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Abstract 

The estimation of chemical kinetic rate constants for any non-trivial model is complex due to 

the nonlinear effects of second order chemical reactions. To accomplish this goal we have 

developed an algorithm based on genetic algorithms (GA) and then tested the effectiveness of 

this method on the McKillop–Geeves (MG) model of thin filament regulation. This method 

have shown better accuracy than deterministic methods, the Damped Least Squares (DLS), 

quasi-Newton (QN) and simulated annealing (SA). However, it requires large number of 

evaluations of candidate solutions which take longer CPU time. In this paper, a platform for 

distributing evaluation of different sets of parameters (i.e. individuals in genetic algorithm) over 

a number of threads on a single computer is presented. Performed tests have shown that 

parallelized evaluation provides significant speedup with better accuracy and estimation times 

comparable to deterministic methods. 
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1. Introduction 

The predictions of the kinetics model are calculated by a probabilistic algorithm based on the 

McKillop–Geeves (MG) three-state model of thin filament regulation in solution (McKillop et 

al., 1993). According to this model, the actin-associated regulatory protein complexes 

consisting of tropomyosin (Tm) and troponin (Tn) switch between the three azimuthal positions 

on the actin filament surface, thereby preventing or allowing myosin-S1 to (weakly or strongly) 

bind to actin. The kinetics of a chemically reacting system is usually modeled using ordinary 

differential equations that are parameterized by a reduced set of reaction rate constants. A 

precise knowledge of these constants is required to characterize the dynamical behavior of the 

system. The estimation of the reaction rate constants from the fits of the experimental data 

constitutes an inverse problem and is much more complicated than solving the model for a 

given set of rate constants. Inverse problems arising in chemical kinetics can be addressed by 

the discrete inverse theory (Menke, 1989). The most common methods for parameter estimation 
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on chemical kinetics are least squares methods that minimize an objective function iteratively 

by working with its gradient (Farinha et al., 1997; Lisy et al., 1998; Tadi et al., 1998). In these 

methods the objective function is defined as the error between the experimental observations 

and the predictions of the model, which depends on the model parameters. Several approaches, 

such as Damped Least Squares (DLS), quasi-Newton (QN) and simulated annealing (SA), have 

been developed to solve this difficult minimization problem. 

The estimated rate constants by DLS, QN and SA were critically evaluated for the accuracy 

and robustness (Mijailovich et al., 2010). Damped Least Square (i.e. Levenberg–Marquardt) 

inversion is a widely used method for the estimation of model parameters that has two 

important features: quantitative evaluation of the uniqueness of the estimated parameters and 

good parameter resolution (Menke, 1989). The DLS method is based on iterative minimization 

of the mean-square error of the model predictions with respect to experimental observations. 

The QN method estimates parameters by minimizing the error with the Newton algorithm 

(Dennis Jr. et al., 1983; Nocedal et al., 2006). SA algorithm provides a global search method 

specifically designed for functions with multiple minima over wide range of parameters 

(Kirkpatrick et al., 1983; Press et al., 1986). All of these methods suffer the problem of local 

minimum, except SA that is also a global method. Ideally, the parameter set that minimizes the 

objective function is a manifold of dimension zero in which the minimum of error is a single 

distinguished point in the error landscape. In this case, the error increases as the parameter 

values vector moves away from this point in any arbitrary direction. However, in systems where 

multiple parameters need to be estimated, the optimal parameter set may span a manifold of 

dimensions equal or greater than one, forming ―valleys‖ or ―hyper-valleys‖ in the error 

landscape, and, therefore, global methods should be used. 

The primary focus of this study is on the estimation of kinetic parameters using genetic 

algorithm that solves the problem of local minima. To improve performance, a platform for 

distributed evaluation of multiple sets of the model parameters (i.e. individuals in GA) based on 

the master-slave model is introduced. The accuracy and effectiveness of the presented method is 

compared to existing deterministic methods, and strengths and weaknesses of these methods are 

discussed. 

2. Theoretical background 

2.1 The McKillop–Geeves three-state model of thin filament regulation 

In vertebrate skeletal and cardiac muscles the interaction between myosin and actin is regulated 

by the actin-associated proteins, tropomyosin (Tm) and troponin (Tn), depending on the 

concentration of calcium (Ca
2+

). The soluble fragment of the myosin molecule S1 is widely 

used for studying kinetics of myosin binding to regulated actin filaments in solution. This 

fragment, also known as the motor domain, contains all of the ATPase and actin binding 

properties of the parent myosin. In the absence of nucleotide, myosin-S1 forms a tight (rigor-

like) bond to actin filaments. McKillop and Geeves (McKillop et al., 1993) proposed that the 

regulation of tropomyosin and troponin-containing thin filaments can be interpreted using three-

states of the actin filament: (1) ―blocked‖ state, in which myosin-S1 binding to actin is 

prohibited; (2) ―closed‖ state, in which S1 can bind with actin, but cannot be isomerized further 

to next step; and in the (3) ―open‖ state, where no limitation to S1 binding to actin is imposed. 

The unit size of Tm–Tn complex is assumed to cover 7 actin monomers, denoted as 

7actin TmTn  (Maytum et al., 1999) (see Fig. 1). The repeat of TmTn every 7 units uniquely 

defines a TmTn unit that can rigidly move between the three states. Because Ca
2+

 binding to Tn 

significantly decreases the affinity of Tn to actin, the distribution between these three states is 
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therefore affected by Ca
2+

 concentration. There are three myosin states in the model: one 

unbound state where myosin is in solution and two bound states where myosin is bound to 

actin. The bound states are denoted as weakly bound A-states and strongly bound, i.e. rigor-like 

states, as R-states (Fig. 1). 

 

Fig. 1. MG three-state model scheme (McKillop and Geeves, 1993). In the MG model the 

structural unit, 7A TmTn , is schematically shown as seven open circles representing the actins 

connected via a line representing the tropomyosin: the blocked states, BA , in which no myosin-

S1 binding can occur, the closed state, CA , in which only weak binding of S1 can occur, and 

the open state, MA , which allows isomerization of the myosin-S1 to the rigor-like state. The 

ratio of the three states in absence of myosin-S1 is defined by the equilibrium constants BK  

(between the blocked and closed states) and TK  (between the closed and open states). Weakly 

bound myosin states are denoted as A-states and rigor-like states are denoted as R-states. The 

rate of myosin binding is defined by equilibrium constant 1 1 1/K k k  , and the rate of 

isomeration od S1 into R-state is defined by the equilibrium constant 2 2 2/K k k   (adopted 

from Mijailovich et al., 2010). 

The MG model (Fig. 1) can be fully described by defining each state as a combination of either, 

blocked, closed or open TmTn state, and the number of actin sites with myosin bound in A- and 

R-stated within an 7actin TmTn  unit. The complete chemical kinetics of the MG model can be 

described by 45 states (see Fig.2 for details) and 45 corresponding chemical kinetics equations, 

as previously described by Chen (Chen et al. 2001). These equations are: 
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where  ip t  is the fraction of TmTn units in state i , which is defined by position of Tm (i.e. in 

block, closed or open state) and a particular combination of actin unoccupied sites and S1 

bound in A- or R- states within the 7actin TmTn  unit. The equilibrium constants of the model 

are defined as  /B B BK k k  , /T T TK k k  , 1 1 1/K k k   and 2 2 2/K k k  , where Bk  ,

Tk  , 1k  and 2k  are forward rate constants, and Bk  , Tk  , 1k  and 2k  are backward rate 

constants. The system of Eq. (1) is nonlinear because the forward transition rate between the 

free actin state and myosin bound to actin in the A state depends on the concentration of 

unbound S1. In Eq. (1) we denoted S1 concentration as  1c S  , thus the effective myosin 

binding rate constant, 1k c , is in units s−
1
. The concentration of S1 in solution, i.e. the 

concentration of unbound myosin, decreases as myosin binds to actin and, therefore, decreases 

the effective rate of myosin binding. The concentration of free myosin-S1 in solution is equal to 

the initial concentration of free myosin-S1, [S1o], minus concentrations of myosin bound to 

actin in either A- or in R-state. 
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Fig. 2. Schematic representation of the three-state MG model where each TmTn complex is 

assumed to cover seven actin sites. The complete kinetic diagram for the binding of S1 to a 

structural 7actin TmTn  unit includes seven actin monomers. The resulting model contains one 

blocked state, eight closed states and 36 open states. All states are denoted as numbers in the 

square boxes (gray). The configurations of some states are shown. The fused two-way arrows 

represent the transitions from the blocked to the closed state with equilibrium rate transition 

constant, BK  and the transition from closed to open state with the rate TK . The two-way 

arrows represent forward and backward transition rates between myosin states interacting with 

actin: (i) S1 from solution weakly binding to actin (into A-state) and (ii) transition from A-state 

to R-state. The forward rate of S1 binding from the solution to the actin in an 7actin TmTn  is 

defined as effective binding rate  1
1k c s  multiplied by the number of unoccupied actin 

monomers within the unit, and the backward rate of the S1 unbinding from A-state back to 

solution by the detachment constant 1k  multiplied by the number of S1 bound in A-state in the 

7actin TmTn . Similarly, transition from A-state to R-state is defined by the forward constant 

2k  multiplied by the number of S1 bound in A-state in the 7actin TmTn , and transition from 

R-state to A-state is defined by the backward rate constant 2k  multiplied by the number of S1 

bound in R-state in the unit (adopted from Mijailovich et al., 2010).    

Thus the binding rate depends on probabilities of all myosin bound states, boundp . The 

equations of the MG model are solved numerically by Gear‘s backward differentiation formulas 

(up to order five) (Hindmarsh, 1972). All 45 equations can be easily solved for a wide range of 

parameter combinations. However, in some extreme cases in which some of the parameters take 

much larger values than others, the set of Eq. (1) becomes numerically ―stiff‖ and it is difficult 

to solve it using standard methods. In those cases, Monte Carlo simulations should be used in 

order to solve the resulting stiff set of equations efficiently. 

Once we determine the vector of 45 states,  , tp k , where the vector  1, , nk kk  

represents an array of the rate transition constants and other relevant model parameters, we 
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calculate the fraction of actin sites in each one of the three actomyosin states by summing the 

occupancy of the actin sites over all TmTn units, and normalizing by the total number of actin 

sites occupied by S1 in the R-state when the system is in equilibrium. The model predictions are 

tested against measurements of the pyrene fluorescence intensity during stopped-flow 

experiments (Boussouf et al., 2007a; Boussouf et al., 2007; Boussouf et al., 2007b). A drop in 

pyrene fluorescence is proportional to myosin binding to actin in the R-state. Thus, the 

calculated instantaneous fractions of actin sites that are not occupied or which are in the A-state 

(i.e. which are not in the R-state), denoted by  , tp k , can be compared with corresponding 

experimental data,  obs td , at the same instant. Here, the vector  1, , mk kk  represents the 

set of m  free model parameters that need to be estimated. Note that k  is usually a subset of the 

complete parameter set k , since some of the parameters are prescribed by the experimental 

protocol, or they are measured (or estimated) independently in which case m n . For example, 

the prescribed concentration of actin, myosin and calcium are the same in both the model 

simulations and those used in the experiments. Also, m  is reduced if some parameters, such as 

several rate or equilibrium state transition constants, vary a little over the course of multiple 

experiments and can be measured independently.  

2.2 A Genetic algorithm 

The concept of Genetic Algorithm (GA) was developed by John Holland and his colleagues in 

the 1960s and 1970s (Holland, 1975). Genetic algorithms are search algorithms inspired by the 

theory of natural selection, where the strong species have greater opportunity to survive and 

pass their genes to future generations via reproduction, then the weak ones. The GA is a 

probabilistic algorithm which maintains a population of individuals,      1 , , np t x t x t  for 

iteration (generation) t . Each individual represents a potential solution to the problem at hand, 

and it is implemented as some (possibly complex) data structure S . Each solution ( )ix t  is 

evaluated to give some measure of its fitness. Then new population (iteration 1t  ) is formed 

by selecting fitter individuals (selection step). 

In GA terminology, a solution vector x X  is called an individual or a chromosome and 

corresponds to a unique solution x  in the solution space. Chromosomes are made of discrete 

units called genes. Each gene controls one or more features of the chromosome. In this paper, 

genes are assumed to be real numbers.  

In every single generation t , GA operate with a collection of chromosomes 

     1 , , nP t t t x x , called a population. The population is normally randomly initialized in 

generation 0t  . As search evolves from generation to generation, the population includes 

fitter and fitter solutions, and eventually it is dominated by a single solution. Holland (Holland, 

1975) also presented a proof of convergence (the schema theorem) to the global optimum  

where chromosomes are binary vectors. 

The procedure of a generic GA (Goldberg, 1989) is given in Fig. 3.  
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Fig. 3. Genetic algorithm. GA uses two operators to generate new solutions from the existing 

ones: crossover and mutation. In the crossover, generally two chromosomes, called parents, are 

combined together to form new chromosomes, called offspring. By iteratively applying the 

crossover operator, genes of good chromosomes are expected to appear more frequently in the 

population, eventually leading to convergence to an overall good solution. The mutation 

operator introduces small random changes into characteristics of chromosomes. While 

crossover leads the population to converge by making the chromosomes in the population alike, 

mutation reintroduces genetic diversity back into the population and assists the search escape 

from local optima. Reproduction involves a selection of chromosomes for the next generation. 

In most general case, the fitness of an individual determines probability of its survival for the 

next generation.  

Following section describes how we applied genetic algorithm in evaluating parameters of a 

model of thin filament regulation in solution. 

3. Implementation  

3.1 Implementation of the genetic algorithm 

The McKillop–Geeves (MG) three-state model has four free parameters: the equilibrium 

constants /B B BK k k  , /T T TK k k  , 1 1 1/K k k   and 2 2 2/K k k  , where Bk  , Tk  ,

1k  and 2k  are forward rate constants, and Bk  , Tk  , 1k  and 2k  are backward rate 

constants, what was discussed in the section 2.1. Values of Bk  , Tk  , 1k  and 2k  are fixed, 

while the values of the remaining constants Bk , Tk , 1k  and 2k  should be evaluated so that the 

model results are as close as possible to experimental results. 

Let us consider an MG model simulation as one individual in the genetic algorithm. 

Properties of that individual are defined, among other constant parameters, by four unknown 

parameters Bk , Tk , 1k  and 2k , whose values are real numbers. Therefore, a set of values for 

those four parameters can be considered as a chromosome that defines characteristics of the 
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individual. The fitness of an individual is determined by its ability to simulate model behavior 

as close as possible to experimental results. Experimental observations are represented by a set 

of N values of the pyrene fluorescence sampled at discrete time points. The simulation has the 

same type of values as the experiment, but the calculations are done by much smaller time 

steps, not necessarily coinciding with the times at which data were acquired. Interpolated 

simulated values at each experimental point are compared to corresponding experimental value 

and mean square error is calculated. The deviation between simulated and experimental results 

for each individual is defined by Eq. 2. An individual has a better grade, i.e. a higher value of 

the fitness, if the value of the error function in Eq. (2) is smaller.  

  
2

exp

1

1
N

sim

i

error y y
N



   (2) 

Initial population in genetic algorithm consists of a number of individuals (simulations) with 

randomly chosen chromosomes (sets of parameters). Each chromosome is created by generating 

its parameters randomly in the given ranges. The evaluation is carried out for each individual, 

executing the simulation using the parameters encoded by the chromosome and calculating its 

error according to Eq. (2). After that, selection of individuals based on their fitness is 

performed. In this paper, the Binary Tournament selection operator is used, where one half of 

fittest (with smallest error) individuals are selected to be parents for next generation (Mitchell, 

1996). The two best individuals (i.e. sets of parameters) are directly transferred to the new 

generation in order to prevent loss of individuals with smallest value of error function. 

Applying the crossover operator on chromosomes of two randomly selected individuals from 

previous generation, consisting of the 50% of the sets of data that best fit the experiments, two 

new individuals are created. In fact, these are two new simulations that combine characteristics 

of both parent simulations. The crossover process continues until a sufficient number of 

individuals are formed. The crossover operator exchanges genetic content of individuals at 

randomly chosen positions of the chromosome. Simulated Binary Crossover was used for this 

genetic algorithm (Deb et al., 1995). 

Mutation operator is an unary operator applied to a number of individuals in order to 

prevent local minima problem. Random change of chromosomes prevents all simulations to 

converge to the same set of parameters (local minimum), introducing new genetic material with 

certain probability. In this paper, Polynomial Mutation Operator is used. Polynomial Mutation 

Operator is based on polynomial probability distribution instead of a normal distribution (Deb 

et al., 1995). 

3.2 Proposed platform for distributing the evaluation 

The distribution of evaluation imposed the use of master-slave model as the most convenient 

way to parallelize the evolutionary algorithm. This model aims to distribute the (objective 

function) evaluation of the individuals on several threads on one computing resource while the 

master node executes the rest of the algorithm in sequential fashion. The communication 

overhead between the threads in presented simulations requires much less time than the parallel 

calculations in the individual threads, so the communication overhead can be neglected. Thus, 

the master-slave model is reasonable to use in this particular setting. 

We developed a distribution subsystem to be inserted as an intermediate layer between the 

main evolutionary loop on the master, and the evaluation of individuals which takes place on 

slaves. The master is unaware of the number of slaves evaluating individuals, and which slave 

evaluates which individual. The main part of the distribution subsystem is the evaluation pool. 

When master sends individuals to evaluation, they are being queued in the evaluation pool, and 
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its job is to distribute them to available threads and to assign evaluation result to the 

corresponding individual. 

EvaluationPool is an abstract class that serves as the base for deriving specific classes, 

which perform evaluation out of the main thread. Every evaluation pool contains queue where 

solutions sent to evaluation are collected. It also has methods for manipulating the queue. 

Evaluation pool may be in one of three states: idle, busy and error. 

 

Fig. 4. Master – slave model 

For evaluation using threads the class EvaluationPoolMG was developed. This class inherits 

class EvaluationPool and represents intermediate between software that performs evaluations 

and available threads. The role of this class is to take solutions from the evaluation queue and 

send them to free threads. Its responsibility is receiving values of fitness functions from threads 

and storing them into collections inside each solution. 

The class uses the thread pool provided by the .NET Framework through the ThreadPool 

class (MSDN Library). A thread pool is a collection of threads that can be used to perform a 

number of tasks in the background. The individuals are assigned to the separate threads from 

the thread pool (Fig.4). That way, evaluations can be processed asynchronously, without tying 

up the primary thread of evaluation pool or delaying the processing of subsequent requests. 

When evaluation of the solution is done, the result is returned and assigned to the solution. 

Once a thread in the pool completes its task, it is returned to a queue of waiting threads. Then it 

can be reused for the rest of queued individuals. This reuse enables applications to avoid the 

cost of creating a new thread for each task. The evaluation pool remains in the busy state as 

long as there are solutions waiting for evaluation in the queue. Once all threads return results 

and there are no more solutions in the queue, the evaluation pool changes its state to idle and 

sends a signal to the main thread that all evaluations are done. 

The developer of the evolutionary system has to separate the evaluation step from the rest 

of the evolutionary algorithm loop, but has no concern with the details of distributing 

individuals and retrieving evaluations results. It is a task of the distribution subsystem to 

distribute individuals as efficiently as possible among the slave nodes, and gather the results. 

The calling method Wait of the EvaluationPool class is provided to set synchronization points 

in the main algorithm. This way, the main thread of the algorithm remains stopped until all 

solutions sent to evaluation are evaluated. 
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Typically, the number of threads can be taken to be equal to the number of CPU cores in 

the system, but this value may be configured differently depending on the specificities of the 

system analyzed, thus accordingly more (or less) threads can be used to parallelize genetic 

algorithm. 

4. Results and discussion 

There are two important features of the model. One is accuracy, i.e. good matching between the 

simulation results and the experimental measurements, while the second is related to 

performance, i.e. the time needed to perform the estimation. Here we compare accuracy and 

performance of the proposed genetic algorithm to those obtained by DLS, QN and SA methods. 

4.1 Estimation of MG model parameters by DLS, quasi-Newton, SA and genetic algorithm 

estimation methods 

We estimated Bk , Tk , 1k  and 2k  parameters (described in Section 3.1) using the DLS, QN, 

SA methods and the genetic algorithm by fitting the predictions of the MG model to stopped-

flow transients for binding S1 to excess actin (    0.50 , 1 5A M S M   ). Backward rate 

constants used in all simulations are taken to be 1100Bk s  , 13000Tk s  , 1
1 20k s   and 

1
2 20k s  .  

The experimental data were collected over 2s, so the simulations were also performed over 

the same time period. In Table 1, lower and upper limits within which the required parameter 

values were searched are shown. 

  
Lower 

bound 

Upper 

bound 

KB 0.0001 200 

KT 0.00001 0.5 

k1+ 10000 5000000 

k2+ 800 5000 

Table 1. Ranges of unknown parameters 

The population size (number of simulations per generation) in the genetic algorithm was 100 

individuals evolved in 100 generations. In contrast, DLS, QN and SA methods required much 

smaller number of calculating because they were executed until the appropriate criterion is 

achieved, or until the maximum of 100 iterations is reached. 

Table 2 shows values of four constants obtained by DLS, QN, SA and GA. It is important 

to note that different estimation methods estimated somewhat different values of the parameters 

Bk , Tk , 1k  and 2k , although the fits are almost identical (see that experimental errors are 

virtually the same). 
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  DLS SA QN GA 

KB 1.47  5.35  7.66  2.96  

KT 0.05  0.013  0.034  0.017  

k1+ 1.47*10
6
  1.47*10

6
  1.43*10

6
  1.48*10

6
  

k2+ 1235.07  4999.98  800.37  4499.26  

Error 6,492*10
-5 

 6.533*10
-5

  6.759*10
-5

  5.739*10
-5 

 

Table 2. Estimated parameters and estimation errors 

Table 2 shows that the genetic algorithm gives the best estimation of the parameters because it 

provides the least error compared to the experimental measurements. Increasing the population 

of GA, i.e. the number of individuals, increases the chance to get better results, which can be 

seen in Table 3. 

Population size 100 250 500 1000 

Error 

5.74E-

05 

5.22E-

05 

4.88E-

05 

4.52E-

05 

Table 3. Estimation error as a function of population size 

4.2 Speed-up of GA 

Due to its nature, the genetic algorithm requires a longer period of time for execution 

comparing to deterministic methods. Although it gives the higher accuracy than other methods 

(Table 2), the performance issue is a serious drawback. In order to solve this problem, 

parallelization of GA (PGA) was carried out using platform described in Section 3.2. That way 

the evaluations within a single generation can be performed in parallel on a specified number of 

threads on a single machine.    

Benchmark setup for performance examination considered following variable parameters: 

population size (100, 250, 500, and 1000 individuals), number of threads (2, 4, 8, 16 and 24). 

Number of threads is limited to 24, considering the number of CPU cores on the machine used 

for research purposes. 

For the sake of completeness, the hardware/software environment description is given. The 

server employed is a SMP machine equipped with 2 AMD Opteron 6174 CPUs (2.2GHz, 12-

core each, totaling to 24 cores) and 64GB RAM running Scientific Linux 6.3 x86_64. Since the 

original MS .Net Framework is not available for POSIX compatible platforms, we employed 

the open source implementation of .NET Framework – Mono v2.10 which complies with .NET 

3.5 standard sufficiently for this purpose.  

Having in mind the adopted parallelization strategy (distributed evaluations of the 

individuals), it turns out that the most valuable information reflecting general speed-up is the 

time needed to evaluate the entire generation. Precisely speaking, we measured time needed to 

evaluate the whole generation as a function of number of threads involved, while population 
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size varies as 100, 250, 500, and 1000 individuals. Speed-up is then calculated as /p m tS T T  

where mT  is the time needed to evaluate the parameters of one generation using sequential 

genetic algorithm (for various size of the population) and tT  is the time needed to evaluate the 

parameters using parallel genetic algorithm for variable numbers of threads N  (2, 4, 8, 16 and 

24). 

 

Fig. 5. Efficiency analysis of the PGA run. 

Figure 5 shows efficiency ( /p pE S N ) as a function of number of threads and number of 

individuals in a generation. Perfect speed-up is the theoretical limit assuming entire 

communication overhead is neglected. In Figure 5 can be seen that we achieve considerably 

high efficiencies. The explanation of this result can be found in small communication overhead, 

which will be explained in more detail below.   

In Figure 6 we have analyzed the functional dependencies between communication 

overhead and number of individuals in a generation, with varying number of threads. Figure 6 

contains diagram for various number of threads and various number of individuals. The 

overhead is quantified like   /Tp Tt Tt , where Tp  is an average time needed to evaluate a 

generation taken from 100 consecutive runs, and Tt denotes theoretical ideal time value 

obtained by dividing time needed for sequential run with number of threads (2, 4, 8, 16 or 24). 
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Fig. 6. Relative overhead as a function of number of individuals within a generation 

Although the Master has to wait for all individuals of a generation to be evaluated in order to 

resume the rest of the algorithm, the relative overhead influence do not increase with increasing 

number of threads, which can be seen in Figure 6. This behavior can be explained in a way that 

time required to execute sequential part of code is negligible compared to the part executed in 

parallel. 

Times required for estimating parameters using different methods are given in Table 4. It 

can be seen that parallelization of GA solved the problem of relatively high parameter 

estimation duration, reducing estimation time to 3 minutes. PGA with 24 threads performs 

parameter estimation slightly longer than DLS, QN and SA, but with a better accuracy (Table 

2). If the maximum number of threads is higher, duration of PGA would be even shorter. 

DLS SA QN 

PGA 

(24) 

1 min 1.5 min 0.5 min 3 min 

Table 4. Estimation duration 

5. Conclusions 

This paper presents a new method for estimating parameters of a model of thin filament 

regulation in solution. We have proposed Genetic Algorithm (GA) as a new method for 

estimating parameters and have compared it to deterministic methods, the Damped Least 

Squares (DLS), quasi-Newton (QN) and simulated annealing (SA). GA gives better results, and 

therefore better matching between the simulation and the experimental results. Even better 

matching of the simulation and experimental values could be reached if a larger population is 

used. In order to solve the performance issue, we proposed parallelization of Genetic Algorithm 

(PGA) within a single shared memory computing resource. With parallelization on 24 threads, 

we achieved execution time of GA, comparable to the time demands of other methods. With 

better hardware, executing time would be even shorter.  

Generation Size

0 200 400 600 800 1000 1200

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

0.00

0.02

0.04

0.06

0.08

0.10

2

4

8

16

24



B. Stojanovic : Estimating parameters of a model of thin filament regulation in solution using genetic algorithms 

 

54 

Acknowledgements:The part of this research is supported by Ministry of Science in Serbia, 

Grants III41007, OI174028 and TR37013, and FP7 ICT-2007-2-5.3 (224297) ARTreat project. 

Извод 

Естимација параметара модела регулације танког филамента у 

раствору коришћењем генетских алгоритама   

Б. Стојановић
1*

, М. Свичевић
1
, Ђ. Недић

1
, М. Ивановић

1
, С. М. Мијаиловић

2,3
 

1
Природно-математички факултет, Универзитет у Крагујевцу, Србија 

bobi@kg.ac.rs, marina.svicevic@gmail.com, djordje.nedic@yahoo.com, mivanovic@kg.ac.rs 
2 
Tufts University, School of Medicine, Department of Medicine, MA 02135, USA, 

Srboljub.Mijailovich@tufts.edu 
3  

Steward St. Elizabeth‘s Medical Center, Boston, MA 02135, USA, 

Srboljub.Mijailovich@steward.org 
*Corresponding author 

Резиме 

Одређивање брзина хемијских реакција за било који нетривијалан модел је веома 

комплексно због нелинеарних ефеката хемијских реакција другог реда. Да би се остварио 

овај циљ, развијен је алгоритам заснован на генетским алгоритмима (ГА), а затим је 

ефикасност ове методе тестирана на McKillop–Geeves (MG) моделу регулације танког 

филамента. Ова метода је показала бољу тачност него детерминистичке методе, Damped 

Least Squares (DLS), quasi-Newton (QN) i Simulated Annealing (SA). Међутим, она захтева 

велики број евалуација потенцијалних решења што троши више процесорског времена. У 

овом раду је представљена платформа за дистрибуирану евалуацију различитих сетова  

параметара (т.ј. јединки у генетском алгоритму) на одређеном броју тредова на једном 

рачунару. Обављени тестови су показали да паралелизована евалуација обезбеђује 

значајно убрзање са бољом тачношћу и временом естимације упоредивим са 

детерминистичким методама. 

Кључне речи: McKillop–Geeves, генетски алгоритми, естимација параметара, 

дистрибуирана евалуација  
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