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Abstract 

Diffusion in nanospace does not strictly obey to Fick’s law generally used in 
macroenvironment. Deviation from this law is due to surface effects, i.e. due to interaction 
between transported molecules and bounding surfaces. A hierarchical modeling approach which 
accounts for interface effects on the diffusion coefficient was introduced in Ziemys et al. 
(2011). The model employs molecular dynamics (MD) for calculation scaling functions to 
reduce the diffusion coefficient corresponding to “bulk” values. With this reduced diffusion 
coefficient, modeling is performed using the finite element method (FE) within an incremental 
iterative scheme. 

In this paper we summarize this hierarchical (multiscale) model and present its 
generalization to include adsorption at the walls. Also, we briefly discuss further possible 
applications of the multiscale modeling of diffusion through complex media with distributed 
solid constituents, as in case of polymers or biological fluids.  

Key words: diffusion, molecular transport, molecular dynamics, finite element method, nano-
confinement. 

1. Introduction 

In recent technological fabrication of nanofluidic devices (Grattoni et al. 2010, Gardeniers  and 
Berg 2004) and nanoporous materials (Caro et al 2004, Iijima 1991), transport phenomena 
within nano-confinement have become very important. The Peclet number of nanofluidic 
systems ranges from 10-6 to 1 with a diffusion coefficient (diffusivity) of 10-5 cm2/s, hence 
molecular diffusion may dominate the mass transport (Karniadakis 2005).  

In common continuum theories of diffusion through homogenous media Fick’s law is used 
as the fundamental relation:  

 J D c    (1) 

where J is the mass flux along concentration gradient c  with diffusion coefficient 
(diffusivity) D. The Stokes-Einstein relation shows that D for an ideal (non-interactive) solution 
is proportional to molecular mobility μ and thermal energy kBT, or it is inversely proportional to 
viscosity η and radius r of the diffusing molecule. In real conditions, it is experimentally found 
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that D depends on concentration, i.e. D=D(c) (English and Dole 1950, Alpert and Banks 1976). 
However, in nanoconfinement, phase interface may occupy a substantial portion of diffusion 
domain so that diffusion transport is affected by molecular interactions with the surface, and 
predictions following Eq. (1) may become inaccurate. 

MD modeling and experiments have shown that diffusive transport of molecules and 
particles in nanochannels is affected by their proximity to a solid surface (Ziemys et al. 2010, 
Aggarwal et al. 2007). Using MD analysis, it is shown in Ziemys et al. (2010) that molecular 
diffusivity depends on both concentration and confinement effects. Therefore, modeling of 
these transport regimes needs novel approaches that could bring molecular scale information 
into complex macroscale models of nanofluidic devices. MD provides insight into the physics 
of molecular transport, but it can be used for modeling very small regions, therefore 
macroscopic methods are necessary. An ideal scenario is to properly transfer MD information to 
macroscopic models; hierarchical (multiscale) models offer this possibility. 

Among various continuum-based numerical methods, which in essence employ a 
discretization concept, the most developed and well established is the Finite Element Method 
(FEM). A time and length scale is usually several orders of magnitude larger than in MD.  
Various schemes have been introduced to couple MD and FEM, as hybrid methods (Rudd and 
Broughton 1998, Hou and Wu 1997, Broughton et al. 1999), or bridging scale methods 
(Wagner and Liu 2003, Kojic et al. 2006, 2008a,b). 

In this work we present a hierarchical model used to simulate diffusive mass transport in 
nanofluidic systems, which includes concentration effects and MD derived scaling functions of 
diffusivity based on proximity to a surface (Arturas et al. 2011). This model is further extended 
to include adsorption on the wall. Then, we briefly outline possible generalizations to analyze 
diffusion through complex media, as we have in case of molecular transport within intracellular 
space or in polymers. Few numerical examples illustrate applicability of our extended 
hierarchical model. Some concluding remarks are given at the end of this report. 

2. Methods 

Here, we first outline MD simulations, then the FEM, followed by bridging MD-FEM, and 
finally a concept of including adsorption. 

2.1 MD simulations 

Molecular Dynamics (MD) has been used for several decades (Rapaport 2004). It is based on 
statistical mechanics, where motion of particles is described according to the Newtonian 
mechanics:  

 i i im v F  (2) 

where ,i im v and iF  are mass, acceleration and resulting force (including interaction forces 

from the neighboring particles and external forces), respectively. The interaction forces include 
bonded (repulsive-attractive, bending and torsional) and non-bonded (electrostatic, van der 
Waals) terms. The Force Field (FF) represents a functional form of behavior of chemical 

structures and is evaluated from potential energy function, intra interE E E  , of CHARMM 

FF (MacKerell et al. 1998) used in our MD models: 
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              

   (4) 

Material parameters of the intramolecular potential Eintra are given by the force constants bK , 

θK  and K , equilibrium values of bonds and angles b0 and θ0, and equilibrium torsions 

constants – dihedral multiplicity n and dihedral phase δ. Intermolecular potential sums are 

electrostatic and van der Waals (VDW) terms, where ij is VDW potential depth, Rmin is atom 

radius, and ,i jq q  are partial atomic charge. These parameters of FF are introduced to represent 

certain chemical classes of compounds in order to reproduce experimental physico-chemical 
properties. 

MD simulations for calculating diffusivities in nanochannels were carried out (Ziemys et 
al. 2009, 2010) using NAMD 2.6 (Phillips et al. 2005) with a TIP3P water model (Jorgensen et 
al. 1983) and NVT (fixed number of particles N, pressure P, volume V) ensembles. CHARMM 
compatible amorphous silica force field (Cruz-Chu et al. 2006) was employed to model the 
silica nanochannel, which is modeled by charged hydrophilic amorphous silica phase to match 
the silica properties after the fabrication process.  Glucose diffusion coefficients were calculated 
from 30 ns trajectories by using the mean square displacement  <r2>: 

 <r2>=2dDt (5) 

where the factor d = 1, 2, 3 depends on the dimensionality of the space, and t is time. The 
diffusivity along the surface normal (z-direction) was evaluated, from the surface up to the 
middle of the nanochannel. The time window t for <r2> was chosen as 20 ps, which is small 
enough to catch local displacements within 0.5 nm thick slabs. The diffusivity results include 
dependence on distance from the wall and glucose concentrations (Fig 1 – left panel).  

The MD calculated diffusivity is normalized with respect to the “bulk” value bulkD  

corresponding to diffusivity far from the surface, where influence of the surface is negligible. 
Hence, we have 

 bulkD SD  (6) 

where  

  ,S S w c , 0 1S   (7) 

is the scaling function which depends on the distance from the wall surface w and concentration 
c. Calculated scaling function is shown in Fig. 1 – right panel. 
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Fig. 1. Calculated glucose diffusivity (left panel)) and scaling functions of the proximity to the 
silica surface for several concentrations (right panel); according to Ziemys et al. (2011). 

Experimental investigations showed that ( )bulkD D  for glucose depends on concentration, 

although data are quite different (see Zimys et al. 2011 and references given therein). For 
examples shown here we have chosen the glucose D according to the largest data set of Gladden 
and Dole (1953) (Table 1) that spans over a wide range of concentrations, from 0 to 3.36 M.  
 

c,M D·10-6, cm2/s 

0.00 6.75 
0.55 5.80 
1.09 4.86 
1.66 3.96 
2.23 3.02 
2.78 2.20 
3.36 1.33 

Table 1. Experimental data of the diffusion coefficients (Gladden and Dole 1953). 

2.2 Finite element model 

Finite element modeling of various problems in science and engineering has been well 
established. We here consider unsteady diffusion where the diffusion coefficient depends on 
both concentration and spatial position of a point within the model. FE solution procedures for 
nonlinear diffusion problems have been well established and successfully used in various 
applications (e.g. Bathe 1996, Hughes 2000, Kojic et al. 2006, 2008a). The basic mass balance 
equation, which also includes Fick’s law in equation (1), is: 

 

0
i i

c c
D q

t x x

   
         (8) 
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where  ,ic x t  is concentration; D depends in general on the coordinates ix  and on c ; 

 ,iq x t  is a source term; and summation over the repeated index is implied (i=1,2,3). By 

using a standard Galerkin procedure, this nonlinear differential equation can be transformed 
into the incremental-iterative system of linear balance equations for a finite element (Kojic et al. 
2008): 

 
 

1 ( 1) ( ) 1 ( 1) 1 ( ) 1 ( 1) 1 ( 1)

1 ( 1)

1

1

n i i n S i n V i n i n i

n i n

t

t

        

 

        




M K C Q Q K C

M C C
 (9) 

where C is the vector of nodal concentrations; the left upper indices n and n+1 denote values at 
the start and end of the time step n of size t ; the indices i and  i-1 correspond to the current 

and previous equilibrium iteration; SQ  and VQ  are surface and volumetric nodal fluxes for 
the element;  and components of the matrices M  and K are: 

 
IJ I J

V

M N N dV 
 (10) 

 

1 ( 1) 1 ( 1)
, ,

n i n i
IJ I i J i

V

K D N N dV    
 (11) 

Here IN  and  JN  are the interpolation functions, and 1 ( 1)n iD   is the diffusion 

coefficient corresponding to the last known concentration 1 ( 1)n ic   at a point within the finite 
element. Assembly of equations (9) and solution procedures are performed in a usual manner 
that is well described in the computational mechanics literature (e.g. Bathe 1996). 

In our models we have incorporated concentration and interface effects, according to 
equation (6) into the FEM model. Implementation of the expression (6) is illustrated in Fig. 2. 
Note that linear interpolation between scaling curves is used. 
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Fig. 2. Determination of diffusion coefficient at a spatial point P using dependence on 
concentration and surface effects. The “bulk” value is first determined from the curve D(c), A; 
then the scaling function is evaluated from family of curves shown in B. Linear interpolation 

curves S(c,w) is adopted (between points A and B in the figure). 

The described hierarchical model has been verified by comparison of diffusion experiments 
in nanochannels (Fine et al. 2010). Good agreement between computed and experimental results 
for mass release was found (Ziemys et al. 2011). 

2.3 FE model with adsorption 

The process of adsorption, i.e. attachment of molecules to the surface wall, is an important 
process occurring in transport of molecules within a nanoconfinement. Here we extend our 
hierarchical (multiscale) model to include adsorption to the surface. Schematics of the 
adsorption is shown in Fig. 3. 

 

Fig. 3. Schematics of adsorption. Molecules are adsorbed to the wall over time with adsorption 

flux dependent on the current mean value C  of concentration along the surface normal and 

height h. The height of adsorbed layer is d , where   is relative area covered by molecules. 

The relative area covered by molecules   is defined as: 

 molec

total

A

A
   (12) 
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where 
molecA   is area covered by particles (molecules) and 

totalA  is the total area. Value   can 

be expressed as: 

 
1

molec

total

A kC

A kC
  


 (13) 

where C  is the mean concentration along the surface normal (at a considered point on the 

surface) and at the height h H d  ; and k is the adsorption coefficient.   

In the incremental-iterative balance equations (9) must be included adsorption fluxes at the 
wall, as external fluxes at the FE nodes on the wall boundary. The adsorption flux, which has 
direction of normal to the wall, can be obtained as follows.  Number of molecules  

ΔN(molecules) adsorbed at the unit area (1 
2 )of the wall surface during time step of size Δt 

is: 

 
 

2 15 210
A

N A

N molecules NC C molecules
j t D t D tN

y y 
   

          
 (14) 

where Nj   is flux in direction of the normal, 
236.022 10AN    is the Avogadro number, and 

1510A AN N .   Increment of covered area per unit area further is: 

 
22 2

2 2
=    

4A m

d C C
D tN B D t

y y

 
 
    

          
 (15) 

where 

 
2 2

    
4m A

d
B N

Mol

  
  

 
 (16) 

From (15) and (13) follows: 

 
1 2

1
    

1 1

n t n

y n n
m

k C k C Mol
Q

tB k C k C s





   
          

 (17) 

This final expression is included into equation is included into equation (6) and implemented in 
the FE program PAK (Kojic et al. 1998, 2009).  

2.4 Generalization of the hierarchical model to porous media 

Finally, here we outline possible generalization of the hierarchical model to diffusion in 
complex porous media, consisting of distributed solid constituents within fluid. For simplicity 
of presentation of this generalization, we assume a medium with solid fibers, as sketched in Fig. 
4. 
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Fig. 4. Concept of extension of hierarchical model to porous medium with fibers. a) Geometry 
of the internal structure – fibers of a s-group, with diameter ds and with mutual distance Ls, and 

point A at distance ws from the fiber surface; b) Finite element with point A and FE node J. 

For a point A in the medium it is possible to calculate the distance from the closest fiber surface 
of an s-group, and to evaluate scaling function Ss as described above for diffusion within a 
nanochannel. We assume that scaling functions are different for the normal and tangential 

directions, hence we have three scaling functions sS , sS , sS  in the local fiber directions 

, ,   , so that the diagonal diffusion matrix (tensor) , ,s s sD D D
   in the local coordinate 

system is: 

 

0

0

0

s s

s s

s s

D S D

D S D

D S D







 









 (18)  

where 0D  is the bulk modulus.  The diffusion tensor in the global coordinate system x,y,z can 

be obtained by tensorial transformation of the second-order tensor, 

 
xyz

s s s sT


D T D T  (19) 

where the components of the transformation matrix contains cosines of angles between local 
and global axes: 

 cos( , )s
ij i jT x       i,j=1,2,3 (20) 

Here ix  and  j  stand for global (x,y.z) and local coordinate ( , ,   ) systems. 

3. Examples 

3.1 General description 

We use axial-symmetric model of nanochannel (model without reservoirs). According to axial-
symmetry concept we are just modeling 2D radial plane with axial-symmetric conditions (axi-
symmetric finite elements). Upstream and downstream reservoirs are with 7.85e-009 μl volume 
each, and at time zero the upstream reservoir was filled with 2.75 M solution, while the other 
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reservoir had zero concentration. Molar mass of solution is Amol = 100 g/mol, so it can be 
calculated that initial mass in upstream reservoir is 2.17 e+3 [fg]. Concentration in both 
reservoirs at the end of FE simulation when the system reaches stationary state will be 1.37 M.  

We modeled three different configurations of nanochannels, and all are taken to be with or 
without adsorption effects. First example is cylindrical model of nanochannel, while other two 
examples are cones with shrinks at both inlet and outlet cross-sections. Length of cylindrical 
nanochannel is 50 nm, and radius is 8nm. For conical models we used the same conditions, with 
the outlet diameter smaller for 8 nm. For FE mesh we used 300 elements in longitudinal 
direction and 16 elements in radial direction. For each model (with or without adsorption) we 
present field of concentration and unit mass flux at specific time points of simulation (Figs 5, 6, 
9, 10, 11 and 12). For cylindrical model and conical model with shrink at the outlet cross-
section we show: diagrams of concentration and Cumulative Mass Release change for both inlet 
and outlet cross-sections (Figs. 7 and 8); and also diagrams of Relative covered area and Unit 
Mass Flux-y, according to adsorption effects (Figs 13 and  14). 

  

Fig. 5. Cilindrical model of nanochannel without adsorption effects: a) Field of concentration 

(units Mol/g) at time t = 0.00003 [h]; b) Field of Unit Mass Flux (units are fg/( 2 h  )) at time 

t= 0.00003 [h]. 

 

Fig. 6. Cilindrical model of nanochannel with adsorption effects: a) Field of concentration 

(units Mol/g) at time t = 0.00003 [h]; b) Field of Unit Mass Flux (units are fg/( 2 h  )) at time   

t = 0.00003 [h]. 
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Fig. 7. Cilindrical model of nanochannel with adsorption effects: a) Diagram of concentration 
change at inlet and outlet cross-section of nanochannel; b) Diagram of Cumulative Mass 

Release vs time at inlet and outlet cross-sections. 

   

Fig. 8. Cilindrical model of nanochannel with adsorption effects: a) Diagram of Relative 
Covered Area vs. time at inlet and outlet cross-section of nanochannel; b) Diagram of adsorbed 
Unit Mass Flux-Y at confined surface for two different time points: t = 0.0001 [h] and at final 

time t = 0.0033 [h]. 

 



Journal of the Serbian Society for Computational Mechanics / Vol. 5 / No. 1, 2011 

 

99

Fig. 9. Conical model of nanochannel with larger inled cross-section and without adsorption 
effects; a) Field of concentration (units Mol/g) at time t = 0.00006 [h]; b) Field of Unit Mass 

Flux (units are fg/( 2 h  )) at t = 0.00006 [h]. 

   

Fig. 10. Conical model of nanochannel with shrink at outlet cross-section and with adsorption 
effects: a) Field of concentration (units Mol/g) at time t = 0.00006 [h]; b) Field of Unit Mass 

Flux (units are fg/( 2 h  )) at t = 0.00006 [h]. 

   

Fig. 11. Conical model of nanochannel with smaller  inlet cross-section and without adsorption 
effects: a) Field of concentration (units Mol/g) at time t = 0.00006 [h]; b) Field of Unit Mass 

Flux (units are fg/( 2 h  )) at  t = 0.00006 [h]. 
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Fig. 12. Conical model of nanochannel with smaller inlet cross-section and with adsorption 
effects: a) Field of concentration (units Mol/g) at time t = 0.00006 [h]; b) Field of Unit Mass 

Flux (units are fg/( 2 h  )) at t = 0.00006 [h]. 

   

Fig. 13. Conical model of nanochannel with smaller inlet cross-section and with adsorption 
effects: a) Diagram of concentration change at inlet and outlet cross-section of nanochannel, b) 
Diagram of Cumulative Mass Release change at inlet and outlet cross-section of nanochannel. 

   

Fig. 14. Conical model of nanochannel with smaller inlet cross-section and with adsorption 
effects: a) Diagram of Relative Covered Area change at inlet and outlet cross-section of 

nanochannel, b) Diagram of adsorbed Unit Mass Flux-Y at confined surface for two different 
time points: t = 0.0002 [h] and at final time t = 0.0066 [h]. 
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3.2. Comments of results 

As we discussed before Figs 7.a and 13.a show that concentrations in both reservoirs at the end 
of FE simulation are the same, which demonstrates accuracy of our numerical procedure and 
implementation into our software PAK. Also, mass which leaves the inlet reservoir has to be the 
same with mass which enters the outlet reservoir; this can be seen form Figs 7.b and 13.b). If 
adsorption effects are includes, it can be seen from Figs 6.a, 10.a and 12.a that concentrations 
are larger at the interface of nanochannel; they are calculated according to eq. (13). In this zone 
Mass Flux in longitudal direction is equal to zero (Figs 6.b, 10.b and 12.b), while mass flux in 
direction normal to the surface is calculated from eq. (17). Relative covered area depends on 
concentration (eq. 13), which can be seen from diagrams on Figs 8.a and 14.a. 

4. Concluding remarks 

Based on the hierarchical model for diffusion (Ziemys et al. 2011), which couples MD and 
macroscale FE methods, we have presented an extension of the model to include adsorption at 
the surfaces bounding the nano-scale diffusion domain. 

Also, a concept of generalization of the model to diffusion through porous media is 
outlined. This generalized model can lead to development of multiscale models applicable to 
diffusion in biological environment, as it is in intracellular space, or polymers. Development of 
these models will certainly require solution of many challenging tasks. 
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Извод 
О дифузији у нанопростору 
 

M. Kojic1,2, M. Milosevic1, N. Kojic3, M. Ferrari2, A. Ziemys2 

1Metropolitan University – Belgrade, R & D Center for Bioengineering, 34000 Kragujevac, 
Serbia;  
2The Methodist Hospital Research Institute, Houston, TX 77030;   
3Tuftts University, Medford, MA 02155 

Резиме 

Дифузија у нанопростору се не одвија стриктно по Фиковом закону, који представља 
основни закон дифузије у макро-окружењима. Одступање од Фиковог закона се јавља 
због утицаја површина, тј. због интеракције транспортних молекула и граничних 
површина. Приступ хијерархијског моделирања који узима у обзир утицај граничних 
површина је представљен у раду Зиемyс ет ал. (2011). У хијерархијском моделу се 
применом концепта молекуларне динамике (МД) врши израчунавање функција 
скалирања у циљу кориговања дифузионог коефицијента у односу на такозвану “булк” 
вредност (вредност која одговара слободној дифузији). Затим се, уз коришћење 
коригованих вредости дифузионог коефицијента, врши моделирање процеса дифузије 
применом методе коначних елемената (МКЕ) у оквиру инкрементално-итеративне шеме. 

У овом раду смо сумирали резултате хијерархијског модела (модела на више скала) и 
изложили његово уопштење које узима у обзир адсорбцију на зидовима модела. Такође 
смо дали кратак преглед о могућим даљим применама хијерархијског моделирања 
процеса дифузије кроз комплексан медијум састављен од дистрибуираних солида, као 
што је случај са полимерима и биолошким флуидима. 

Кључне речи: дифузија, транспорт молекула, молекуларна динамика, метод коначних 
елемената, утицај површина у нанопросторима. 
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