are selected independently over each coarse mesh element. It is

done in a way to provide maximal error decrease rate given by:






























nrdof

wuuu

rate
phphph

1
1,

21
,1,

2
max

 (1)

where nrdof is the number of added degrees of freedom during the considered refinement, w

is the solution for proposed refinement strategy, obtained by utilizing the projection based

interpolation (Demkowicz 2004) from the fine mesh solution
1,

2
phu into the considered

refined element, phph uu ,1,
2




 is the relative error estimation over the current coarse mesh

with respect the fine mesh and wu
ph 
1,

2

 is the relative error estimation for the refinement

strategy proposed for the coarse mesh element with respect to the fine mesh. Thus, we seek for

a refinementproviding the best error decrease rate with a minimum increase in the number of

degrees of freedom.

(1) The selected refinements are executed over the coarse mesh to obtain the new optimal

mesh.

(2) The new optimal mesh becomes a coarse mesh for the next iteration, and the entire

procedure is repeated as long as the global relative error estimation is larger than the

required accuracy of the solution.

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

4

Fig. 2. Many possible refinements of a coarse mesh element

The selection of the optimal refinements for the coarse mesh finite elements is actually

performed in two steps, in order to limit the number of possibilities considered in point 6). First,

the optimal refinements are selected for finite element edges, and then the optimal refinements

for element interiors are selected, with restriction to known optimal refinements for element

edges. The relative error measurements over element edges are performed in the H½ seminorm.

The above energy-norm based adaptive algorithm has been further generalized to the case

of goal-oriented adaptivity. The necessary modifications included solving the so-called ―dual‖

problem over the same coarse and fine grids, and estimate goal-oriented errors as a combination

of the solutions of both direct and dual problems. From the parallel data structures point-of-

view, these modifications implied duplicating the number of degrees-of-freedom in order to

accommodate solution of the dual problem.

3. Data Structure supporting mesh refinements

In this section we introduce data structure supporting mesh h and p refinements performed by

the self-adaptive hp finite element method algorithm.

In the following part of the section, the element, node and vertex classes are introduced

Class:

Element

Attributes:

character(5) : type - 'quadr‘, 'trian' the information about type of the element (currently, the code

supports only quadrilateral elements)

integer(4) : neighbors – pointers to 4 adjacent elements stored in ELEMS table

integer(4) : vertices – pointers to 4 vertices stored in VERTS table

integer(5) : nodes - pointers to 4 edge nodes and 1 middle node

stored in NODES table

integer(4) : bcond - boundary conditions for 4 element edges

(0 non / 1 Drichlet / 2 Cauchy)

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

5

integer : processor_owner - processor owning the element

Class:

Vertex

Attributes:

double(2) : geom_coord – geometrical coordinates of the node

integer : father – pointer to father node in NODES table

integer : father_iel - pointer to father initial mesh element

in ELEMS table (if any)

double : solution d.o.f. - degree of freedom (coefficient of local shape functions) utilized for

local approximation of the solution

integer(4) : processor_owners - list of processors owning the vertex

integer :: nr_processor_owners – size of the list

Class:

Node

Attributes:

character(4) : type - type of the node: 'medg' for edge node,

'mdlq' for middle node

integer : order - order of approximation

integer : father – pointer to father node in NODES table

integer : ref_kind – flag coding refinement type of the node

integer, dimension(:) : vertex_sons - dynamically allocated table storing pointers to all son

vertices for broken edge or interior nodes

integer, dimension(:) : edge_sons - dynamically allocated table storing pointers to all edge son

nodes for broken edge or interior nodes

integer, dimension(:) : interior_sons - dynamically allocated table storing pointers to all interior

son nodes for broken interior nodes

double, dimension(:,:) : geometry_d.o.f. - geometrical degrees of freedom utilized to express

geometry of curvilinear edges, expressed as a combination of node shape functions

double, dimension(:,:) : solution_d.o.f. - degrees of freedom

(coefficients of local shape functions) utilized for local approximation of the solution

integer : kref - required refinement for the node, used during the virtual refinements

integer(4) : processor_owners - list of processors owning the vertex

integer :: nr_processor_owners - size of the list

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

6

Fig. 3. Relations between Element, Node and Vertex

The classes are stored in the following ELEMS, VERTS and NODES collections

Collections of objects:

type(Element), pointer, dimension(:) :: ELEMS

dynamically allocated table of Element class objects

type(Node), pointer, dimension(:) :: NODES

dynamically allocated table of Node class objects

type(Vertex), pointer , dimension(:) :: VERTS

dynamically allocated table of Vertex class objects

The Element class objects are created for initial mesh elements only. Each initial mesh

element may have up to four adjacent initial mesh elements. The pointers to neighbors (actually

indices of neighbors in ELEMS collection) are stored in bcond array. Let us discuss relations

between Element, Node and Vertex classes presented in Figure 3.

Each element consists of four vertices, four edges and one interior. Element vertices

correspond to Vertex class objects. Each Element class object aggregates the vertices

list of four Vertex objects. Each Element class object aggregates the nodes list of four

Node objects of ‘medg’ type and one Node object of ‘mdle’ type. Four Node class

objects are related to element edges, and these objects have attribue type=’medg’. One

Node class object is related to element interior, and this Node class object has attribue

type=’mdle’. Each Element class object aggregates the nodes list of four Node

objects of ‘medg’ type and one Node object of ‘mdle’ type. The links from element

vertices, edges and interiors to father initial mesh element are stored in father_iel

attribute. Element vertices are never broken. However, Vertex class objects are created as a

result of breaking of element edges or interiors. Thus, Vertex class object created as a result

of mesh refinements keeps father link to father Node objects, while initial mesh elements

vertices keeps father_iel link to the initial mesh element, which is illustrated in Figure 4.

We utilize here the Unified Modelling Language notation [Booch et al. 1994].

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

7

Fig. 4. Links stored by Vertex class object

When an element edge is broken, one new graph vertex representing element vertex and two

new graph vertices representing element edges are created. These newly created graph vertices

are again represented by one Vertex class object and two Node class objects, with type=‘medg‘.

The Node class object with type=‘medg‘, representing element edge, aggregates a list of

vertex_sons and edge_sons. When the edge is broken, the ref_kind attribute of the Node class

object is set to 1, and references to newly created Vertex class and Node class objects are stored

on these lists. This is illustrated in Figure 5.

When an element interior is broken in both, horizontal and vertical directions, one new

graph vertex representing element vertex, four new graph vertices representing element edges,

and four new graph vertices representing element interiors are created. These newly created

graph vertices are again represented by one Vertex class object, four Node class objects, with

type=‘medg‘ and four Node class objects, with type=‘mdle‘. The Node class object with

type=‘mdle‘, representing element interior, aggregates a list of vertex_sons, edge_sons and

interior_sons. When the interior is broken in both directions, the ref_kind attribute of the Node

class object is set to 11, and references to newly created Vertex class and Node class objects are

stored on these lists. This is illustrated in Figure 6.

The application supports also anisotropic mesh refinements, thus, element interior can be

broken in one direction. When an element interior is broken in one direction, one new graph

vertex representing element edge, and two new graph vertices representing element interiors are

created. These newly created graph vertices are again represented by one Node class objects,

with type=’medg’ and two Node class objects, with type=’mdle’. The Node class

object with type=’mdle’, representing element interior, aggregates a list of

vertex_sons, edge_sons and interior_sons. When the interior is broken in one

direction, the ref_kind attribute of the Node class object is set to 1 or 10, depending on the

direction, and references to newly created Node class objects are stored on these lists. This is

illustrated in Figure 7.

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

8

Fig. 5. Relations between Element, Node and Vertex class objects for broken element edge

4. Parallel fully-automatic goal-oriented hp Finite Element Method

In this section, we present the parallel version of the fully automatic goal-oriented hp adaptivity,

implemented under the shared domain decomposition paradigm. The new parallel algorithm can

be summarized in the following steps:

Fig. 6. Relations between Element, Node and Vertex class objects for element interior

broken in horizontal and vertical directions

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

9

Fig. 7. Relations between Element, Node and Vertex class objects for element interior

broken in one direction

(1) The coarse initial mesh is generated on every processor. The initial mesh elements are

assigned to different processors, by filling processor_owner attribute of the element

object. It is performed either by interfacing with the ZOLTAN library (ZOLTAN), or

by utilizing simple row-wise mesh partitioners for two dimensional meshes. The

element‘s processor_owner attribute is filled on every processor, in other words, each

processor knows processor owners of all elements. The element edges and vertices are

assigned to processor owners. It is performed by browsing all elements and filling

processor_owners lists located at element node or vertex objects. This is illustrated in

Figure 8. The element_refined objects are created for each active finite element. This is

illustrated in Figure 9. The middle_node links are related with interior nodes of active

finite elements, represented by node objects with type=‘mdlq‘. The edge_refined

objects are created for all active finite element edges. The edge_node links are related

with element edge nodes, represented by node objects with type=‘medg‘. Notice, that

element_refined objects (related to active finite elements) do not correspond to element

objects (related to the initial mesh elements only).

(2) The computational problem is solved over the current coarse mesh, by utilizing multi-

frontal parallel direct solver [Paszyński et al. 2010; Paszyński and Schaefer 2010].

Each processor stores the local solution vector at its active finite element node and

vertex objects, in the solution_d.o.f. attribute, see Figure 8. The coarse

mesh solution d.o.f. are also recorded at coarse_mesh_solution arrays of

elements_refined objects.

Fig. 8. Additional attributes storing the partition of the mesh

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

10

Fig. 9. Additional data structure managing mesh refinements over the distributed data structure

(1) The global hp refinement is executed over the coarse mesh in order to construct the

reference fine mesh. This is performed by every processor over the entire data

structure. Each finite element from the coarse mesh is partitioned into four new finite

elements, and the polynomial order of approximation is uniformly raised by one. This

is done by executing isotropic h refinement over each element interior node object,

as well as refinement over each element edge node object. Also, the

order_of_approximation attribute is increased for each active node (for each

leaf node object).

(2) The processor_owners of newly created node and vertex objects are filled

based on the information inherited from father node objects.

(3) The computational problem is solved again over the fine mesh by utilizing the multi-

frontal parallel direct solver [Paszyński et al. 2010; Paszyński and Schaefer 2010].

Each processor stores the local solution vector at its active finite element node and

vertex objects, in the solution_d.o.f. attribute. Notice that the coarse mesh

solution is still stored at parent nodes as well as at elements_refined objects.

For the case of goal-oriented adaptivity, we also solve for the ―dual‖ problem.

(4) Each processor loops through its active elements and computes the relative error

estimation over the element

1

1

1,
2

1,
2

H
ph

H
phhp

u

uu






 (2)

with hpu being the coarse mesh solution restored from the element_refined objects, and

1,
2

phu being the fine mesh solution restored from the solution_d.o.f. attribute of active

finite element node and vertex objects. The relative error is stored in the error attribute

of the element_refined objects. For the case of goal-oriented adaptivity, the relative error

estimation over the element also incorporates terms corresponding to the solution of the dual

problem.

(1) The maximum element relative error is computed, and elements with the relative error

estimation larger than 33% of the maximum error are to be refined.

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

11

(2) For elements with strong gradient of the error in one direction, the isotropy_flag

attribute of the element_refined object is set to enforce the element refinement in

one direction.

(3) Different refinement strategies are considered for element edges, by utilizing the

formula








K

K
ph

K
ph

K
phph

K
phph

nrdof

wuwuuuuu
,

2
1

1,
2,

2
1

1,
2,

2
1

,1,
2,

2
1

,1,
2

~~~~

 (3) 

with K denoting an element, hpu  the coarse mesh solution restored from the 

element_refined objects, 
1,

2
phu  the fine mesh solution restored from active finite 

element node and vertex objects, and w being the projection based interpolant of the fine 

mesh solution 
1,

2
phu  into the considered edge refinement. Tilde symbol denotes solution of 

the ―dual‖ problem needed for goal-oriented adaptivity. The H½ seminorm is utilized to measure 

the relative error over an element edge. The selected refinement is stored in edge_refined 

object. If an element edge is going to be p refined, the ref_flag attribute for the edge is set 

to 1, and the proposed order of approximation is stored at order attribute. If an element edge 

is going to be h refined, the ref_flag attribute for the edge is set to -1, and the proposed 

orders of approximation for son edges are stored at orders attribute array. These estimations 

are performed by every processor over active finite elements assigned to the processor. Thus, 

the optimal refinement information is stored in distributed manner in element_refined 

and edge_refined objects. These estimations are performed only for edges of elements 

with relative error estimation larger than 33% of the maximum relative error. 

(1) The proposed refinement data (ref_flag, order and orders attributes of 

edge_refined object as well as isotropy_flag of element_refined 

object) are broadcasted to all processors.  

(2) The fine mesh is deallocated and the coarse mesh is restored. 

(3) The selected optimal refinements are executed for element edges. This is done by all 

processors over the entire data structure. It can be done, since we broadcasted the 

proposed refinement data. Some edges are h refined: one new vertex object and 

two new edge node objects are created are connected to the original edge node. The 

order of approximation for new node objects is taken from orders attribute array 

of edge_refined object. Some edges are p refined, and the new order of 

approximation is taken from order attribute of edge_refined object. Some edge 

refinements are modified based on the isotropy_flag from 

element_refined objects. 

(4) Different element interior node refinements are considered for elements. This is done 

by utilizing the formula  

 







K

K
ph

K
ph

K
phph

K
phph

nrdof

wuwuuuuu
,1

1,
2,1

1,
2,1

,1,
2,1

,1,
2

~~~~

 (4)

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

12

with K denoting an element hpu the coarse mesh solution restored from the

element_refined objects,
1,

2
phu the fine mesh solution restored from active finite

element node and vertex objects, and w being the projection based interpolant of the fine

mesh solution
1,

2
phu into the considered element refinement. Tilde symbol denotes solution of

the ―dual‖ problem needed for goal-oriented adaptivity. The H1 seminorm is utilized to measure

the relative error over an element interior. These estimations are performed by every processor

over active finite elements assigned to the processor. The selected refinement is stored in

element_refined object. The type of refinement is coded within refinement_flag,

and new orders of approximation for son nodes are coded within orders array. Thus, the

optimal refinements information is stored in distributed manner in element_refined and

edge_refined objects. These estimations are performed only for edges of elements with

relative estimated error above 33% of the maximum relative error.

(1) The proposed interiors refinement data (refinement_flag and orders

attributes of element_refined objects) are broadcasted to all processors.

(2) The selected optimal refinements are executed for element interiors. This is done by all

processors over the entire data structure. Some elements are h refined: new edge and

interior node objects and vertex objects (for isotropic h refinement) are created and

connected to the original interior node. The order of approximation for new node

objects is taken from orders attribute array of element_refined object. Some

elements are p refined, and the new orders of approximation are taken from orders

attribute of element_refined object.

(3) The minimum rule is enforced over the entire data structure: the order of

approximation over element edges is set to be equal to the minimum of orders for

adjacent element interiors. This is done by all processors over the entire data structure.

Thus, an identical copy of the new optimal mesh is stored on every processor.

(4) The element_refined and edge_refined objects are deallocated.

If the maximum error is still greater than the required accuracy of the solution, the new

optimal mesh becomes a coarse mesh and the next iteration is executed.

5. Computational problem formulation

In this section we present exemplary parallel simulations for the 3D DC resistivity logging

measurement simulation problem. The problem consists in solving the conductive media

equation

   impJu    (5)

in the 3D domain with different formation layers presented in Fig. 10. There is a logging tool

with one transmitter and two receiver electrodes in the borehole. The tool is shifted along the

borehole. The reflected waves are recorded by the receiver electrodes in order to determine

location of the oil formation in the ground. Of particular interest to the oil industry are 3D

simulations with deviated wells, where the angle between the borehole and formation layers is

sharp (900 ). This 3D problem can be decomposed as a sequence of coupled 2D problems

by considering the non-orthogonal system of coordinates presented in Fig. 10. Following [Pardo

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

13

et al. 2010], the variational formulation in the new system of coordinates consists in finding

  1

DD Huu such that:

  
 

 











1

2

2

ˆ,ˆ, D
L

L

Hvfv
vu





 (6)

where new electrical conductivity of the media JJJ
T11:ˆ   and Jff :ˆ with

impJf  being the gradient of the impressed current, and

 
 321

321

,,

,,






xxx
J

 (7)

stands for the Jacobian matrix of the change of variables from the Cartesian reference to non-

orthogonal systems of coordinates, and  JJ det is its determinant. We take Fourier series

expansions in the azimuthal 2 direction

    ;,,, 2

31321 





l

l

jl

l euu


 (8)

    ;,,, 2

31321 





m

m

jm

m e


 (9)

    ;,,, 2
31321 







l

l

jl
l eff



 (10)

where








2

0

2
2

2

1


dueu
jl

l
, 








2

0

2
2

2

1
 

de
jm

m
and 








2

0

2
2

2

1


deff
jl

l
 and j is the imaginary

unit. We introduce symbol lF such that applied to a scalar function u it produces the lth Fourier

modal coefficient lu , and when applied to a vector or matrix, it produces a vector or matrix of

the components being lth Fourier modal coefficients of the original vector or matrix

components.

Using the Fourier series expansions we obtain the following variational formulation:

Find       1
DDll HuFuF such that:

   

 

 
 

 





















 1

2
2

2

2
2

2 ˆ,ˆ, D
L

jl
l

L

mlj
ml HvefFve

v
F

u
F

D

D







 (11)

The Einstein‘s summation convention is applied with respect to  ml, . We select a

mono-modal test function 2jk
kevv  . Thanks to the orthogonality of the Fourier modes in L2,

the variational problem defined in Eq. (11) reduces to

Find       1
DDll HuFuF such that:

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

14

 
 

   
 

   DDk
L

kk

kn

kn L

llkl HvFfFvF
v

FF
u

F
D

D

2
1

2

2
2

2

2
2

ˆ,ˆ, 
































 

 



 (12)

since five Fourier modes are enough to represent exactly the new material coefficients. We refer

to [Pardo et al. 2010] for more details.

6. Numerical results

We conclude the presentation by describing a numerical example of parallel computations on

the lonestar (LONESTAR) linux cluster of the 3D DC borehole resistivity measurement

simulations in deviated wells. Figure 11 presents the logging curves for the resistivity logging

measurement simulations in zero, 30, 45 and 60 degrees deviated wells. The results are an

extension of [Pardo et al. 2008] and they include also the case in presence of 10 cm and 50 cm

invasion. The problem geometry can be described by using cylindrical coordinates  z,, .

Fig. 10. Left panel: The borehole, the tool with receiver and transmitter electrodes and the

deviated formation layers. Right panel: The non-orthogonal system of coordinates

(1) Four (one current and three voltage) 2 × 5-cm ring electrodes located 8 cm from the

axis of symmetry and moving along the vertical direction (z axis). Voltage (collector)

electrodes are located 100, 125, and 150 cm above the current (emitter) electrode,

respectively.

(2) Borehole: a cylinder A of radius 10 cm surrounding the axis of symmetry

  cm10:,,   zxA with resistivity mR  1.0 .

(3) Casing: a pipe (cylindrical shell) B of thickness 1.27 cm surrounding the axis of

symmetry   cm27.11cm10:,,   zxB , with resistivity mR  510 .

(4) Formation material 1: a subdomain C defined by

  cm100cm0,cm27.11:,,  zzxC  with resistivity mR  410 .

(5) Formation material 2: a subdomain D defined by

  cm0cm50,cm27.11:,,  zzxD  with resistivity mR  01.0

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

15

(6) Formation material 3: a subdomain E defined by

  cm100orcm27.11:,,  zzxE  with resistivity mR  5 .

Notice that each point on the plot requires a solution of the 3D problem, and the point

corresponds to the value of the solution at receiver electrode, computed with a very high

accuracy thanks to the goal-oriented hp adaptive methodology. The logging tool has been

shifted along the borehole, from the relative position of 2meters down to -2meters, and we

perform a new simulation for each position of the logging tool. We refer to [Pardo et al. 2008]

for more details. Figure 12 presents the scalability tests of the parallel solver algorithm. The

parallel version of the solver has been tested on the two dimensional mesh with 576 finite

elements with uniform polynomial order of approximation p=2 and 10 Fourier modes utilized to

approximate the solution in its third direction (thus, total number of d.o.f. per node is equal to

20). We refer to [Paszyński et al. 2010; Paszyński and Schaefer 2010; Paszyński et. al. 2010a]

for more details on the solver algorithm. The total number of d.o.f. over the entire mesh is

210,370. The parallel solver reduces the execution time from 211 seconds on a single processor

to less than 2 seconds on 192 processors. Notice that the scalability test corresponds to a single

position of a receiver antenna.

Fig. 11. Logging curves for through casing resistivity logging measurement simulations in

deviated wells

7. Conclusions

In this paper we presented the parallel goal-oriented self-adaptive hp finite element method

platform for resistivity logging simulations. We solved the through-casing resistivity logging

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

16

simulation problem in presence of invasion. This is the first existing simulation of the through-

casing resistivity logging simulation in the presence of invasion. This is due to large numerical

contrast (6 orders of magnitude from 10-12 to 10-6) that can be resolved only by utilizing the hp

adaptive goal oriented methodology. The developed parallel version of the solver algorithm

with shared data structure allows for a fast solution, and the solver algorithm scales well up to

128 processors.

Fig. 12 Left panel: Parallel solver execution time [s] up to 256 processors. Right panel:

Speedup of the solver. Logarithmic scales are utilized on both axes

Acknowledgements The work reported in this paper has been partially supported by the Polish

MNiSW grant no. NN 519 447739, and the grant from the Spanish Ministry of Sciences

MTM2010-16511.

Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 2, 2012

17

Извод

Паралелизоване симулације мерења 3Д отпора једносмерне струје за

бушотину помоћу циљно-оријентисане самоадаптивне hp методе

коначних елемената

M.Paszyński
1*

, D.Pardo
2
, V.Calo

3

1AGH University of Science and Technology, Krakow, Poland

paszynsk@agh.edu.pl
2The University of the Basque Country, Bilbao, Spain

and IKERBASQUE (Basque Foundation of Science)

dzubiaur@gmail.com
2King Abdullah University of Science and Technology, Thuwal, Saudia Arabia

victor.calo@kaust.edu.sa

*Corresponding author

Резиме

У овом раду излажемо један алгоритам циљно оријентисане самоадаптивне hp методе

коначних елемената (hp-МКЕ) са дистрибуираном структуром података и мулти-

фронталним директним солвером. Алгоритам генерише у потпуно аутоматизованој

форми (без било какве интеракције корисника) низ мрежа које дају експоненцијалну

конвергенцију задате величине у односу на величину мреже (број степени слободе). Низ

мрежа се генерише на основу задате иницијалне мреже, путем h (дељењем елемената на

мање елементе), или p (прилагођавањем реда апроксимације) или hp (оба поступка)

променом одабраних елемената. Нова паралелизована примена користи мрежу за

рачунање која се дели између више процесора. Описујемо паралелизовани hp-МКЕ

алгоритам са заједничким рачунским доменом, као и његове мере ефикасности.

Презентација је обогаћена нумеричком симулацијом проблема мерења 3Д отпора

једносмерне струје за бушотину уз постојање инвазије.

Књучне речи: hp Метод коначних елемената, циљно оријентисана адаптивност,

расподељена структура података

References

Booch G, Rumbaugh J, Jacobson I (1994) The Unified Modeling Language User Guide.

Addison-Wesley, 1st edition.

Calo VM, Pardo D, Paszyński M (2011) Goal-Oriented Self-Adaptive hp Finite Element

Simulations of 3D DC Borehole Resistivity Simulations, Procedia Computer Science,

Proceding of the International Conference on Computational Science ICCS 2011, 4, 1485-

1495.

Demkowicz L (2004) Projection-based interpolation ICES Report 04-03. The University of

Texas in Austin.

M.Paszyński et al: Parallel simulations of 3d DC borehole resistivity measurements

18

Demkowicz L (2006) Computing with hp-Adaptive Finite Elements, Vol. I. One and Two

Dimensional Elliptic and Maxwell Problems, Chapmann & Hall / CRC Press.

Demkowicz L, Rachowicz W, Pardo D, Paszyński M, Kurtz J, Zdunek A (2007) Computing

with hp-Finite Elements. Volume II, Chapmann & Hall / CRC Press. LONESTAR Cluster

User‘s Manual http://www.tacc.utexas.edu/services/userguides/lonestar/.

Pardo D, Calo V, Torres-Verdin C, Nam MJ (2007) Fourier Series Expansion in a Non-

Orthogonal System of Coordinates for Simulation of 3D Borehole Resistivity

Measurements. Part I: DC. Computer Methods in Applied Mechanics and Engineering 197,

1-3, 1906-1925.

Pardo D, Torres-Verdin C, Paszyński M (2008) Simulations of 3D DC borehole resistivity

measurements with a goal-oriented hp finite-element-method. Part II: thorugh-casing

resistivity instruments. Computational Geosciences 12, 83-89.

Paszyński M, Demkowicz L (2006) Parallel Fully Automatic hp-Adaptive 3D Finite Element

Package. Computers and Mathematics with Applications 22, 3-4, 255-276.

Paszyński M, Kurtz J, Demkowicz L (2006) Parallel Fully Automatic hp-Adaptive 2D Finite

Element Package. Computer Methods in Applied Mechanics and Engineering 195, 7-8,

711-741.

Paszyński M, Pardo D, Torres-Verdin C, Demkowicz L, Calo V (2010) A Parallel Direct Solver

for the Self-Adaptive hp Finite Element Method. Journal of Parallel and Distributed

Computing 70, 270-281.

Paszyński M, Pardo D, Paszyńska A (2010a) Parallel multi-frontal solver for p adaptive finite

element modeling of multi-physics problems, Journal of Computational Science 1, 1, 48-

54.

Paszyński M, Schaefer R (2010) Graph grammar-driven parallel partial differential equation

solver. Concurrency & Computations, Practise & Experience 22, 9, 1063-1097.

ZOLTAN:Data-Management Services for Parallel Applications,

http://www.cs.sandia.gov/Zoltan.

http://www.tacc.utexas.edu/services/userguides/lonestar/
http://www.cs.sandia.gov/Zoltan

