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Abstract 

In this review the results of dynamics of the systems with time-variable mass are presented. 

After the theoretical consideration the application of the theory is shown. Special attention is 

paid to mechanisms and machines and also to rotors with variable mass. The systems with both: 

discontinual and continual mass variation is analyzed. The influence of the reactive force on the 

motion of the system is investigated. Numerous analytical solving procedures are developed for 

solving the systems. The intention of the paper is to give the directions of further investigation. 

Keywords: mass variable system, reactive force, rotor with variable mass, mechanism with 

time variable mass. 

1. Introduction 

The intention of this paper is to give the review of the results in dynamics of variable mass 

system and their application in machines and mechanisms. The expression ‘variable mass 

system‘ as used in the context of this paper refers to mechanical systems that lose and/or gain 

mass while in motion. 

The problem of dynamics of the systems with variable mass was appointed in early XVII 

century. Namely, the variation of the secular acceleration of Moon's longitude has to be 

explained. Edmund Galileo compared the periods of motion of the Moon around the Earth and 

concluded that it decreases due to increase of the averaged velocity around the orbit and 

tangential acceleration of moon. Oppolzer (1884) stated that the reason of secundary 

acceleration of Moon is the increase of the eccentricity of the Earth‘s orbit and also mass 

variation of the Moon and the Earth due to meteorite falls. Due to mass variation the radius of 

the Earth increases for half of millimeter during a century. In the same year Gil‘den, 1884, 

formulated the differential equation of relative motion of two particles with time variable 

masses which attract each other in accordance with Newton‘s law. If the relation 
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where r


is the position vector between two considered particles or bodies, m(t) is mass 

variation and r is distance between two particles. The same formulation was given by 

Meshchersky (see Meshchersky, 1893) for the motion of two variable mass particles in 



Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 1, 2012 

 

57 

gravitational field. Nowadays, the formulation (1) is called non-stationary Gil‘den-

Meshchersky. Meshchersky obtained the certain mathematical laws of mass change which have 

to be fulfilled to reduce the equation (1) to its stationary form. The equation has the first integral 

of quadratic type for certain mass variations. It is found that the real mass variation is neither 

periodic, nor oscillatory. The aforementioned publications can be treated as the first one dealing 

with the problem of dynamics of variable mass systems. Nowadays, the first, second and 

general Meshchersky laws are generalized by using the autonomization method (Berkovich, 

1980) and the extended version of the Gil‘den-Meshchersky problem of two bodies in order to 

find all possible mathematical laws of mass change which give the solution of the problem in 

quadratures is formulated. The solution of the motion of a material point of variable mass in a 

central force field in the presence of a perturbing force is also obtained in quadratures 

(Grudtsyn, 1972). Using the Noether‘s theorem (Vujanovic and Jones, 1989) the conditions for 

existence of the conservation law for the system with variable mass under influence of central 

force and damping is determined (Cveticanin, 19941). In spite of the fact that the system 

presents a nonconservative system it has a Lagrangian and the first integrals for certain mass 

variation. 

The further investigation done by Meshchersky was directed toward dynamics of the 

systems with discontinual and continual mass variation in time (Meshchersky, 1897). These are 

two basic directions for past and future researches in the matter. 

In his master work (Meshchersky, 1952), Meshchersky was dealing with the problem of 

particle separation/adding in the system. He concluded that, in general, velocity and direction of 

the separated/added particle differs from the velocity of the remainder particle from which the 

particle was separated or was added. The separated or added particles produce the impact. For 

continual mass variation the continual impact is transformed into a force called ‘reactive force‘. 

The impact does not exist if the velocity of the added or sparated particle is equal to the velocity 

of mass variable particle. Then the differential equation of motion has the same form as for 

constant mass systems. However, more often these two velocities differ and the reactive force, 

which is the result of the impact phenomena, has to be included into consideration. 

Mathematical model of mass separation for one degree of freedom system is 

  Fxtm )( , (2) 

where x is the generalized coordinate, m(t) is the variable mass, t is time, F is the external force 

and  is the reactive force 

 )( xu
dt

dm
 , (3) 

with relative velocity u of mass separation or adding. This study was followed by a long period 

of only sporadic activity in this field, and it was not until the 20th century that a resurgence of 

activity in this area occurred, mostly in connection with rocketry. Namely, the reactive force 

was of crucial importance for further investigations and the mentioned model (3) was the basic 

result for many researches, specially in rocketry (Eke and Wang, 1995).  

The investigation the problems which are identified in techniques and engineering due to 

mass variation and up to those in the celestial mechanics needed long time research: from 

modeling of a mass variable particle to a rigid body and the system of particles. Examples of 

mass variable devices abound in the engineering literature. They include complex systems such 

as aircraft, rockets, automobiles, and moving robots picking up or letting go of objects, as well 

as simpler systems such as water splinkler systems or an inflated ballon with air loss through 

one or more holes (Eke and Wang, 1994). In this paper a restriction is introduced: the review of 
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dynamics of rigid bodies and systems which can be considered to be inside the rigid frame will 

be presented. Besides, only the systems where the mass variation is a time function will be 

presented. After the section where the theoretical results are shown the sections about 

applications in the rotors with variable mass and mechanisms with variable mass follow. 

2. Review on theoretical results 

Variable mass systems can be divided into two classes: those with continuous mass variation 

and those with discrete mass variation. Rockets, for example, fall in the continuous variable 

mass class, and robots picking up or releasing objects, or a moving vehicle droping off some of 

its payload in discrete chunks, belong to the discrete variable mass system class.  

2.1. Discontinual mass variation 

The motion in the systems with discontinual mass variation can be divided into two separate 

parts: before and after mass variation. It requires the separate analysis of the motion as the 

constant mass system before and after separation. For the known velocity and angular velocity 

of the mass variable body, the velocity and the angular velocity of the remainder body after 

separation has to be calculated. The general laws and basic principles of classical Newton‘s 

dynamics are usually applied (Cveticanin and Djukic, 2008). Due to the discontinual mass 

variation, the jump-like change of the velocity and the angular velocity of the body are evident. 

Depending on the type of motion of the separated body various dynamic properties of the 

remainder body are obtained. Meshchersky (1952) investigated the motion of a rigid body 

which moves vertical straightforward whose mass varies due to dropping of the load. If the 

separation from a plane four-particle system is done, the problem of three-particle-system 

appears (Cveticanin, 2007). Velocity and angular velocity after particle separation depend on 

the initial conditions. The attraction and resistance forces between particles depend on viscous 

damping or Columb friction. The final position of the particles and the geometrical 

configuration directly depend on the separated particle velocity. 

The most general motion of the mass variable system is the free motion of rigid mass variable 

body . For the mass variable rigid body the following constraints are introduced: 

- form and dimensions of the body change permanently and it causes the continual 

variation of position of center of inertia, axial and centrifugal moment of inertia, 

- velocities of particles before and after mass separation change continuously with time, 

- resultant force and momentum vary in time and depend on time, position, velocity and 

angular velocity. 

Dynamic parameters of a remainder body after mass separation may be obtained applying an 

analytical procedure, too. This method is also based on the general principles of momentum and 

angular momentum of a body and system of bodies. The kinetic energy of motion of the whole 

body and also of the separated and remainder body is considered. The derivatives of kinetic 

energies with respect to the generalized velocity determine the velocity and angular velocity of 

the remainder body (Cveticanin, 2009). Due to mass variation a theorem about increase of 

kinetic energies of the separated and remainder bodies for perfectly plastic separation is proved. 

The increase of the kinetic energies corresponds to the relative velocities and angular velocities 

of the separated and remainder bodies. 
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2.2. Continual mass variation  

Early studies of systems with continual mass variation are focused on the translational motion. 

Such motion is described with equation (2). The same form of equation was used for describing 

the rotational motion of a rigid body around a fixed axes (Bessonov, 19671): mass is substitute 

with moment of inertia, displacement with angle of rotation and force with torque. In the mid 

20th century, researchers started to grapple with rotational equations of motion for variable 

mass systems (Cornelisse, Schoyer and Wakker, 1979). The equations derived have forms 

similar to Euler‘s equations for rigid bodies, with extra terms accounting for mass variability. 

Recently, Wang and Eke (1995) presented closed-form solutions of the equations of attitude 

motion of a variable mass symmetrical cylinder and axisymmetric system that has two equal 

central principal moments of inertia at all times, without necessarly being a body of revolution 

cylinder. Their study assumed symmetric internal fluid flow with negligible whirling motion; its 

main conclusion was that the time history of the angular velocity of a variable mass cylinder 

depends on the initial dimensions of the cylinder, as well as on the manner in which its 

geometry changes as mass is lost. The motion of a mechanical system of coaxial axisimetrical 

bodies of variable mass is a translating system of coordinates (Aslanov and Doroshin, 2004). A 

theorem on change in the angular momentum of a system of coaxial bodies. of variable mass 

with respect to translating axis is presented. The dynamic equations of motion are constructed 

using the example of two coaxial bodies. Assuming that the relative displacements of the centre 

of mass, due to change in the mass of the system are small, approximate solutions are found for 

the spatial orientation angles and the condition for reducing the amplitude of nutational 

oscillations. The results obtained can be used to describe the motion of spacekraft, constructed 

in coaxial form, when performing active manoeuvres with a change in mass. The consideration 

is extended on modeling of motion of a rigid body with variable mass. For the non-linear non-

holonomic variable mass systems the universal D‘Alambert-Lagrange‘s principle of variable 

mass is formulated (see Ge, 1984 and Brankovic, 1987). The generalization of the previously 

obtained solutions is given for a rigid body with variable mass (Cveticanin and Kovacic, 2007). 

As the special case the planar motion is considered.  

2.3. Conservation laws and adiabatic invariants 

As it is previously shown, the motion of the system with variable mass is described with second 

order differential equations with time variable parameter. To find the closed form solution of 

the equation is, usually, impossible. In spite of that the conservation laws of dynamic systems 

with variable mass exist.  

An extended Lagrangian formalism for the rheonomic systems with the nonstationary 

constraints is formulated with the aim to examine more completely the energy relations for such 

systems in any generalized coordinates, which in this case always refer to some moving frame 

of reference. Introducing new quantities, it is demonstrated that these quantities determine the 

position of this moving reference frame with respect to an immobile one. In the transition to the 

generalized coordinate they are taken as the additional generalized coordinates whose 

dependence on time is given a priori. In this way the position of the considered mechanical 

system relative to this immobile frame of reference is determined completely. Based on this and 

using the corresponding d‘Alambert-Lagrange‘s principle, an extended system of the 

Lagrangian equations is obtained. It is demonstrated that they give the same equations of 

motion as in the usual Lagranian formulation, but substantially different energy relations. In this 

formalism two different types of energy change law and the coresponding conservation law 

exist. The energy relations are in full accordance with the corresponding ones in the usual 

vector formulation, when they are expressed in terms of rheonomic potential. The so called 

rheonomic potential expresses the influence of the nonstationary constraint (Musicki, 2004).  
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If for the one degree of freedom system two independent conservation laws are known, the 

exact solution of motion of the system is obtained. Due to the type of the system various 

methods for obtainin conservation laws for differential equations with time variable parameters 

is developed. In the paper of Cveticanin (19931), a method for obtaining conservation laws of 

dynamic systems with variable mass based on Noether‘s theorem and D‘Alembert‘s variational 

principle are developed. In general, a dynamic system with variable mass is purely 

nonconservative. Noether‘s identity for such a case is expanded by the terms that describe the 

mass variation. If Noether‘s identity is satisfied, a conservation law exists. Using the suggested 

procedure the conservation laws for a non-linear vibrating machine and for a rotor with variable 

mass are determined. 

Starting from the Lagrange equations for mechanical systems with variable mass the 

general energy change low is formulated by Musicki, 1999. The law is expressed also in terms 

of the metric tensor and connected with the corresponding generalized Noether‘s theorem 

(Vujanovic and Jones, 1989), from where it is concluded under which conditions the energy 

conservation is valied. 

To form the invariants for the one degree of freedom mass variable oscillators, which have 

the Lagrangian (Cveticanin, 2000), the Noether‘s approach is also applied. The conservation 

laws of the rheo-linear (Cveticanin, 19961), pure-cubic oscillator and a pendulum with variable 

mass and length are determined. The obtained conservation law of energy type gives the 

analytic criterion for dynamic buckling (Cveticanin, 2001). The suggested method allows the 

determination of dynamic buckling load without solving the corresponding non-linear 

differential equation of motion. For this value of dynamic load the motion of the system 

becomes unbounded.  

For the case when the conservation laws is impossible to be obtained, the adiabatic 

invariants have to be considered. The procedure for obtaining adiabatic invriants is as follows: 

The method is based on Noether‘s theory (Vujanovic and Jones, 1989) and the use of an 

asymptotic solving technique. Noether‘s theory requires the study of the invariant properties of 

the Langrangian function with respect to infinitesimal transformation of the generalized 

coordinates and time leaves the Langarangian function invariant. The necessary condition for 

the existence of first integrals, i.e. exact invariants, is determined. Any approximate solution of 

this necessary condition yields the corresponding adiabatic invariant.  

For dynamical systems with one degree of freedom and small non-linearity the necessary 

condition for the existence of first integrals is transformed in the Krylov-Bogolubov-

Mitropolski (KBM) variables (Djukic, 1981). Two independent invariants give the approximate 

solution of the vibrations of the oscillator with variable mass. The previously mentioned 

procedure developed for the system with small non-linearity is extended for the system with 

strong non-linearity (Cveticanin, 19951). The method is based on Noether‘s theorem for 

invariance and the elliptic Krylov-Bogolubov (EKB) method. A set of abiabatic invariants is 

applied to find the asymptotic solution for the motion. Two examples are considered: the pure 

cubic oscillator and the linear damped quasi-pure-cubic oscillator with variable mass. The 

suggested procedure is modified for solving of motion for systems with small non-linearity but 

with two degrees of freedom (Cveticanin, 19942). If four independent adiabatic invariants are 

known, the motion of the system is approximately known. The same statement is evident when 

the non-linearity is strong (Cveticanin, 19962). The elliptic-Krylov-Bogolubov (EKB) 

asymptotic technique is applied for constructing adiabatic invariants for the systems described 

with complex functions.  
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2.4. Qualitative analysis, stability and control  

The well known procedure for qualitative analysis of the systems with constant parameters is 

extended and adopted for analyzing the systems with non-periodic time variable parameters and 

small non-linearity (Cveticanin, 2004). The advantage of the developed method is that the 

behavior of the system may be discussed without solving the differential equations of motion. 

As the special case the quasi-linear one-degree-of-freedom system with slow time variable 

parameter is considered. The effects of mass variation and reactive force are discussed. It is 

obvious that they have a significant influence on stability of motion. 

Various methods for stability analysis for linear systems with time variable parameters are 

given by Shrivastava (1981) and Ahmadian (1986). As the special case the condition of 

instability of the position of equilibrium of a linear oscillator with variable parameters is 

discussed (Ignat‘yev, 1991) and illustrated for the case of a rocket with fins about its centre of 

mass. The main disadvantage of these methods is that they are applicable only for linear 

systems. The most general procedures for stability analyses of systems with mass variation are 

Lyapunov‘s direct theorems. In the paper of Cveticanin (19952) a new type of Lyapunov 

function is formed which allows to follow the classical Lyapunov reults on asymptotic stability 

and instability of systems with variable mass. A stability theorem for a special type of second 

order differential equation with complex function z is also defined. The advantage of all the 

mentioned methods is that need not the differential equations of motion to be solved. The main 

conclusion for stability analysis is that the reactive forces are the basic factors for stability 

limits. This is the reason that the reactive forces are used as control parameters.  

A theory is developed for the solution of an optimal motion control problem for mechanical 

system with variable mass and superimposed constraints, whose responses are reactive forces 

(Apykhtin and Iakovlev, 1980) which are taken as controls. As an example a problem on 

contact in minimal time is solved by the method of parallel approach of some target and a 

system of point of variable mass. 

In general the control procedure requires to construct the equations of motion of a control 

system with constraints whose response are reactive forces (Azizov, 1986). The equations are 

constructed using the theory of motion of a system with non-ideal constraints which is applied 

to problems with friction. Two laws of variation of mass of the system ensuring the realization 

of the servoconstraints are determined, and the problem of stabilizing the motion with respect to 

a manifold defined by these constraints are studied. The method of investigation is based on the 

rules of combination of the constraints and the Chetayev‘s theory of parametric release. 

However, the systems in which the laws of variation of mass are known in advance, and all 

constraints effected by reactive forces are applied exactly over the whole period of motion, 

embrace only a narrow class of problems. A more general case is of interest, when only a part 

of the constrains realy on reactive forces, where the possible deviations of the motions from the 

servoconstraints are taken into account and the laws governing the variation of mass of the 

points are not known in advance and are found from the differential equations supplementing 

the equations of motion of the system. 

2.5. Oscillators and oscillatory motion  

Numerous machines and mechanisms are modeled as one, two or multi degree of freedom mass 

variable oscillators. It is the case for: cutting machines with produced object, connection 

between the engine and wagon, transportation sources, conveyers, etc. Usually, mass-time 

variation is assumed in a polynomial form. The motion is described with one or more second 

order differential equations. The simplest model of one degree of freedom oscillator is a linear 

differential equation which is solved analytically using the first and second order Bessel‘s 

functions (Abramowitz and Stegun, 1972). For the system with multiple degrees of freedom the 
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linear differential equations with variable parameters are analytically solved applying the 

Chebychev matrix operator method (Hiegemann and Straub, 1994). Transforming the 

differential equations where the parameters are non-linear time functions into those with 

constant mass the non-stationary motion of the oscillator is possible to be discussed (Bessonov 

and Silvestrov, 1968). Unfortunately, only a small group of oscillators is the linear one. 

Usually, in oscillators some non-linearities exist. 

In designing mechanical and structural systems it may be important to take into account 

small non-linearity and slow mass variation. Recently, some attention is paid to a simple non-

linear oscillator with slowly varying parameters (Lamarque et al. 1993). Many classical 

methods can be used to study the case of weak non-linearity. Let us mention some of them: 

method of Mitropolski (1964), Krilov-Bogoljubov method (Krilov and Bogoljubov, 1937), 

Bogoljubov-Mitropolski method (Bogoljubov and Mitropolski, 1963), asymptotic method of 

Krylov-Bogolubov-Mitropolski (Arya and Bojadziev, 1981, and Bojadziev and Hung, 1984), 

method of projections (Merkin and Friedman, 1981), method of multiple scales (Nayfeh and 

Mook, 1979), etc. Much effort has been put into extending the methods to more general classes 

of oscillators. The first reason is that one hopes that any analytical method can give 

approximated solutions with bounded error. The main reason is the use of an analytical method 

in order to identify some physical parameters modelling a mechanical system from 

experimental dynamic tests. The normal form method is applied to compute an approximate 

solution of a cubic non-linear equation with slowly varying mass at short times and small 

enough amplitudes of the normal co-ordinates (Lamarque et al., 1993). If these amplitudes are 

very small, the analytical and accurate numerical results agree for large times. A new exact 

approach for analyzing free vibration of single degree of freedom systems with nonperiodically 

time varying mass is presented by Li (2000). The function for describing the variation of mass 

of a SDOF system with time is an arbitrary continuous real-valued function and the variation of 

stiffness with time is expressed as a functional relation with the variation of mass and vice 

versa. Using appropriate functional transformation, the governing differential equations for free 

vibration of SDOF systems with nonperiodically time varying mass are reduced to Bessel‘s 

equations or odinary differential equations with constant coefficients for several cases and the 

corresponding exact analytical solution are thus obtained. A numerical example shows that the 

results obtained by the derived exact approach are in good agreement with those calculated by 

numerical methods, illustrating that the proposed approach is an efficient and exact method. 

The theoretical analysis and numerical results show that the effect of variation of mass with 

time on the free vibration of an SDOF system is equivalent to that of a viscous damping. The 

equivalent damping is positive for the case that the mass increase with time; otherwise, the 

damping is negative if the mass decreases as time increases. When the variation of mass is 

proportional to that of stiffness, the motion of the mass is pseudo-periodic. The vibration of 

oscillators with time variable mass depend also on internal friction and relaxation under the 

action of a harmonic force. The influence of reactive force on the vibration properties of the 

one-degree-of-freedom systems are analysed (Cveticanin, 1992). The amount of mass in the 

system is directly connected with the amplitude of vibrations. In the paper of Cveticanin (2012) 

the strong nonlinear oscillator with time variable parameter is considered. The influence of the 

order of the pure nonlinearity on the oscillatory motion of the system is analyzed. 

The methods mentioned above are suitable for application for the system of two coupled 

differential equations which describe the oscillations of two degrees of freedom mechanical 

oscillator. One of the most suitable methods is the extended Bogolubov-Mitropolski method 

(Cveticanin, 19953) applied for a differential equation with complex function, small non-

linearity and a slow variable parameter. If the non-linearity is strong the aforementioned 

methods are not suitable for application and new solving procedures have to be developed. The 

approximate solution procedure for the differential equation with function z, strong non-
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linearity  and slow time variable parameter )(2   is introduced into consideration 

(Cveticanin, 19932). The variation of parameter may be caused by mass which is the function of 

slow time =t, where <<1 is a small parameter. The non-linearity in the system is of cubic 

order. The mathematical model is 

 ),,,,()( 32 zzzzfzz     (4) 

where z  is a complex conjugate function of z and f is a small non-linear function. The 

Bogolubov-Mitropolski procedure is adopted for solving strong non-linear differential equation 

with time variable parameter and complex function using the Jacobi elliptic functions (Byrd and 

Friedman, 1971) instead of circular ones. Two examples are considered: one, with small linear 

damping and the second, with small non-linear hidrodynamic force. The suggested analytical 

method makes possible for an engineer to define the influence of parameters on the real system. 

3. Rotor dynamics 

In many industrial machines rotors with variable mass are installed. Rotor‘s mass variation is in 

time. Rotors with variable mass are the fundamental working elements of many machines in 

textile, carpet, cable industry, process industry (centrifuges, separators...) etc. Very often, those 

rotors are modeled as shaft-disc systems. In the middle of a massless shaft a disc with variable 

mass is settled. Usually, the elastic force in the shaft is non-linear. The non-linearity is weak or 

strong. The mathematical model of the rotor is in general a second order differential equation 

with complex function z 

 ),,()()(  zzfzFzzm   , (5) 

where m() is mass variation, F(z) is the non-linear elastic force which may be small and f is 

the additional small function dependent on deflection, velocity and slow time .  

Modelling of mass variation is not an easy task. Different models are formed dependently 

on the system. Various models for winding up of the band on the cylindrical (Skopi, 1981) (see 

Fig.1) and conical drum (Ganlin, 1988) are given, where the mass distribution in one 

(Bessonov, 19671) and multi layers (Krutkin, 1982) is discussed. 
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Fig.1. Model of the rotor with winding up band (Cveticanin, 19841) 

Also for a rotating cylinder mass variation due to pouring of fluid or granular material (Fig.2) is 

presented (Afinasjev, 1977).  

 

Fig.2. Model of the rotor with pouring granular material (Afinasjev, 1977) 
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Mass variation causes rotor vibrations. There are many papers dealing with the problem of 

vibration analysis. Based on the topic of interest all of these papers can be divided into 

following groups: 

 Determination of velocity of vibration 

 Stability of rotation 

 Deterministic chaos. 

3.1. Vibrations of a mass variable rotors  

In the papers of Cveticanin (19841) and (19861) the free vibrations of a textile machine rotor are 

considered. Mass of the disc is varying due to the winding up of the textile band with constant 

angular velocity. Severe vibrations occur produced by mass variation. In the case of small non-

linearity and of ―slow time‖ mass variation the mathematical model of rotor motion is a second 

order non-linear differential equation with time variable parameters which can be solved not 

only numerically but also analytically by use of the multiple scales method. The obtained 

approximate analytical and the exact numerical results are compared and show a good 

agreement. Extending the model taking into consideration the gyroscopic force (Cveticanin, 

19954) the model of mass variable rotor becomes more complex. The solving procedure for 

differential equation with complex deflection function, time variable parameters and small non-

linearity based on the Krylov-Bogolubov method is appropriate for application. Vibrations in 

non-resonant (Cveticanin, 19842) and resonant (Cveticanin, 1991) case are also analyzed 

applying the multiple scales method. The results for free vibrations are compared with those for 

non-resonant case, and the results for resonant case with stationary solutions. The special 

attention is paid to the influence of reactive force on the vibration properties of the textile 

machine rotor with variable mass (Cveticanin, 19933).  

In the paper of Cveticanin (19934) an asymptotic solution for non-linear vibrations of the 

rotor with hydrodynamic force is obtained. It is assumed that the rotor system is under action of 

normal and tangential forces. The procedure for solving of the differential equation is based on 

the well-known method of linear vibrations and the asymptotic method of Bogolubov-

Mitropolski. The Bogolubov-Mitropolski method is adopted for a differential equation with 

complex function, slow variable mass and small non-linearity. The following cases are 

considered: the hydrodynamic force is (a) a weak linear one, (b) strong linear one or (c) weak 

non-linear. The effect of hydrodynamic force on amplitude of vibration is discussed. 

A method based on the invariant manifold approach to normal modes is generalized for 

obtaining normal modes of vibrations for rotors with continually distributed slow variable mass. 

The dynamics of modes is analyzed (Cveticanin, 1997). A rotor with slow time variable mass 

with cubic non-linearities is given as an example. The motion obtained by the mentioned 

method is compared with the results of the standard Galerkin procedure. The non-linear 

ordinary second order differential equations which govern individual modal dynamics are 

solved numerically. The influence of reactive force and mass variation on normal modes of 

vibrations is also considered.  

Vibrations of strongly non-linear rotors with time variable parameters are also analyzed 

(Cveticanin, 19943). The mathematical model of the rotors is a strongly non-linear second order 

differential equation with complex function and time variable parameters. The Krylov-

Bogolubov (KB) method and the elliptic-Krylov-Bogolubov (EKB) method are extended for 

solving the equation of motion. The solution is given in terms of Jacobi elliptic functions. The 

approximate solution is obtained by applying an averaging procedure. Two types of rotors with 

variable mass are considered: with cubic non-linearity and with quasi-pure-cubic non-linearity. 
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3.2. Stability and deterministic chaos 

Two methods are usually used for analyzing of the stability of rotation of the mass variable 

rotor (Cveticanin, 19862): i) analysis of the solution of the differential equation of vibration 

which is the side effect in rotor motion and ii) application of direct Liapunov‘s method of 

stability, asymptotic stability and instability. The methods are compared for a mass variable 

rotor where the linear damping acts. 

Stability of the rotating motion of the rotor with variable mass with zero deflection of the 

mass center is also analyzed (Cveticanin, 19881). It is concluded that mass variation has a great 

influence on the character of the rotor rotation stability. As a special case the stability of 

rotation of the rotor of a textile machine is analyzed. The stability is analyzed by the use of the 

methods of Lyapunov. The conditions and parameters of stable and asymptotic stable rotation 

are determined for the mass variable rotor without reactive force and existing disbalance force 

and small non-linear elastic force (Cveticanin and Zlokolica, 1988), too.  

Analyzing the stability properties of rotor motion caused by forces like hydrodynamic and 

aerodynamic force, internal and external damping forces in the interaction with mass variation it 

is shown that instabilities may occur (Cveticanin, 19952). The influence of these forces and 

mass variation on the stability of motion is extremely complex. 

Among the factors leading to instability of rotors on which the band is winding up is the 

rubbing between rotating and stationary parts. Stability of motion of a rubbing rotor on which 

the band is winding up is considered by Cveticanin (1989). The rotor is modeled as a clamped-

free one. The limits of the regions of stable and unstable rotation of the rotor, with zero 

deflection of mass center, are defined by applying the direct Lyapunov method. These results 

are compared with those obtained for rotors with constant mass. It can be concluded that the 

rotation for no-rotor-stator contact and rub initation is asymptotically stable. For stator-rotor 

interaction the rubbing force appears which cases unstable rotation. The limits of unstable 

rotation are functions of the mass winding up on the rotor but also on the geometrical and 

physical characteristics of the band and the shaft, and also of clearance value. 

A special type of rotating system is the rotor/fluid one (Cveticanin, 19981). The model of 

the rotor is a massless elastic shaft on which end is a fluid filled cylinder is fixed. The fluid is 

leaking and mass of the rotor is varying. The fluid force and the reactive force, which is the 

result of mass variation, act. Special attention is given to the effect of interactive influence of 

the inertial fluid force and the reactive force on the stability of rotation of the rotor. The stability 

of rotation is investigated applying the direct Lyapunov theorems but also analyzing the 

solution of the second order differential equation with a complex deflection function, small non-

linearity and time variable parameters and a significant damping term which describes the 

vibration of the system. The conditions for stable rotation are determined. Analyzing the 

amplitude of self-excited vibrations the conditions for which unstable motion appears, are 

defined. 

In the structural unstable rotor systems with variable mass deterministic chaos appears 

(Cveticanin, 19955). The steady-state chaotic motion of rotor center depends on the parameters 

of slowly varying mass. The motion of rotor center is bounded and strongly dependent on initial 

conditions.  

3.3. Rotor balancing 

Nowadays, there are many rotors which experience mass changes during their operation. Such a 

change of mass causes unbalance. The unbalance causes vibrations. Vibrations must be 

eliminated by balancing of the rotor. Bessonov (19672) gives a method for approximate 

balancing of the rotor. Mass of the counterweights is calculated using the principle of the 
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minimal quadratic difference between the exact and approximate static moment in two 

balancing planes. The improvement of balancing is achieved by controlled movement of 

counterweights which have to satisfy the conditions of dynamic balance (Cveticanin, 1981). 

4. Mechanisms and machines 

The theory of mass variable systems is applied for dynamic analysis of machines and 

mechanisms with time variable mass (Cveticanin, 19982). Various dosing devices (Fig.3), 

 

Fig. 3. Automatic dosing device. (Bessonov, 19671) 

 

Fig. 4. Mechanism for material spreading (Cveticanin, 19982) 

mechanisms for spreading material (Fig.4), excavators (Fig.5), cranes (Fig.6), etc. represent 

those machines and mechanisms. Numerous models for mass distribution in the mechanisms are 

developed. The most papers deals with the problem of mealy material distribution on the 

transport track (Entus, 1981). An improvement to the model is given by Saeki and Takano 

(1997) who analytically studied the flow of granular materials on vibratory conveyors. Using 
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the suggested theoretical consideration vibrations (Strzalko and Grabski, 1995) and stability of 

motion (Cveticanin, 19956) of mechanisms with variable mass are investigated. It is concluded 

that the load variation and also the reactive force have a significant influence on dynamics of 

excavator and the planar crane (Strzalko and Grabski, 1995). 

 

Fig. 5. Model of excavator. Strzalko and Grabski, 1995)  

 

Fig. 6. Model of planar crane (Ross, 1979) 

Loading and unloading of the lifting mechanism of a crane (Fig. 6) causes mass variation (Ross, 

1979). The mechanical model of the mechanism is a simple pendulum with variable mass and 

length. Due to mass variation a reactive force appears. The influence of the reactive force on the 

motion of the system is investigated. Some special cases are of interest: (i) the relative mass 

variation rate is constant; (ii) the damping is varying and the relative length variation rate is 

constant and the wind force is present. The values of mechanism parameters, for which beside 

the regular also nonregular chaotic motion appears, are determined. To obtain the criteria of 

chaotic motion the method of Melnikov is applied (Guckenheimer and Holmes, 1983). 

5. Conclusions and further investigation  

Recently, one of the most important requirements in machining engineering is to increase the 

producing capacity of machinery. It requires the enlargement of the velocity of machines. As a 

side effect to working process the vibrations appear. To eliminate the vibrations the most 

accurate desinging of the mechines have to be done. It requires the model of the system to be 

more realistic. It means that the mass variation of the system is necessary to be taken into 

consideration. The model has to include besides mass variation also the non-linear effects. It 

needs the modification and extending the previous known theory.  

The following is suggestion for further investigation: 
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1. The most of investigation are done in systems with ‘slow mass‘ variation due to ‘slow 

time‘. In real systems mass variation need not to be the function of ‘slow time‘. The extension 

of the consideration on the systems with mass variation which depend not only on ‘slow time‘ is 

necessary. There are no valied analytic methods which involve the solving of the differential 

equations with strong time variable parameters.  

2. Usually, the real systems with time variable mass are non-linear. Unfortunately, the 

simplification is done and the systems are considered as linear one, or with small non-linearitirs. 

Only the strong cubic non-linearity is investigated. The future investigation would be directed 

to non-linear mass variable systems.  
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Извод 

Пpеглед истраживања у области динамике система са промељивом 

масом 

Л. Цветићанин
1 

1
Факултет техничких наука, Нови Сад, Трг Д. Обрадовића 6, Србија 

Резиме 

У раду је дат приказ резултата у области динамике система са променљивом масом. 

Након теоретских разматрања, приказана је примена те теорије. Посебна пажња 

посвећена је машинама и механизмима као и роторима са променљивом масом. 

Анализирани су система са непрекидном и коначном променом масе. Посебно је 

разматран утицај реактивне силе на кретање система. Наведене су бројне аналитичке 

процедуре за решавање диференцијалних једначина које описују кретање система. Циљ 

рада је да да смернице за даља истраживања у овој области. 

Кључне речи: систем са промељивом масом, реактивна сила, ротор са променљивом 

масом, механиѕам са временски променљивом масом. 
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