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Abstract 

The Burton, Prim and Slichter‘s BPS model published in 1953 is considered to be of the most 

useful equations in crystal growth and is presented in most textbooks on solidification.  It 

relates the effective segregation coefficient keff  as a function the stagnant film thickness  . 

During the past decades, the shortcomings of the BPS model have been recognized and several 

new film-thickness based models have been proposed.   Here we revisit the film-thickness 

based models and compare to the recently proposed model, where keff  is a function of the 

effective convection coefficient heff.  

Keywords: BPS, segregation, convection, Czochralski process. 

1 Introduction  

During plane front solidification used to grow single crystals,  the concentration of a solute in 

the solid  CS ,   is different from the concentration in the melt, CL.  In equilibrium segregation, 

the concentration in the melt is uniform because (a) the freezing rate is low,f→0, and/or,  (b)  

melt is homogenized by perfect mixing.  The equilibrium segregation coefficient k0 is, 

 
0 0/SC C k  (1) 

where C0 =CL  [atoms/cm
3
]  is solute concentration at the interface, see Fig. 1a). 

During actual crystal growth, a finite freezing rate is used, while mixing is not perfect.  

Thus, an enriched concentration layer builds up ahead of the interface.    Referring to Fig. 1 b), 

the thickness of the layer is  .  The effective segregation coefficient is,  

 /S L effC C k    (2) 

The Burton, Prim and Slichter‘s BPS model published in 1953,  gives  keff  as a function of   

(Burton et al. 1953).  It is considered to be of the most useful equations in crystal growth (Hurle 

and Rudolph, 2004), and is presented in most  
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Fig. 1.a) Equilibrium and b) effective segregation coefficients 

textbooks on solidification
1
.  For example Glicksman  (2011) states: ―The model, now referred 

to as BPS theory, captures with astounding simplicity several of the major features to be 

considered when the melt ahead of the solid–liquid interface is stirred―.   Rosenberger  (1979) 

describes the model as a ―hybrid of the stagnant film model, and a full-fledged fluid dynamic 

boundary layer treatment‖.   

During the past sixty years, the shortcomings of the BPS model have been recognized.  

Several models for keff  have been proposed (Wilson  1978; Ostrogorsky and Muller 1992; Yen  

and Tiller 1992; Garandet 2008) .  Yet, these models give keff  is a function of layer thickness 
. Here we revisit the film models and compare to the recently proposed model, where keff  is a 

function of convection coefficient h (Ostrogorsky 2012),  or its dimensionless form,  

/Nu hL D  where Nu is Nusselt number ,  D[cm
2
/s]  is diffusion coefficient and L[cm]  is 

characteristic length. 

2. Film-thickness formulations 

2.1  keff  vs. static film thickness static (BPS model) 

The starting point of the BPS model is the assumption that a stagnant-film exists between the 

solid-liquid interface and the perfectly mixed region (Fig. 2 a). Within the static film, the 

concentration profile is exponential, and equal to the steady-state diffusion-controlled profile 

(Tiller et al. 1953), 

 
 

0

exp
S

S

C x C f
x

C C D

  
  

  
 (3) 

                                                 
1
 According to Google Scholar, the BPS model has been cited over 1000 times. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DYen,%2520C.T.%26authorID%3D7202149115%26md5%3D04082567cf3b30f476dae49e3b309bb5&_acct=C000047720&_version=1&_userid=4558833&md5=fd4f96662279373b6e8369fd234018fa
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DTiller,%2520W.A.%26authorID%3D7007129998%26md5%3D378b6fb846323d6da9a4264ccb9370a5&_acct=C000047720&_version=1&_userid=4558833&md5=02e68d43d0f4d75b4b3fdbd138ed8060
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D[cm
2
/s]is diffusion coefficient, and f[cm/s] is the rate of crystallization. The static-film 

thickness is introduced by imposing  static

LC C  ,  

 
0

exp staticL S

S

C C f

C C D


  
  

  
 (4) 

Here we use superscript ―static‖ to distinguish the static film.  Rearranging and using 

0 0/Sk C C ,  gives the BPS formula,  

 

 
 

0

0 01

static S
eff

L

static

C k
k

C k k e

f

D






 

 

 

 (5) 

Note that static films do not exist on Earth
2
. Thus, static  is a fictitious parameter, and as such it 

can not be calculated (Levich 1961, Wilcox 2004).  For small enough values of  /f cm s ,   the 

BPS model makes the unjustifiable assumption, 

 1/3 1/6 1/2

0 1.61static grad

f D   

   (6) 

where superscript ―grad‖ is used because grad  is distance between x=0  and the point where 

the gradient 
0

/
x

dC dx


  intersects  , see Fig. 2 b). Equation (6) was derived by Levich in 

(1942) and (1961).  It is based on the exact flow solution
3
. Levich derived  the mass flux j from 

the surface of the impermeable rotating disk to be (see p.69, Levich 1961) 

  2/3 1/6 1/2

0 00.62f Lj D C C 

    (7) 

where [cm
2
/s] is kinemetaic viscosity, and  [1/s]  is disk rotation rate. Levich defined the 

film thickness as,  

 
 

0 0

0
/

grad L L

x

C C C C
D

j D dC dx




 
 


 (8) 

  Substituting  eq. (7) into (8)  gives eq. (6), 

  
1/3

0 1.61 / /grad

f D      (9) 

Furthermore,   

  
1/3

0 0.5 /grad

f HydraulicD     (10) 

 0 0.5grad

f  
 (11) 

                                                 
2
 Static films are presumed to exist in steady-state diffusion-controlled segregation in space 

laboratories (Witt et. al. 1975) 
3
 von Karman‘s (1921) and Cochran‘s (1934) similarity solution of Navier-Stokes equations for 

laminar flow near an infinite rotating disk. 
 

LC
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where 
Hydraulic and    are respectively the actual velocity and concentration boundary layer 

thickness, unrelated to 
static  (see Fig. 2b).  

 

2.2  keff  vs. dynamic film thickness, grad   

Wilson (1978) and Garandet (1993) recognized the shortcomings of the stagnant film 

formulation, and the exponential concentration profile used in BPS.   Wilson and Garandet 

defined film thickness as Levich,  equ. (8), and proceeded to show that the correct formula for 

keff  is, 

  
 

0

01 1

grad
eff

k
k

k
 

  
 (12) 

where  , is based on gradient thickness,   

  3

0

/ expgradf D z Bz dz


      (13) 

where
3 3/2 1/2 20.17B f D  .  Equations  (12) and (13) will be referred to as the Wilson-

Garandet’s exact solution. 

Wilson(1979)  proposed the following approximation,  

 

          

Fig. 2.a) Static film and perfect mixing regions  in BPS.  b) Actual 

concentration profile and its gradient used by Levich. 
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2/3 1/6 1/2

1.61
1

D f





   

 




 (14) 

and determined that it yields less than 0.8 % if 0 0.5  .   Equation (12) with (14) will be 

referred to as Wilson‘s approximation-model. 

3.Convection coefficient formulation   

In steady-state,  mass conservation requires that all solute released at the crystal-melt interface,  

is swept away by convection (Ostrogorsky 2012),  see Fig. 3, 

 in solid Cj j j    

where the convective mass flux is expressed via the convection coefficient  /effh cm s  ,  

  0C eff Lj h C C   (15) 

 

Fig.3.Solute fluxes 

 The heat transfer analog of equ. (15) is known as the Newton‘s law of cooling.  Referring to 

Fig. 3,    

 
   0 0S eff Lf C C h C C  

 

 Rearranging and using 
0 0/Sk C C ,  and yields, 

 

 

 
 

0

01 1

S

eff eff

L

ff

C k
k h

fC
k

h

 

 

 (16) 

Comparing eqs. (12) and (16) gives, 

 / efff h    

Here,     represents the ratio of the growth velocity f[cm/s] and effective velocity of solute 

removal, i.e. convection coefficient heff[cm/s].  
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3.1 Impermeable Interface  

The interface can be considered impermeable for 0.1 mixf h . 
 
(Ostrogorsky 2012).   

Numerous analytical and empirical correlations for h  (i.e. Nu) have been developed for 

impermeable interfaces (Incropera and DeWitt 1985; Cengel  and Ghajar 2010).   For forced 

convection, 

  1/3Re ,nFC

FC L

h L
Nu f Sc

D
   (17) 

where Re is Reynolds number and Sc is Schmidt number. n=0.5 and n=0.8 for laminar and 

turbulent flow respectively.  It is interesting to note that  Levich did not provide a formula for h,  

although it is obvious from the flux (7) and the eq.  (15), 

 2/3 1/6 1/20.62FCh D    (18) 

The dimensionless form of eq. (18) is, 

 
1/3/

0.62FC

h
Nu Sc

D

 
   (19)  

where /L    is the characteristic length scale. Equations (18) and (19) are valid only for 

steady laminar flow, forced convection from impermeable rotating disk (f=0), for Sc  .  

The general form of the correlations for natural convection is, 

  
nNC

NC L

h L
Nu f Gr Sc

D
  .  (20) 

where Gr is Grashof number.  n=1/3 and n=1/4  for laminar and turbulent flow respectively. 

For mixed convection,   

  
1/

/
m

m m

mix nix FC NCNu h L D Nu Nu     

or, 

 
1/m

m m

mix FC NCh h h   (21) 

where m=3 for a vertical surface and m=3.5 for a horizontal surface. hmix is mass transfer 

coefficient which accounts for ―mixed convection‖(Incropera and DeWitt 1985; Cengel  and 

Ghajar 2010), and the sign is:  +  when forced and buoyant convection act in the same direction, 

or   -  when forced and buoyant convection act in the opposite direction. 

3.2 Permeable interface with uniform or suction 

Using the fluid mechanics terminology, the flow velocity perpendicular to the porous interface 

is ―uniform suction‖ velocity  (Schlichting  1968; White 1991).   The effect of suction is to 

stabilize the boundary layers
4
 by reducing their thickness (Schlichting  1968).  

Reducing boundary layer thickness also  enhances convection.  Since correlations for 

interfaces with suction are not available, it has been proposed to use an effective convection 

coefficient defined as (Ostrogorsky 2012),  

                                                 
4
 prevent boundary layer separation on airfoils (Schlichting  1968). 
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  
1/n

n n

eff mixh h f   (22) 

where n is to be determined from experiments or theory.  Combining eqs. (16) and (22) gives, 

  
 

 

0

0 1/
1 1

S

eff

L
n

n n

mix

C k
k h

fC
k

h f

 

 


.  (23) 

Comparing eqs. (12) and (23) gives, 

 

 
1/n

n neff
mix

f f

h h f

  



 (24) 

3.4 Czochralski growth 

In most CZ melts, natural convection and/or turbulence are significant. Since forced and 

buoyant convection act in the opposite direction, hmix=(hmix
3.5

+f
3.5

)
1/3.5 

. The convection 

coefficients to be used in eq. (21) are (Ostrogorsky 2012): 

 for laminar flow and 10<Sc<100, 

 
  

0.373

1/4

0.485 /

0.54 /

FC

NC

h D Sc

h D L Gr Sc

 

 
;  

or for turbulent flow, 

 
 

  

0.8 0.6

1/3

/ 0.0267 Re

0.15 /

FC r

NC

h D r Sc

h D L Gr Sc



 
.  

4.Assessment of the models applied to forced laminar convection 

For forces laminar convection near a rotating disk, and Sc  , the Wilson-Garandet‘s Model,  

eqs. (12) with  (13),  provides accurate reference values for  keff  , because it is based on the 

exact solution of the concentration field near the disk.  To asses the precision of the models,  keff   

was calculated for the properties and parameters used are for the BPS experiments with Ga-

doped Ge:  =0.0013 cm
2
/s ,  D=2.8x10

-5
 cm

2
/s,   60 RMP

5
,  while the range of growth rate is  

0<f<0.008 cm/s (=80 μm/s=28.8 cm/hr). 

Figure 4  shows  keff  as a function of the growth rate f, calculated using: 

(i)  BPS model, eq.(5) with (6), assuming 0

static grad

f  
(squares) 

(ii)  Wilson-Garandet‘s exact model eqs. (12) and (13) , where   is obtained by numerical 

integration (full line).   

(ii)  Wilson‘s Approximate-model,  eqs. (12) and (14) for   (triangles),  

                                                 
5
60 RPM is the lowest crystal rotation rate used by Burton et al. (1953). The lower is RPM, the 

lower is hFC, and thus the effect of suction flow f is more pronounced. 
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(iii)   Ostrogorsky‘s model,  equ. (23);  hmix=hFC = 0.0045 cm/s  is calculated using eq. 

(18). Crosses are for  n=1; circles for n=1.4.   

Figure 4. verifies the validity of the convection coefficient model,  for laminar forced 

convection in CZ growth.  n=1.4 gives a perfect fit for 0<f/hFC<1.3, or  f<0.006 cm/s~ 21  

cm/hr.   n=1 is useful up to ~ 0.001 cm/s= 3.6  cm/hr. 

 

Fig. 4.
0/effk k  vs. growth rate. Full line: exact Wilson-Garandet‘s model eqs. (12) and (13). 

Triangles: Wilson‘s model, eqs. (12) and (14).  Circles, and crosses are respectively n=1,  n=1.4  

in eq.  (23) . Squares: BPS model. 

5. Discussion 

The stagnant film concept is unsatisfactory, because their thickness can not be calculated apriori 

(Levich 1961). In the BPS  model,  the exponential profile within the stagnant film thickness  

leads to a great deal of confusion. Assuming static = 
0

grad

f 
  has no foundation, since static  

corresponds to the exponential profile, while  
0

grad

f   
corresponds to the linear profile (Fig. 2).   

Fig. 4 reveals that the BPS model is accurate for 01 / 2effk k   or 
FCf h .  In typical CZ 

system,  convection leads to thin solute layers while the f is low.   For small 0 /
grad
ff D   ,  

the one term Taylor series expansion, transforms fictitious exponential profile into linear,  

 1e     

and turns the BPS formula into eq. (12) or (16).  For 0static  ,  the exponential and linear 

profiles nearly overlap, Fig. 2). This,  Wilson‘s  (1979) comment: ―the right answer has been 

obtained for the wrong reason‖ appears justified.   

Kodera‘s (1953) use of the BPS model to determine the diffusion coefficients in Si is 

problematic.   Kodera grew Si crystals at 5, 55 and 200 RPM.   Note that at 5 RPM, convection 

is dominated by buoyancy forces, while at 200 RPM it is likely to be of turbulent.    Kodera did 

not provide the dimensions of the crystals and melts, but according to Ristorcelli and Lumley 

(1992)  even relatively small silicon melts are expected to be turbulent.  In turbulent flow, 
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momentum, heat, mass transfer are dominated by eddy-mixing (Muller and Ostrogorsky 1994), 

while molecular transport weak.  In turbulent flow, a concentration gradient /C x   induces an 

apparent mass flux,  

  apparent D

C
j D

x



  


 (25) 

where εD is turbulent eddy-diffusivity.  Typically, εD >>D.   Thus,  Kodera‘s high diffusion 

coefficient for indium, DIn=  6.9x10
4
 cm

2
/s compared to that of boron  DB=2.4x10

4
 cm

2
/s may 

be explained by the presence of eddy-diffusivity, not by high molecular diffusivity.  

Furthermore, to fit the data, Kodera used viscosity three times higher than the actual.  Kodera‘s 

diffusion coefficients are listed in most handbooks. Diffusion coefficients should not be 

measured in turbulent melts.  

The Wilson-Garandet’s formulation based on the linear profile is consistent, and exact.  Its 

limitations originate in the von Karman‘s/Cochran‘s similarity solution: it is applicable 

exclusively to laminar flow near a rotating disk, and Sc→∞.  

The Wilson’s approximation,  (using eq.  (14) for  ) is precise for 
01 / 2effk k  , or 

FCf h .   

The Convection Coefficient Formulation (Ostrogorsky 2012),  is based on mass 

conservation, and as such, equation (16) is exact.   For steady laminar flows, the formula  

heff=(hmix
1.4

+f
1.4

)
1/1.4 

 gives a solid agreement with the exact solution.  For impermeable 

interfaces,  well established correlations for hFC and hNC  are available.   Thus, Convection 

Coefficient Formulation can be applied to a variety of melt-flow conditions, including: (a) 

turbulent flow; (b) natural convection/mixed convection; (c) finite Sc numbers.     

The remaining issue is the lack of correlations for convective coefficients h along interfaces 

with suction. More data are needed to determine n for turbulent flow with suction.  

6. Conclusions 

The film-thickness based models are limited by the restrictions carried over from the von 

Karman‘s/Cochran/ Levich solution. They are valid only for steady laminar flow near a rotating 

disk.  

The recently proposed convection-coefficient formulation (Ostrogorsky 2012), is more 

general than the models based on Levich‘s film thickness. It is based on mass conservation and 

as such is exact.  It is applicable to turbulent flow, natural and mixed convection, finite Sc 

numbers.   This is a principal advantage considering that (i) most semiconductor melts are 

turbulent (Ristorcelli and Lumley 1992), and (ii)  natural convection on Earth is unavoidable. 

For steady laminar flow near a rotating disk, n=1.4 should be used in eq. (23).  

Diffusion coefficients should not be measured in turbulent melts.  
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Извод 

Дебљина слоја и формулација конвективног коефицијента keff 

A. G. Ostrogorsky 

MMAE,  Illinois Institute of Technology, Chicago, IL 60616 

AOstrogo@iit.edu 

Резиме 

Burton, Prim и Slichter‘s (BPS) модел публикован 1953. год. се сматра најкориснијим 

моделом за раст кристала и приказан је у већини књига за очвршћавање. Овај модел 

карактерише коефицијент сегрегације keff  као функција константне дебљине филма . 

Последњих година се уочавају недостаци BPS модела и предлажу се нови модели који се 

заснивају на дебљини слоја. У овом раду поново се разматрају модели засновани на 

дебљини слоја и пореде са недавно предложеним моделом где је коефицијент keff  

функција конвективног коефицијента h . 

Кључне речи: BPS, сегрегација, конвекција, Czochralski процес  
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