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Abstract

The response of one-degree-of freedom systems with fractional distributed-order (FDO)
damping is studied. The dynamics of such systems constitutes the problem of the fractional
distributed-order oscillator. The investigation is achieved by developing an efficient numerical
method for solving FDO differential equations. The problem is treated using two approaches. In
the first approach, the system of the two coupled equations governing the response of the FDO
oscillator is converted into a single FDO differential equation, while in the second approach the
equations are treated as a system of FDO differential equations. Numerical examples are
presented for free and forced vibrations of the FDO oscillator and useful conclusions are drawn.
The resonance phenomenon is also elucidated.

Keywords: fractional distributed-order differential equations; fractional distributed-order
oscillator; multi-term fractional differential equations.

1. Introduction

The one degree-of freedom systems with distributed fractional order dissipation forces have
been introduced recently by Atanackovic and his co-workers (Atanackovic 2002, 2003,
Atanackovic et al. 2005). They result from the generalization of the multi-term fractional
differential viscoelastic model by considering continuous variation of the order of fractional
derivative within a closed interval. This model leads to the following initial value problem for
the linear fractional distributed-order oscillator

WP (1) + o(t) + wult) = g(t) 1)

1 1
J, ew)Drodp =X [ w(p)Drudp @)

where wu,0 are the displacement and the dissipation force, respectively, )\ a constant
parameter; ¢(p) and «(p) specified functions subjected to certain restrictions following from
the second law of thermodynamics; w the eigenfrequency of the undamped system; g(¢) the

external forcing function and D# is the Caputo fractional derivative defined as
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The initial conditions in order that the problem is well-posed should be three. Two of them are :
w(0) = o, w(0) = o (4)

The third initial condition results rather from physical consideration of the deformed state at
t = 0. A relation of the form o, = kuy can be employed as the third initial condition (see
Subsection 3.2).

The system of Egs (1), (2) is solved numerically. The solution procedure is based on the
method developed by Katsikadelis for the numerical solution of distributed order fractional
differential equations (Katsikadelis 2012). Numerical results for free and forced vibrations of

the oscillator with ¢(p) = a?, ¢(p) = b” are presented. The resonance of the oscillator is also

studied and interesting conclusions are drawn regarding the efficiency and accuracy of the
solution method. The structure of the remaining paper is as following:

In Section 2, the first approach is described, where the two coupled equations are converted
into a single FDO equation. In Section 3 the second approach is developed, where the two
coupled equations are treated as a system of FDO equations, as well as the developed numerical
solution. In section 4 several example problems are solved including free and forced vibrations
of the FDO oscillator. Finally, Section 5 includes certain conclusions drawn from this
investigation.

2. First solution approach. Conversion into a single equation

Egs (1), (2) can be converted into a single fractional distributed order equation working as
following.

Taking the DZ derivative of Eq. (1), multiplying it with ¢(p) and integrating in the interval
[0,1] yields

1 1 1 1
J, #w)DE P udp + [ o(p)DEadp +* [ (p)Dudp = [ o(p)DEg(t)dp (5)
Using Eq. (2) to replace the second integral, we obtain
1 1 1
S, w0 Pudp + [ 6P 6(p) + MiAp)IDEudp = [ o(p)DEg(t)dp (6)
which is a fractional distributed order equation of the form

[ oD P + =)D ubdp = £(2) ™

where



150 J. T. Katsikadelis: The Fractional Distributed Order Oscillator. A Numerical Solution

op) = o)+ 0), (1) = [ Hp)DLg(t)dp ©®)

The number of initial conditions for Eq. (6) should be ceil(2+ p) = 3. Eq. (6) can be solved

using the numerical solution for fractional distributed-order equations developed recently by
(Katsikadelis 2012). Although, this approach is straightforward, we come across here to

computational difficulties, when the function g(t) is not C" -continuous. In such a case special

care is required to restore the continuity, e.g. the sigmoid function can restore the discontinuity
of the step function. For this reason the second approach is recommended, since it is alleviated
from this shortcoming.

3. Second solution approach. Two coupled equations.

3.1 The numerical solution

Using a quadrature rule to approximate the integral in the interval [0,1], Eq. (2) becomes a

multi-term fractional differential equation (FDE). We use here the trapezoidal rule with
Ap =1/ K . This yields.

[% Do + ¢ Do+ Do + -+ ¢pg 1D o ¢K — Do
9)
1/)0 D]Ju +7,/)1D({hu+w2D(PJU/++1/)K71D£K7|u+wK Dpl‘
where p; = iAp.Itis pp =0 and px =1.Hence Do =0 and D’u =u.
Next, we consider the equation
DIf =q(t), 0<B<2 (10)
Taking the Laplace transform of Eq. (10) we obtain
1 1. 1
F(s)=—-fi+—fi + —Q(s) (12)
s 82 S“d
where F(s) = L[f(t)] and Q(s) = L[g(t)]. The inverse Laplace transform gives
, ; 1 rt 51
ft) = fo +ceil] 8 —1fot + —— [ “q()(t —7) (13)
I(3) j;
Similarly, the Laplace transform of the equation
Dif=q(t), 0<a<pf<2 (14)
is
1 1. 1 =
Fls) ==+~ h+ Q) (15)
S S

where Q(s) = L[g(t)]. Comparing Eqgs (12) and (15) we obtain
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Apparently, Eq. (16) can be used to express the derivative D¢ f in terms of ¢(t).

Eq. (13) is a Volterra integral equation, which is solved numerically in the interval
t€[0,T] to give ¢(t) (Katsikadelis 2009). The interval [0,7] is divided into N equal

intervals At =h, h=T/ N (Fig. 1), in which ¢(¢) is assumed to vary according to a certain
law, e.g. constant, linear etc. In this analysis ¢(¢) is assumed to be constant and equal to the
mean value in each interval 4. Hence, Eq. (13) at instant ¢ = nh can be approximated as

Y—h—E—h i h T p - p e p
- :nh

Fig. 1. Discretization of the interval [0,7] into N equal intervals h=T /N .

fo = fo + ceill 3 —1nhfy

) 17)
1 | m 51 m 51 o 51 (
+% qQ f (nh—71)7"dT + ¢ f (nh—7)""dr +--+qn f(wl)h(nth) dr

which after evaluation of the integrals yields

fo = fo + cedl] 3 —nhfy + CZ (n4+1—r)’ (n—r)‘d}ql” (18)
where
& & =L ta) (19a)
= ’ r = —\gr-1 T ’
BL(3) 2

Using the same discretization for the interval [0,7"] to approximate the integral in Eq. (16), we
obtain

n

Doy = leeil(8) — ceil()] n' “dafy +ca )

r=1

e

where
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B—a 11—«
o — dy = (21a,b)

(B—aI(B—a)’ [2-a)

Applying Eq. (18) for f=wu, =2 and Eq.(20) for f=u, a=p; (i=12,...,K) we
obtain

U, = Up + nhigy + CZ (n+1-— 7’)” —(n— 7’)/3 q (22)
r=1
DPu, =n Mo+ a Y|t 1= =P i =120, K (29)
) r=1
where
2 2—p;i 1-pi
e - N di = T (24a,b,c)
21°(2) 2—p)I2—pi) 2 —pi)

Similarly, Applying Eq.(18) for f=o0, g=1 and Eq.(20) for f=0, a=p (
1=12,...,K —1) we obtain

on = 0o + éz " (25)
r=1
Dcp'U n = ézZ[(n + 1—- ’r)lipl - (n - T)lipl ]g;n ) 1= 1727"'7K_ 1 (26)
r=1
1—p;
PR P (27a,b,c)
NG (1—p)P(1—pi)

After separating and decomposing the last term in the sums, Eqgs (22), (23), (25) and (26) can be
written as

n—1

Un — % qn = up + Tth() + CZ (TL +1- T)Z - (n - 71)2} (];’*” + % 41 (283.)
r=1
Ci 1p ;- e 2 2p | m , Ci
DPu Ty=n P diig +CiZ[(’fL +1-—r)"P —(n—r)" " +5q”,1 , (28b)
r=1
i=12,... K
é . Anfl o é .
Opn ——Qn = 00 + CZ gr +=3q,4 (28c)
2 D)
Ci = Ci
Dro , ~an =&y |t 1=n)" —(n ) b+ Ta. i=L2. K1 (280)

r=1
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Note that ¢, = i, and ¢, = J, . Eqs (28) constitute a set of 2K +1 equations for 2K + 3

unknowns. The additional required two equations result from Eqgs (1) and (9), which at ¢ = nh
become

Gn 4 o0 + U = gn (29a)
o) oK .
?Un+(l51 Df'o n+¢2 Do n+”'+¢K71 Do 71,+_ -
(29b)
)\ﬁu +v1 phy t Y2 DRy et Yk pPer +w—KDPK
9 n U, e U, - c U, 9 c U,
Egs (28) and (29) are combined and written in matrix form as
Ax, = b, (30)
where it was set
w? 0 0 e 0 0 1 1 0 0 0 0
DU e kA g B e, L
2 2 2 2
1 0 0 - 0 o -< 0 o0 0 0 0
2
C1
0 1 0 - 0 0 -5 1 0 - 0 0 0 (31a)
A= A : :
0 0 0 0 0 0 0 0 0 1 f%‘
0 0 0 0 0 0 1 0 0 0 —%1
0 0 0 0 0 0 0 0 1 - CKQ .
gn u
0 n
n—1 9 9 c Dcplu’ n
Uy + nhiiy +c; (m+1-7r)=(Mn-—7r)|¢ +§qn,1 D[?ZUTL
n—1
n P diig + qz[(n 1P —(n—r) P+ C—lqn,l
1‘:1 2 D[?KU n
WPy + @) (41— = (= N (31b.0)
b, = r=1 On
n—1 y2l
n' P dgio + ey [(n F 1= —(p— )2 ]q}'v"' + C?K Q1 .DC T
ot el -1
¢l Z (n+1- r)lfp1 —(n— 1’)171'1 ]{]r + 3@171 DF g "
r=1 (jn
n—1 N
53| (RS U
r=1
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It should be emphasized that that expressions of the matrices A and b,, are presented here for

the sake of understanding the solution procedure and not to be used as formulae. In
programming the method, they are evaluated automatically from the relations (18) and (20) for
the specified values of the parameters 5 and «, a quite simple task.

The coefficient matrix A is non singular for sufficient small » and can be solved
successively for n =1,2,..., N to obtain x,,. For n =1, the values ¢y =iy and go =7
appear in Eq. (31b). These are evaluated in the following Subsection.

3.2 Evaluation of ¢y = iip and ¢y = dy

For t =0, Eq. (9) gives

\%Df”ao + ¢ Doy + Doy + -+ + dr_1DE oy +¢7KD§)”00] =
(32)

1/;0 DPuy + D ug + o DPug + -+ + g 1 DI ug + %D[)K

The derivatives Do and DIug 0 < p; <1 can be expressed in terms of dy and 4o using
the relations (Katsikadelis 2009, Appendix)

1

DPo(0) ~ ————p' P 2217 g (33a)
INCES
) 1 - p -
DPu(0) ~ ———pi P 228 g (33b)
L'2—p)
Thus, Eq. (32) yields
H100 + p2G0 = Nato + Nizto (34)
whre
P &S 1 . ¢K
& =S g9 4 OK 35a
== 12 2T i (35a)

_—ﬂ T — I X e 1-p; wK
= 2 Z::F(2 pz)h 2-27" i+ 5 (35b)

An alternative relation in place of Eq. (34) could be derived, if another type of the fractional
derivative would be employed. For example a relation of the form o = kup was derived in

(Atanackovic 2003), when the Riemann-Liouville fractional derivative was employed. For our
examples the relation

100 = Afi2to (36)
is employed as the third initial condition
Further, Eqg. (1) for ¢ = 0 gives
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Q + 00 +Pu = go (37)

Egs (34), (35) and (37) can be used to evaluate the not specified quantities ¢y = iy, Go = do
and og.

4. Numerical examples

On the basis of the previously developed numerical solution approaches two computer codes
have been written in MATLAB and the free and forced vibrations of the FDO oscillator are

studied. The numerical results have been obtained taking ¢(p) = a”, ¥(p) = b with ¢ and b
constants. For a = b, Eq. (2) becomes o = Au and Eq. (1) yields

W@ (1) + (A + P u(t) = g(t) (38)

Thus, the response of the oscillator becomes undamped elastic with eigenfrequency
wet = (A erz)l/2 as it was reported in (Atanackovic 2003). Since there are no other numerical

or analytical solutions for comparison, this fact is employed to attest the reliability and accuracy
of the results. The results shown here have been obtained with the second approach and they
actually are identical to those obtained using the first approach.

Example 1.Free vibrations

The free vibrations of the FDO oscillator are studied. The results have been obtained with
K =10 and At =0.01, w=1, A=1. In Fig. 2, the response is shown for various values of

a and b. For a = b the elastic response results, which is identical to the exact solution with

Wel = xﬁ Note that for a > b the amplitude increases. This was anticipated since the second

law of thermodynamics is violated (Atanackovic 2003). Moreover, in Fig 3, the response of the
oscillator is shown for various values of the parameter .

Free Vibrations: g(t)=0, y=1, dyj/dt=5, ¢=aP, y=bP, A=1, ©=1

ra
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. i
) f
1

i
’ ¥ 1 A ‘
Y WS
VAT A
FiINYL R A
........ a=0.1, b=0.1
exact elastic, u)e|=\/2
"""" a=0.1, b=0.05
""" a=0.1, b=0.2

f i
-8
0 5 10 15 20 25 30

u(t)

—

Fig. 2. Response of the FDO oscillator in Example 1.
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Free Vibrations: g()=0, y=1, dyj/dt=0, ¢=aP, y=b°, 0=1
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Fig. 3. Response of the FDO oscillator for various values of A in Example 1.

Example 2 Forced vibrations under step function

In this example the forced vibrations of the FDO subjected to the Heaviside step load function,
g(t) = H(t), are studied. The response obtained with K =10, At=0.01, w=1, A=1
and various values of a and b is shown in Fig. 4. Note that for « = b the solution is identical

to the elastic with wy = \/5

Forced Vibrations, y=0, du/dt=0, f(t)=H(t), o=aP, y=bP, A=1, w=1

1.: R ~ N ;/\ /\ /A\ /
A A \
: 1N NN A XY
0 VA VA B et e o 2|

t

Fig. 4. Response of the FDO oscillator in Example 2.

Example 3. Forced vibrations under harmonic excitation
In this example the forced vibrations of the FDO subjected to the harmonic excitation

9(t) = posinQt are studied. The response obtained with K =10, A¢=0.01,
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N=12w, w=3, pp =1, A =1 and various values of « and b is shown in Fig. 6. Note that

for a =0 the solution is identical to the elastic with Q:\/ﬁ. Finally, in Fig.6 the

convergence of the maximum error max | u — ., | versus the time step 2 = At in the interval
(0 <t <10) is shown.

Forced Vibrations, u,=0, du/dt=0, ¢=af, y=bP, f(t)=simt, Q=1.20, ©=3
0.8
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Fig. 5. Response of the FDO oscillator in Example 3.
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Fig. 6. Maximum error versus integration time step A = At in Example3.

Example 4. Resonance of the FDO under harmonic excitation

In this example the resonance of the FDO under harmonic excitation g(t) = posin¢ is
studied. The response is obtained with K =10, At =0.01, A=1,p =1, w=3. Fig. 7

shows the case 2 =w. For a =20 the solution is identical to the elastic response with
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Wy = «/1 +w”, which however is not in resonance. Resonance occurs in the elastic system,
when Q = w, = +/10. This is shown in Fig. 8.

Forced Vibrations, 4=0, duy/dt=0, ¢=aP, y=bP, f(t)=si®t, w=0

s 1 3§§ﬁ : ﬁ
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: i ! t elastic, o _=(1+0?*)"?
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: SN ~a01 b0z
0 5 10 15 20 25 30 35 40 45 50

t

Fig. 7. Response of the FDO oscillator in Example 4.

Resonance, u =0, du/dt=0, ¢=a", y=bP, f(t)=simt,, A=1, Q=0
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Fig. 8. Resonance in the elastic response, a = b, Q) = wy.

4. Conclusions

A numerical method has been presented for the solution of the equations governing the response
of the fractional distributed order oscillator. Free and forced vibrations have been studied. The
numerical results elucidate the dynamic response of the oscillator under fractional distributed
order damping and validate the finding reported by other investigators that the elastic response

results for o” = b”. This finding has been used here to check the accuracy of the developed
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numerical solution. The resonance of the oscillator is also studied. The numerical results
demonstrate the efficiency and accuracy of the proposed method.

H3Box

Ocnunarop ca ppaxkuuono pacnopehennm penom. Hymepuuko peuieme
J. T. Katsikadelis

Institute of Structural Analysis and Aseismic Research, School of Civil Engineering, National
Technical University of Athens

Pe3nme

Pa3matpajy ce cucteMu ca jeJHUM CTEIIEHOM ¢1000/1e Koju uMajy (GhpakinoHo pacnopehen pen
npurymema (FDO). JluHamuka OBakBMX cuUCTeMa Ce CBOJM Ha HpoOJieM ocHujaropa ca
¢pakuuoHo aUCTpUOyHpaHUM penoM. VcTpakuBame je OCTBApEHO pa3BHjameM eduKacHe
HyMepHuuke meroje 3a peuewe (FDO) nudepennmjanuux jennaunHa. [IpoGiiem je pasmaTpan
kopuctehu 1Ba mpuctyna. Y NmpBOM NPHUCTYILy CIPETHYTH CHCTEM OCHOBHHX jenHaunHa FDO
ocrunaropa je ceesieH Ha jenny FDO nudepennmjanny jenHauuHy, JOK KO APYTOT MPUCTYTIA
jenHaunHe ce pasMmarpajy kao cucteM FDO mudepennujananx jennaumna. Hymepuuku
npuMepHu Cy Aaté 3a cinobogne u mpunyaHe ocuunanuje FDO ocummatopa u u3HeTH Cy
KOPHCHH 3aKJby4ld. PacBeTspeH je Takohe 1 peHOMEeH pe3oHaHIIE.

Kibyune peun: mudepeHumjanmne jemHaunHe ca (PPaKIHOHO AUCTPUOYHPAHUM PpeaoM,
ocumiarop ca (pakiuOHO AMCTPUOYHUPAHU PEIOM, MyATHWIAHE (paKIHOHE TUGEPCHIM]jaTHE
jeIHaYnHE.
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