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Abstract

Porous composite materials have a wide spectrum of applications in the aerospace and marine
industries and biomedical engineering. A multi-scale finite element method (FEM)
incorporating the element-failure method (EFM) and the strain invariant failure theory (SIFT)
was proposed to simulate the progressive damage of porous composite materials under
compression in this study. In micro-scale, a three-dimensional FE repeated cell model was
constructed to determine the mechanical properties of the base composite material. Moreover,
two-dimensional porous repeated cell models in macro-scale were developed to predict damage
propagation in the porous polymer composite. The porous models with three different arrays of
pores were constructed to investigate the effect of spatial arrangement of the pores on the
progressive damage behavior of the porous composites. Porous hydroxyapatite/
polyetheretherketone (HA/PEEK) composites under compression loading was chosen as a case
example to illustrate the implementation of the proposed method. The simulation results
showed that the proposed method was feasible and effective in simulating the progressive
damage behavior of porous composite materials. The model with the hexagonal arrangement of
pores was found to be more resistant to damage propagation under compression loading.
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1. Introduction

Over the past few decades, polymers have been widely used to replace many of the
conventional metals in various engineering and medical applications, because polymers possess
some distinctive advantages such as ease of processing, lighter weight and lower cost. However,
the stiffness of polymers cannot generally satisfy the engineering requirement for load-bearing
applications (Kurtz et al. 2007) . As the stiffness and strength of polymer can be improved with
addition of fillers such as fibers and particulates, the mechanical properties of the particulate
polymer composites have been extensively studied in past decades (Cogswell et al. 1992, Tsui
et al. 2004, Ichim et al. 2007). Various finite element (FE) models have been developed to study
the effects of the fillers on the properties of various composites, so as to control the size, shape,
amount and distribution of the fillers. Damage is one of the most important factors causing the
failure of polymer biomaterials, especially under excessive loading (Ichim et al. 2007, Wiggins
et al. 2003). Recently, particle-matrix debonding and micro-damage of the base material and
interphase layer have attracted attention of many researchers (Wiggins et al. 2003, Tsui et al.
2001, Fan et al. 2004) for better prediction of the mechanical properties of polymer composites.

At present, synthetic polymer based porous structures have shown promising performance
in aerospace, marine, and biomedical applications due to many practical advantages arising
from precise control of material composition, porosity, and micro- and macro-structural
properties. Rezwan et al. have reviewed various techniques for producing porous polymer-
ceramic composite structures of different morphologies, whose properties depend on not only
the size and shape of the particle, but also arrangement of voids and porosity. Load-bearing
capability of these structures could be significantly weakened by high porosity. Failure often
occurs when the strength of the structural material cannot support the applied loading.
Therefore, the design and fabrication of porous composite materials especially made of
polymers with adequate load-bearing capability become an important research topic.

A scalar damage variable is often defined for depicting the degradation behavior of
materials. For the conventional stiffness reduction approach, the values of certain material
parameters in the constitutive equations will be reduced when damage occurs. However, the
stiffness matrix of the FE model may become ill-conditioned, leading to divergence or
instability in computation. For another approach called the element failure method (EFM)
(Beissel et al. 1998), only the nodal forces of damaged elements are modified in the EFM.
Therefore, the stiffness matrix remains unchanged in the whole simulation process, so that the
aforesaid computation problem can be avoided. So far, the EFM and the SIFT (Gosse et al.
2001) have been applied for predicting damage, fracture, and delamination of composites (Tay
et al. 2006, Tay et al. 2006, Tay et al. 2008). To the best of authors’ knowledge, their
application in porous polymer composites has not been discussed in open literatures.

The purpose of the present work was to develop a multi-scale FE method for investigating
the effect of spatial arrangement of pores on the progressive damage behavior. By using the
EFM and the SIFT, a damage model was developed to bridge the gap between the microscopic
damage phenomenon and the macroscopic mechanical behavior. The effects of three different
pore arrangements in the porous composite material were analyzed and compared, and thus the
optimal design was discussed on a scientific basis.
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2. Material and methods

2.1 Choice of Material

Porous hydroxyapatite/polyetheretherketone (HA/PEEK) polymer composite materials have
been used as a potential biomaterial for bone replacements and tissue engineering applications
[10], and was used as the target material in the present work. HA is a bioactive material with the
calcium-to-phosphorus ratio similar to that in natural bone. PEEK is a rigid semi-crystalline
polymer which has superior mechanical properties and bone-like stiffness as well as many other
benefits, such as good resistance to chemical, fatigue, wear and high temperature. The
mechanical and biological properties of HA/PEEK porous composite can be controlled by a
number of factors such as the pore architecture, porosity level, damage behavior of the
constituent materials, and interfacial property between the matrix and the particle.

2.2 Multi-scale FE modeling process

2.2.1 Micro-scale FE modeling

A three-dimensional (3D) micro-scale FE model (Fan et al. 2004) was constructed for
predicting the mechanical behaviors of the base composite material, HA/PEEK. The FE model
consisted of three different phases: a spherical HA particle, PEEK matrix, and the interfacial
layer between the particle and the polymer matrix as shown in Fig.1(a). As reinforcing particles
were assumed to be evenly distributed in the polymer matrix, a periodically repeated cubic
array was employed to be the representative volume element (RVE) of the base material. Due to
the symmetry for the packing of the spherical particles, only one-eighth of the repeated micro-
cell as shown in Fig.1(a) was considered in the computation. The particle volume fraction
(PVF) V,is given by

4z r
Vo= (A 1
’ 3(r) o

where r; is the radius of spherical particle, and r is the length of the micro-cell.

Fig. 1. Micro-scale cell model (a) RVE; (b) 1/8 RVE.

The thickness of the interphase layer was set to be 1% of the micro-cell length (Fan et al.
2004, Wu et al. 2002). The bonding among the particle, the matrix and the interfacial layer was
assumed to be initially perfect. According to the study of Wu et al. 1995, Young’s modulus of
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the interfacial layer was given to be one-twentieth of that of PEEK and the Poisson’s ratio was
set to 0.48. The mechanical properties of the constituent materials adopted in the FE
computation are summarized in Table 1 (Fan et al 2004, Wu et al. 1995).

Materials E(GPa) v p(kg/m®)

PEEK 32 0.42 1291
HA 85 0.3 3160

Interfacial layer  0.16 0.48 N/A

Table 1. Mechanical properties of the constituent materials.

Due to the symmetry of the unit cell model as shown in Fig.1(b), the normal displacements
(u, v, w) on the symmetrical surface in the (x, y, z) directions were constrained such that

u=0onx=0,
v:Oony:O, (2)
w=0onz=0.

Moreover, the symmetrical surfaces of the cell model were maintained to remain plane and
parallel to their initial state after deformation, in order to ensure compatibility among all
periodic representative cells.

2.2.2 Macro-scale FE modeling

In macro-scale, a porous composite material made of HA/PEEK under compression was
studied. In general, the mechanical properties of porous composite material depend directly on
the shape and spatial distribution of the pores. Three different spatial pore arrangements (Tay et
al. 2008), namely, square, hexagonal and diamond, as shown in Figs.2(a)-(c), were employed in
modeling the porous HA/PEEK composite. Two-dimensional plane strain macro-models were
constructed to simulate the progressive damage process in the entire porous structure. Due to
the symmetry of structural and loading property, a quarter of the entire porous structure was
modeled (Fig.2).

a) (b) (©)

Fig. 2. Macro-scale FE models under three spatial arrangements of pores, (a) square, (b)
hexagonal, and (c) diamond.
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For computation in the macro-scale, the mechanical properties of the base composite
material were represented mathematically by the Halpin-Tsai equations (Wu et al. 2002). The
apparent Young’s modulus and Poisson’s ratio of the composite material are respectively given
by

nf 3)
v=fvf+(l—f)vm

E-E, (11+_§77f )

where E,, and Efare Young’s moduli of the matrix and the particle, respectively. v, and v r

are the Poisson’s ratio of the matrix and the particle, respectively. f is the value of PVF. The
parameter 77 is given by

_(E,/E,)-1 @
" E, JE,)+ ¢

where the factor { was used to describe the influence of filler geometry on a particular

property. For the spherical particles, ¢ is in the following form,

£=2+404" (5)

For the three macro-models, the porosity was set to 0.4. The Young’s modulus and
Poisson’s radio of the porous composite calculated from Egs.(3)~(5) were equal to 8.6GPa and
0.37, respectively. In this simulation, the sizes of the HA particle and the pore were assumed to
be in order of 10um and 1mm, respectively, for satisfying the dimensional requirement of RVE.
The left line of all macro- models shown in Fig.2 were both constrained in the x and y
directions, while the right line was subjected to a controllable compression loading. The loading
and boundary conditions in the three different spatial arrangements of pores are identical for
comparison. The complete simulation was executed on an Intel Core 15/2.67GB computer with
4GB RAM.

2.3 Progressive damage modeling

The SIFT proposed by Gosse et al. 2001 was used as the damage criterion of polymer
composites by amplifying the strain invariant quantities through extracting the information from
the micro-scale FE models (Tay et al. 2005, Tay et al. 2008). According to the SIFT, there are
three strain invariants. The first, second and third invariants, J;, J> and J; were defined as

Ji=e. t+e +e, (6)

J, = é[(&x —£,) +(g,—£,) +(¢, —gx)z]—%(g;, +&5 +62) 7

"]3 = gwn = V3J; (8)

Thirteen typical locations on the micro-cell model as shown in Fig.3 were chosen for
extraction of the local strain amplification factors (SAFs). Points P1~ P4, 11~ I3 and M1 to M6
were located at the reinforcing particle, the interfacial layer, and the polymer matrix,
respectively. The extraction method of SAF proposed by Buchanan et al. 2009 was used. For a

prescribed point £ within the RVE, the strain, 6‘[]{ was obtained from the following equation:

=Mz, G, j=1--6) )

[/
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where M : is the strain amplification factor matrix and &, is the arbitrary state of strain applied
to the RVE.

The components of the SAF matrix were determined uniquely by prescribing a canonical
state of deformation and carrying out 3D FE analyses. For example, it was assumed that

£,=0,(j=2--6)and g, =1, then the strain, 8l.k becomes,

Kk agk—= Kk _ k. ok _ agk—= k _ k
g =M g,or M|, =¢'; & =M g,0r M5 =&,
k _ k= k _ k. _k _ agk—= ko _k
& =Mjg,or My, =¢5; €, =M, &,0or M, =¢, (10)
k_ agk—= k _ k. _k_ agk—= ko Kk
& =Mg,or M, =¢&;; & =Mg&,0r M, =¢&
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Fig. 3. 1/8 of RVE; (b) 13 typical positions for the extraction of SAF from the micro-scale
model.
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Fig. 4. A flowchart for implementation of the progressive damage simulation.
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Figure 4 shows the flowchart for executing a simulation for the progressive damage process
of the porous polymer composite material under compressive loading. The whole simulation
process was realized using the commercial FE software named ABAQUS, while the EFM and
the SIFT were incorporated into ABAQUS by writing a user-defined subprograms with Python
based on ABAQUS Scripting Interface (ASI). Strains of each element were determined by
multiplying the strains computed from the macro-scale FE model with the SAF. The values of
J; and J; were then calculated by Egs.(6) and (8) based on the thirteen typical positions as
shown in Fig.3. Once the criteria for J; and J; were met, the nodal forces of each failed element
were extracted and external nodal forces would be applied to these nodes, while the material
stiffness was kept unchanged. The steps for extracting nodal forces of failed element and their
application as external forces to the nodes followed those reported by Tay et al 2008. Finally,
the FE analysis of the macro-scale model would be re-executed. When a convergence was
obtained, the whole program would be repeated to determine the next failed elements until no
further failed elements could be found.

3. Results and discussion

Figure 5 shows the progressive damage contours for the macro-scale model with the hexagonal
arrangement of pores under compression loading, in which the elements with color denotes the
failed elements. It can be seen that the porous polymer composite is gradually degenerated with
increasing compression loading, because of increasing number of the failed elements.
Moreover, it can also be observed that the damage is initiated at the vertical poles of the pores
and then propagates progressively along the loading direction. The results demonstrate that the
multi-scale modeling method is feasible for simulating the progressive damage of the porous
polymer composite.

Fig. 5. The progressive damage process of the macro-scale model with the hexagonal
arrangement of pores under compression loading (the damage progression starts from the upper
left to upper right, and then from the lower right to lower left).
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Figure 6 illustrates the damage contours of the porous polymer composites with three
different spatial pore arrangements under compression. It can be observed that the damage
propagation pattern is different in each case. For the hexagonal pore array, the damage
propagates along the loading direction. For the square pore array, the damage propagates along
the vertical direction. For the diamond pore array, the damage propagates along an angle of £45
degree with the loading direction.

a) b) ©)

Fig. 6. Predicted damage contours of the three macro-scale models with different spatial
arrangement of pores under compression loading, (a) Square, (b) hexagonal, and (c) diamond.

Figure 7 shows the progressive damage contours for three different cases under the same
compressive displacement of Smm. It can be observed that the model with the square pore array
was not the worst one in terms of the capacity of resisting damage, because the damage was
already localized across the regions connecting the pores along the vertical direction. On the
other hand, the number of failed elements at the vertical poles of the pores in the model with the
hexagonal pore array was less than those in the model with the diamond pore array, indicating
that the model with the hexagonal pore array has the better capacity of resisting damage.

a) b) c)

Fig. 7. Predicted damage contours of the three macro-scale models with different spatial
arrangement of pores under the same compressive displacement of Smm,
(a) Square, (b) hexagonal, and (c) diamond.
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4. Conclusion

The multi-scale FE modeling approach incorporating the EFM and the SIFT has been
successfully developed to simulate the progressive damage processes of porous HA/PEEK
polymer composites. This approach has shown to be effective in establishing damage criteria to
identify the failed elements and enable the prediction for the progressive damage processes of
the composites. The effects of three different pore arrangements on the porous composites could
also be simulated so as to determine the preferred spatial arrangement of the pores. The model
with the hexagonal array of pores has been found to possess higher capacity of resisting
damage.
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Pe3ume

[Topo3HN KOMITO3MHTHH MaTepHjalld HMMajy IIMPOK CHeKap NMpUMEHa y Ba3JlyXOIUIOBCTBY H
TIOMOPCKOj MHIYCTPHUjH ¥ OMOMEOWIMHCKOM HWHXXCHCPUHTY. Y OBOM pany je MIpeaiokKeHa
BUIIIECKaTHa MeToAa KoHauHuX enemeHara (DEM) koja oOyxBara MeTOmy OTKaza eIleMEHTa
(E®M) u Teopujy oTKa3a 3acHOBaHy Ha nHBapujanTama aedopmarija (CUDT), 3a cumynamujy
ImUpema omTehema MOPO3HUX KOMIIO3MHTHHX MaTepHjana yciex kommpecuje. Ha muxpo-
HHUBOY, KOHCTpyHcaH je TpomuMeHzoHannn ®E monen ca monaeibameM henmja xako Ou ce
olpequia MeXaHHMYKa CBOJCTBA OCHOBHOI KOMIIO3MHTHOT Matepujana.  IloBpx Tora,
JBOJUMEH30HAIHKY MOJIeN opo3He henuje ca IoOHaB/bambeM Ha MaKpO HUBOY j€ Pa3BHjeH KaKo
0u ce mpeaBuzeNa MpocTUpame omTehema y MOPO3HOM MOIMMEPHOM KoMno3uty. Ilopo3nu
MOJIEJIM ca TPH pa3jiduuTa peAa Mopa cy KOHCTPYHCAHH 3a UCIUTUBAKE e(PeKTa IPOCTOPHE
pacriozienie mopa Ha IOHAIAKE INPOTPECHMBHO omrTeheme MOpo3HHMX KommnosuTa. [loposzHu
“xynpoxyanarure/ momyerxeperxepkerone (XA/ITEEK)” KoMmosutr moJ KONPECHOHUM
onrepehemeM je n3abpaH Kao MpUMEp WIyCTpalrje MPUMEHe TIpeaioxKeHe Metone. Pesynratn
CHUMYJalldje TOKa3all Cy Ja je NpemioKeHa MeToja Omia W3BOUbMBA W eduKacHa 3a
CHUMYJIAIHjy TTOHAIIaka MPOTPECUBHOT omTehema MOPO3HUK KOMITO3UTHUX MaTepHjana, Moen
ca XeKCaroHaJHHUM PacIopesioM Iopa ce MMoKa3ao Kao OTIOPHUjH Ha mHpeme omrehema ycnen
onrtepehema Ha KOMIIECH]Y.

Kibyune peun: MyniTu-CKaaHH, TOPO3HH KOMIIO3UHTHH MaTEpPHjalli, METO/A OTKa3a
eneMeHara, Teopyja 3acCHOBaHa Ha MHBapujaHTama aedopmMaliyja, IporpecuBHO omTeheme,
METO/Ia KOHAYHHX eJleMeHaTa
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