A review of 40 (1972-2012) year work of Kragujevac Research Group

Milos Kojic

Belgrade Metropolitan University - Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400 Kragujevac, Serbia
The Methodist Hospital Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-116, Houston, TX 77030

Abstract

In this review are briefly summarized activities of research group in computational methods and software development, in the period from the start in 1972 to 2012. The research group initiated by Milos Kojic, consisting usually of 10-15 members, was mainly oriented to development of numerical methods and engineering software – synthesized into the finite element general purpose program PAK (abbreviation of „Program for Structural Analysis“ in Serbian). The results of this development are published in hundreds of publications, including articles in the leading international and national journals and conferences, as well as through the national and international books and monographs. A large number (several tens) of national and international grants has been realized in various fields of engineering and bioengineering, with the aim of the fundamental development of numerical methods and their applications. More than 40 MS and Ph. D. theses have been completed through the Research Group research. The Group initiated a number of educational university undergraduate and graduate programs and courses in computational methods and their applications (Mechanical Engineering Faculty of University of Kragujevac, University of Kragujevac, Belgrade Metropolitan University).

Based on the overall results within the period of 40 years, it can be said that a „Kragujevac School“, or „Serbian School“ of computational methods and software development has been established.

Keywords: PAK program, Kragujevac Research Group, numerical methods, finite element method, discrete methods

1 History of the developments

The work in computational methods started in 1972 (initiated by Milos Kojic) within the Institute of Automobile Factory „Zastava“. The first computer programs for engineering applications, written in Fortran IV, were run in Computater Center of „Zastava“ under supervision of Milutin Marinkovic. The programs were developed using punched cards. In the first several years the basic knowledge about organization of the FE software was gained using the open source code SAP IV, and the first diploma works of the most talented students started to appear (Radovan Slavkovic, Djuro Pavic).
Establishment of the foundation of the original software package PAK was achieved in the period 1975-1983. The first publications of the growing group of young talented researchers, related to the FE method, started to appear in national and international journals and conferences. Topics on which the group was working included linear and nonlinear nonlinear analysis in solid mechanics, heat transfer and acoustics. Special emphasis was to applications in the automobile industry. The first MS theses were completed in that period (Dragoljub Grujovic, Gradimir Zivkovic, Radovan Slavkovic, Vera Nikolic, Aleksandra Jankovic).

In the period 1983-1996 the program PAK has advanced with significant achievements in various fields of linear and nonlinear solid mechanics, fluid mechanics, and flow though porous media. The initial PAK software was completely reorganized, with a number of advanced features, including various iterative schemes, as the Newton-Rapson and BFGS, and substructures (M. Kojic, R. Slavkovic, Miroslav Zivkovic, Nenad Grujovic, Nenad Filipovic). A number of MS and Ph. D. theses were completed (R. Slavkovic, M. Zivkovic, N. Grujovic, Vladimir Manojlovic, among others) and built within the PAK program, with new results published in the leading world journals. Significant advances have been achieved in everal fields, as: materially nonlinear analysis of metals and geological materials, summarized in the book Kojic and Bathe: Inelastic Analysis of Solids and Structures, Springer (2005), (also in Ph. D. thesis of R. Slavkovic, and MS thesis of Dusan Begovic); specific and unique finite elements (e.g. beam superelement, M. Zivkovic), solution porcedures (N. Grujovic), fluid mechanics and mass transport (N. Filipovic), acoustics (late Zivomir Petronijevic, V. Manojlovic), coupling to element free Galerkin method (Ph. D. thesis of Ivo Vlastelica), multipoint constraints (MS thesis of Zoran Bogdanovic), XFEM method (Ph. D. thesis of Gordana Jovicic), contact modeling (Ph. D. theses of N. Grujovic and Snezana Vulovic).

In 1996 started research in bioengineering, parallel with the work in previous fields of engineering. This new area of research was suggested by Srboljub Mijailovic at Harvard University, with the intial developments in tissue mechanics of S. Mijailovic and M. Kojic. Research in the new field of bioengineering was enthusiastically supported by Ministry of Science of Serbia (minister late Dusan Kanazir) and attracted young researchers. A number of scientific publications appeared from this field, accompanied by Ph. D. theses (N. Filipovic, Nebojsa Zdravkovic). As a result of intensive work in bioengineering, a research program, called Scientific Program Bioengineering, was introduced at the Center for Scientific Research of the Serbian Academy of Sciences and Arts and University of Kragujevac. The Program was supported by City of Kragujevac. With five young full-time employed talents, significant advances were achieved through grants from Ministry of Science of Serbia and other international grants (Harvard University, Polytechnical Univesrity of Hong Kong, Institute „Jaroslav Cerni“), followed by Ph. D. theses (Boban Stojanovic, Vladimir Rankovic, Milos Ivanovic – from the research center). Finally, the Research and Development Center for Bioengineering „BIOIRC“ was establised in 2009, as a research institution, registered according to Serbian law; it is also registerd by EU. The founders of BioIRC are the Serbian Society for Computational Mechanics, City of Kragujevac and State University of Novi Pazar. BIOIRC is a constitutional member of Belgrade Metropolitan University. Currently, BioIRC has 19 full-time employed researchers. A summary of results in bioengineering is given in the book: M. Kojic, N. Filipovic, B. Stojanovic, N. Kojic: Computer Modeling in Bioengineering, J. Wiley and Sons (2008). A significant number of publications in the world journals has appeared from the work of the BioIRC researchers, and also Ph. D. theses have been formulated (three of those are completed, by Dejan Veljkovic, Velibor Isailovic and Miljan Milosevic).

Research in solid mechanics and application in engineering has continued within Laboratory for Engineering Software (lead by M. Slavkovic and M. Zivkovic) at Faculty of
Engineering Sciences (former Faculty of Mechanical Engineering). Over 15 young researchers have continuously been participating in research within this laboratory in last 15 years, with notable research results (Ph. D. theses of Gordana Jovicic and Snezana Vulovic) and applications to various complex engineering problems.

The basic research relies on the finite element method, but also other computational methods have been investigated (discrete methods: Dissipative Particle Dynamics-DPD, Smoothed Particle Method-SPH, Lattice-Boltzman method; meshless methods: Element free Galerkin - EFG) by the Research Group. Particular attention has been devoted to coupling of different methods, multiscale and multiphysics modeling.

2 Education

The scientific work of the Research Group has been translated into university programs. Initial courses, such as Numerical Analysis of Structures, followed by Nonlinear Structural Analysis, Computational Methods in Bioengineering and other courses more specialized in computational methods, were introduced at undergraduate and graduate levels at Faculty of Mechanical Engineering of University of Kragujevac. A large number of diploma work (several tens) has been completed, together with more than 40 MS and Ph. D. theses.

Graduate program in the field of Bioengineering, as a multidisciplinary educational program, was introduced at University of Kragujevac in the period 2000-2009. Also, the Ph. D. graduate program Bioinformatics has been introduced at Belgrade Metropolitan University (as a result of collaboration between BioIRC and Belgrade Metropolitan University; BioIRC is a member of this university). The basis of these educational programs consists of numerical methods and software development and application to various problems in biomedicine.

Some of the most typical theses have been cited above. The results of these theses have been published in national and international journals and conferences. It can be said that the theses and diploma works reflect the research of the Kragujevac School of computational methods and software development. Also, approximately four generations of researchers belong to the Research Group.

The program PAK has been the basic tool in achieving the goals specified by mentors who navigate the research in the Research Group.

In the reference list are given books related to the work of the Research Group which basically summarize the results in research and education, given in chronological order.

3 Research grants

Numerous grants have been initiated and successfully realized by the Research Group within the period of 40 years. Here are notified several the most typical and dominant projects for the overall development. The principal investigators (PIs) are from the Research Group or from abroad, but the grant was realized with the Group participation.

• Development of computational methods and software for structural analysis, (PI Milos Kojic), continuously supported through various specific projects by Ministry of Science of Yugoslavia and Serbia, in the period 1976-1997.

• Development of methods and software in bioengineering, various grants supported by Ministry of Science of Serbia in the period 1997-2012, PI Milos Kojic. Current grant is: Methods of multiscale modeling with applications to biomedicine, OI 174028, 2011-2014.


• Development of methods and software for turbine support structure analysis, (PI Milos Kojic), Electro Distribution of Serbia – Faculty of Mechanical Engineering, 2003-2006.


• Development of methods and software for modeling underground water flow, (PIs Milos Kojic and Nenad Filipovic) Institute „Jaroslav Cerni“, 1998-present.

• Mechanistic Damage Modelling of Skeletal Muscles Using Hybrid Segment Superelement Technique, G-T645, Polytechnic University of Hong Kong – University of Kragujevac, (PIs CY Tang and Milos Kojic), 2002-2004.

• PolyU 5271/03E, Mechanistic Damage Modelling of Skeletal Muscles Using Hybrid Segment-Superelement Technique, Polytechnic University of Hong Kong – University of Kragujevac, (PIs CY Tang and Milos Kojic), 2003-2006.

• AR-Treat: Multi-level patient-specific artery and atherogenesis model for outcome prediction, decision support treatment, and virtual hand-on training, EU FP7 program, Serbian partner University of Kragujevac, (PI Nenad Filipovic), 2009-2014.


• Solving of multiphysics problems using software PAK, 2012-2013 DAAD, (PIs Radovan Slavkovic and Hermann G Matthies, Braunshweig).

• Development of Methods and Software for Analysis, Simulation and optimization of processes of large strains in machine industry, TR0258, (PI Miroslav Zivkovic), Ministry of Science, Technology and Development Republic of Serbia, 2002-2004.

• Development of software for calculation of strength and durability estimation of structure, TR6204, (PI Miroslav Zivkovic), Ministry of Science and Environmental Protection Republic of Serbia, 2005-2007.
• Development of software for explicit nonlinear dynamic analysis, TR12005, (PI Miroslav Zivkovic), Ministry of Science and Environmental Protection Republic of Serbia, 2008-2010.


• NIH R01 DC 011528, Multiscale mechanisms of lingual mechanical function, (PI Srboljub Mijailovic, Boston), Subcontract of BioIRC to Steward/St. Elizabeth Hospital, Boston, (Boban Stojanovic is subcontract PI), 2011-2016.


• FP7 Project- 211338, SEE-GRID-SCI – SEE-GRID, Infrastructure for regional science, (PI Vasilis, Ioannina, Greece; participation of members of the Research Group) 2007-2011

• Software and hardware development and application in the clinical practice, TR12007, Ministry of Science and Technology of Serbia, (PI Nenad Filipovic), 2008-2010.

• Bioengineering analysis of muscle mechanics and Metabolism, NIH R01 AR48776-01A1,(PI Srboljub Mijailovich; participation of members of the Research Group), 2003-2008.


• COST Action , MP1005 NAMABIO Action Full Title: Action - From nano to macro biomaterials (design, processing, characterization, modeling) and applications to stem cells regenerative orthopaedic and dental medicine, Sponsoring organization: European Cooperation in Science and Technology, (PI Prof. Fraco Rustichelli, participation of members of the Research Group), 2011-2015.

• FP7-ICT-2011-9, SIFEM project, Semantic Infostructure interlinking an open source Finite Element tool and libraries with a model repository for the multi-scale Modelling of the inner-ear, (PI R. Fox; BioIRC is a partner, PI Nenad Filipovic) 2013-2016.

Besides financial support through grants, the research has been supported in different forms by other institutions, as „Jugobanka“ Kragujevac, and City of Kragujevac.

References – books published by the Research Group

Here are listed books where the research of the Group is summarized.


