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Abstract

In this paper the geometrically nonlinear laminated finite element model is developed using the
principle of virtual displacements (PVD). The 3D elasticity equations are reduced to 2D
problem using kinematical assumptions based on assumed layerwise displacement field of
Reddy. With the assumed displacement field, nonlinear Green-Lagrange small strain large
displacements relations and linear orthotropic material properties for each lamina, the PVD is
used to obtain the weak form of the problem. The weak form or nonlinear integral equilibrium
equations are discretized using isoparametric finite element approximation. The nonlinear
incremental algebric equilibrium equations are solved using the direct iteration procedure. The
original MATLAB computer program is coded for finite element solution and is used to
investigate the geometrical nonlinear effects on displacement and stress field of thin and thick,
isotropic, orthotropic and anisotropic laminated composite plates with various boundary
conditions and the sign of the loading (loading/unloading). The accuracy of the numerical
model is verified by comparison with results from the literature and the linear solutions from
the previous paper. Appropriate conclusions are derived.
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1. Introduction

During the last decade, there has been increasing use of composites in the design of primary
load carrying members in aerospace and automotive industry, ship building industry and bridge
design. The low mass density associated with high tensile strength provides them with high
strength to weight ratios and high specific modulus. As a result of their lightness, composites
replaced most traditional materials without being constrained in slenderness and thickness. The
second outstanding feature of composite laminates is their so called “controlled anisotropy”
associated with manufacturing flexibility one has to control mechanical properties of composite
laminates by adjusting at will the lamina orientation in the stacking sequence of the laminate.
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The above mentioned features resulted in large weight savings and made possible the use of
very thin composite plate elements. However these elements become susceptible to large
deflections during their service life (Polat et al. 2007, Zhang et al. 2006). In such cases the
geometry of structure is continually changing during the deformation and geometrically
nonlinear analysis should be adopted. The geometrically nonlinear analysis seems also to be
necessary for obtaining the structural response of unsymmetrical laminated composite materials
(Zhang et al. 2003). Namely, the nonlinear response of these laminates is present even for small
displacements, due to complex coupling between in-plane and out-of plane deformation.

A considerable amount of research work has been carried out so far on the nonlinear
analysis of laminated plates. Among the published works, the von Karman plate theory of plates
undergoing large deflections has attracted outstanding attention and a number of papers have
been published. The first authors investigating the nonlinear response using the von Karman
nonlinear theory (Tanriover et al. 2004, Reddy et al. 1983) were: Leissa, Bennett, Bert, Chandra
and Raju, Zaghloul and Kennedy, Chia and Prabhakara, Noor and Hartley, and in the last
decades Han, Tabiei and Park, Singh, Lal and Kumar, Reddy and Chao, Zhang Kim and others.

Mechanical response of laminated composite material is generally 3D problem of nonlinear
mechanics. However, due to its mathematical complexity, analytical solutions using 3D theory
of elasticity are usually difficult and some times even impossible to achieve, while numerical
solutions are computationally inefficient and constrained to very specific domains. Thus,
whenever possible, refined simplified mathematical models, with acceptable accuracy in a field
of applications, should be used. It is shown that the Equivalent Single Layer theories (ESL) may
give acceptable results when analyzing global response, such as gross deflections and gross
stresses, critical buckling loads and fundamental frequencies of thin to moderate thick
laminated composite plates (Vuksanovic 2000). However, a continuous displacement function
in ESL is not able to accurately present the discontinuous zigzag variation of displacements in
highly anisotropic plates and give adequate stress distribution at local or ply level (Cetkovic et
al. 2009). A compromise between 3D theory of elasticity and ESL theories is then achieved
with the use of Layer Wise theories (LW). In LW theories the in-plane displacement field,
assumed for each layer, is interpolated through the thickness by appropriate layerwise Lagrange
interpolation function or Heaviside step function (Reddy 2004), thus replacing 3D laminated
element with N+1 2D plate elements (N is number of layers), which fulfills the continuity of
displacement functions at the interfaces between adjacent layers.

From the continuum mechanics it is known that two different level of geometrical
nonlinearity may be modeled, which are: geometrically nonlinear models with small strain and
large displacements (von Karman theory) and geometrically nonlinear models with large
strains. In the first case, the geometry of the structure before deformation remains unchanged
after the deformation. However, the structure is subjected to large displacements and the
equilibrium is achieved on the configuration displaced from the undeformed one. In the second
case the geometry of the structure is changing during the deformation and the equilibrium is
achieved on the deformed configuration. In both cases equilibrium equations are nonlinear.

In order to formulate nonlinear finite element model of laminated structures, which will be
able to represent two above mentioned levels of geometrical nonlinearity, two distinct
approaches have been reported in the literature (Reddy 2004). The first approach is based on
laminate theory, in which 3D elasticity equations are reduced to 2D equations through certain
kinematical assumptions and homogenization through the thickness. In this approach only first
type of nonlinearity or small strain, large displacement assumption may be included. The finite
elements based on such an assumptions are named the laminated elements. The second
approach is based on 3D continuum formulation (total and updated Lagrange formulation) and
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both types on nonlinearity may be included. Finite elements based on this approach are called
the continuum elements.

The aim of the author’s research on composite materials so far was to implement
Layerwise theory of Reddy or Generalized Layerwise Plate Theory-GLPT (Reddy et al. 1989)
on different levels of analysis of laminated composite plates. The previous work has been
concerned with the linear analysis (Cetkovic et al. 2009), and the linear laminated plate element
of GLPT has been formulated, while in the present paper the GLPT nonlinear laminated plate
element with von Karman geometrical nonlinearity is presented.

In this paper the mathematical and numerical model for geometrically nonlinear, small
strain, large displacements problem of laminated composite plates is presented. The 3D
elasticity equations are reduced to 2D problem using kinematical assumptions based on
layerwise displacement field of Reddy (GLPT). With the assumed displacement field, nonlinear
Green-Lagrange small strain large displacements relations and linear orthotropic material
properties for each lamina, the principle of virtual displacement (PVD) is used to derive the
weak form of the problem. The weak form or nonlinear integral equilibrium equations are
discretized using isoparametric finite element approximation. The obtained nonlinear
incremental algebric equilibrium equations are solved using direct iteration procedure. The
originally coded MATLAB computer program for the finite element solution is used to
investigate the effects of geometrical nonlinearity on displacement and stress field of thin and
thick, isotropic, orthotropic and anisotropic laminated composite plates with various boundary
conditions and the sign of the loading (loading/unloading). The accuracy of the numerical
model is verified by being compared with available results from the literature and the linear
solutions from the previous paper (Cetkovic et al. 2009). The appropriate conclusions are
derived.

2. Theoretical formulation

2.1 Displacement field

In the LW theory of Reddy (Reddy et al. 1989) or Generalized Layerwise Plate Theory (GLPT),
in-plane displacements components (u, v) are interpolated through the thickness using 1D
linear Lagrangian interpolation function o’ (z), while transverse displacement component w
is assumed to be constant through the plate thickness.

N+1

u, (0 y,2) =u(xy)+ 2 U (o y)- @' (2)
u, (X, y,2)=v(xy) + Z+VI(X,Y)- ®'(z)
u, (X, y,2) =w(x,y) )

thus giving the “zig-zag” or layer wise variation of the in-plane displacements. This “zig-zag”
behavior is more pronounced for thick laminates, where the transverse shear modulus change
abruptly through the thickness and can be seen in the exact 3D elasticity solutions obtained by
Pagano, Srinavas and Rao, Noor etc. Therefore, layerwise displacement fields provide a much
more kinematically correct representation of the moderate to severe cross sectional warping
associated with the deformation of thick laminates.
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2.2 Strain-displacement relations

The Green Lagrange strain tensor associated with the displacement field Eq.(1) can be
computed using von Karman strain-displacement relation to include geometric nonlinearities as
follows:
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2.3 Constitutive equations

For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the
following form:

O xx ) _Qn Qun Qs 0 0 I Exx )
Cyy Qnr Q»n Qx 0 0 Eyy
Txy =1Qui Qxn Qs 0 0 X Y xy
Ty 0 0 0 Qu Qs Y xz
Tys 0 0 0 Qs Qs Yyz

- - (€)

()T ()T

and S(k)={xx €y Yy Yx sz}

are stress and strain components respectively, and Qflk ) are transformed elastic coefficients, of

where O(k) = { x Oyy  Txy Tx Tyz}

k-th lamina in global coordinates.

2.4 Equilibrium equations

Equilibrium equations may be obtained from the Principle of Virtual Displacements (PVD), in
which sum of external virtual work done on the body and internal virtual work stored in the
body should be equal zero:

0= H {620} +{Bem} ){N0 b+ {6e! T N+ Suq? +6vq) +6wq? ] dxdy

- §6un Non ds—§8u, N, ds— 8w (Q, +P,)ds—§5UL N, ds—§8UL Nids
T T T T T (4)
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0 0 01. . . . . . . .
where {qx,qy,qZ }15 distributed load in X,y,z directions, while internal forces are:
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LY I
where A, B, B, D”! matrices are given in (Cetkovic 2005), while internal force vectors are:
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3. Finite Element Model

Fig. 1. Plate finite element with n layers and m nodes.

The GLPT finite element consists of middle surface plane and I=1, N+1 planes through the

plate thickness Fig. 1. The element requires only the & continuity of major unknowns, thus in
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u,v, w)

each node only displacement components are adopted, that are ( in the middle surface

1 I
element nodes and (U 2l ) in the I-th plane element nodes. The generalized displacements
over element €2° can be expressed as:
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where {dj} = {uj \& Wj} ,{dj} = {Uj Vj} are displacement vectors, in the

middle plane and I-th plane, respectively, ‘W¢ are interpolation functions, while

[‘P]- ]e , [ﬁ, ]e are interpolation function matrix for the j-th node of the element Q2¢, given in

(Cetkovic et al. 2009). Substituting element displacement field Eq.(6) in to weak form Eq.(4),
the nonlinear laminated finite element is obtained (Cetkovic et al. 2011):

(K J{d )" ={f] (12)

where secant stiffness matrix is:

Ky, ]'=

J([ﬁ]r '[B‘]-[H?]+[ﬁf]T-[B1]~[H§NL]) dae

(13)1234
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With the known displacement field, the stress field over the element may be obtained as a
part of a postprocessor, using strain displacement and constitutive relations, Egs. (2), (3) as:

ol =[] 3 (] e D+ 3 [ Tl

j=1

fou}s) = (“2 ([Ey ]+ [y ) fas +[Qb](”2 (|, J{ar
08 =10 1] ) + Q. Z[ Gl =)/ (16)as

j=1
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where {crb }ij) © and {Gb }‘g) © are in-plane normal stresses (Gxx /Oyy, Txy) at bottom and upper

(k)

const

plane in k-th layer of plate element ‘e’, while {05} are average transverse shear stresses

(T xz 1 ‘cyz) in k-the layer of plate element.

4. Numerical results and discussion

Based on the previously derived laminated finite element model for the geometrically nonlinear
analysis of laminated composite plates, the original computer program is coded using
MATLAB programming language. The quadratic Lagrange rectangular element with nine
nodes and associated polynomial was used for isoparametric FE approximation of in-plane
displacement of plate element and geometry. The nonlinear finite element secant stiffness
matrix is evaluated using Gauss—Legendre quadrature rule, which are 3x3 Gauss integration
schemes or 2D quadratic Lagrange rectangular element for in-plane interpolation and 1D linear
Lagrange element for through the thickness interpolation. The direct iteration procedure, also
known as the Picard iteration method was used as numerical procedure to solve nonlinear
algebric equations, iterative in nature. The effects of plate thickness, lamination scheme,
boundary conditions and the sign of the loading on nonlinear response of isotropic, orthotropic
and anisotropic plates are analyzed. The accuracy of the present formulation is demonstrated
through a number of examples and by comparison with results available from the literature.

The following boundary conditions at the plate edges are analyzed (Thankam et al. 2003).
Simply supported (SS):

x=0,a: vo=wo=VI=N,,=NL =0 _
SS { y:O,b uO :WO :UI:NW:Ngyzo I_ll'NJ’-l (17)
Simply supported-hinged (HH):

x=0,a: U =Ve=wo=VI=NL =0 _
HH { y:O,b: u[] :VO :WOZUI:Ng,yzo 1_1’N+1 (18)
Clamped (CC):

x=0,a: UW=vo=wo=U'=VI=0 _
cc: { y =0, b: W =vo=wy=Ut=vi=0 171N+l (19)

When analyzing a quarter of a plate, boundary conditions in the plane of symmetry become:

For cross ply laminates:

X:a/z: u =UI=N :NI =0 ~
SS1 { y=b/2: VZ:VI:NKZNg:O I=1,..N+1 20)
For angle ply laminates:

X:a/Z: VO:UI:NXXZNI =0 _
SS2 { y=b/2: uozvlzNyy:NYIXyX:O I=1,..N+1 @
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Example 4.1. A nonlinear bending of square, simply supported (SS1), isotropic plate, with
a=b=254cm and h =2.54cm made of material:

— N —
E=5,3779IN/cm”2, v=0.3 22)

subjected to uniform transverse pressure is analyzed. Using the load parameter

P=q,-a*/ (Eh4 ), the incremental load vector is chosen to be:

(AP} ={6.25,6.25,12.5, 25.0, 25.0,25.0, 25.0,25.0, 25.0,25.0}- P 3

with convergence tolerance € =0.01 and acceleration parameter ¥ = 0,8 . The displacements
and stresses are given in following nondimensional form:

w=w, -Eh’/(q,-a*), G .=o_ -(a/h)y-1/E

XX (24)
10
ol —@— Lincar Reddy 2004 1
gl —V— Nonlinear Reddy 2004 FSDT i
—HB— Nonlinear Present

7 - -

6 - -
| 1

4t J

3 - -

74

2 - -

l - -

66 50 — 100 150 200

w

Fig. 2. Nonlinear bending of square simply supported (SS1) isotropic plate with a/h =10 ;
central displacement versus load parameter.

A 3x3 quarter plate laminated GLPT model is compared with 4x4 quadratic FSDT model
[Reddy 2004]. The results for linear and nonlinear deflections are presented on Fig. 2. It is
shown that proposed GLPT model closely agree with FSDT model. The Fig. 2 also
demonstrates the physical nature of geometrically nonlinear response. The study has proved that
depending of applied load level, the plate goes from the state of pure bending, at small
displacement (w < 0.30h ) to the phase of bending-stretching coupling, at large displacements.
Namely, when the lateral displacement reaches approximately one half of plate thickness
(w =~ 0.5.h ), they take part in stretching, together with bending of the plate middle surface
(nonlinear terms in Eq.(2)). This activates the tensile forces, thus enlarging the stiffness of the
plates, and reducing displacements from the values predicted by linear theory. This may be the
reason why this phenomena is also known as “plate stiffening” or “stress relaxation”. Moreover,
the activation of tensile forces in laminated composite plates is of utmost importance, due to
their high available specific tensile strength.
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Example 4.2. A nonlinear bending of square simply supported (SS1), orthotropic plate made of
high modulus glass-epoxy fiber reinforced material:

E1 /Ez = 25,G]2 /Ez = O.5,G13 /Ez = 0.5,623 /E2 = 02,

Vi2 = Vi3 = V3 = 0.25 (25)

subjected to  uniform transverse pressure is analyzed. Using the load
parameter P = qo -a* / (E2h4) , the incremental load vector is chosen to be:

{AP}={10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 }- P 26)

with convergence tolerance € =0.01 and acceleration parameter ¥ =0,3 . The displacements
and stresses are given in following nondimensional form:

w=w,-Eh’ /(qo 'a4)

2
6.5, %)= M2
cyxx’C$yy’Txy - G><)<’csyy”txy N ’

2 212

—@— linear (a\h=10 Reddy 2004)
—&— nonlinear FSDT (a\h=10 Reddy 2004)
1.2 —w— nonlinear GLPT (a\h=10 Present)
—O— linear (a\h=100 Reddy 2004)

—— nonlinear FSDT (a\h=100 Reddy 2004)
—V— nonlinear GLPT (a\h=100 Present)

0.8F

w/h

0.6f

0.4f

0.2F

()6 20 40 60 _ 80 100 120 140

Fig. 3. Nonlinear bending of square simply supported (SS1) orthotropic plate; central
displacement versus load parameter.

A 2x2 quarter plate laminated GLPT model is compared with 8x8 CPT nonconforming and
4x4 quadratic FSDT models (Polat et al. 2007). The results for thick and thin plates (a/h=10 and
a/h=100) of linear and nonlinear deflections are presented on Fig. 3. It is shown that proposed
GLPT model closely agree with CLPT and FSDT models. The more significant difference
between linear and nonlinear solutions is observed for thick plates, while in thick plates larger
lateral deflections have greater influence on nonlinear response, as it can be seen from the
underlined nonlinear terms in Eq. (2).
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Example 4.3. A nonlinear bending of square cross ply 0/90 and angle ply 45/-45 plates, with
a=b=1 and h =0.1, with three different boundary conditions (SS, SS1 HH and CC, Egs. 17,
18, 19, 20) , made of material:

E,/E,=40,G,,/E,=06,G,/E,=06,G, /E,=05,v,,=v,,=v, =025 (28)
a) 1

subjected to uniform transverse pressure q = q(x,y)~ (Ej -— are analyzed. The incremental
2

load vector is:

{Aq}=1{-100,-20,-20,-20, - 20, 40, 20, 20, 20, 20} (29)

with convergence tolerance € =0.01 and acceleration parameter y=0,5. The displacements
and stresses are given in following nondimensional form:

2
_ h* E . a 1
W N :wx—4—2-100, (GXX,G ): (GXX,G )>< - = (30)
a q yy yy h E2
100 ————————— —
O SS1 Thankam et. al. 2003 P
80] — SS1 Present ',/' 1
¥ HH Thankam et. al. 2003 <
60| —— HH Present 1
O CC Thankam et. al. 2003
40l —— cC Present 1
""" CC Linear
R J— HH Linear
] S SS1_Linear.
-20F b
0/90
-60f
-80F //’ ]
-100 At =L 1 1 1 1 1 1 1 1
16 -14 <12 -10 -8 -6 -4 2 2 4 6 8 10 12 14 16

wx 10

Fig. 4. Nonlinear bending of square cross ply 0/90 plate with different boundary conditions and
a /h =10 ; central displacement versus load parameter.
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100 . . —
O  SS (Thankam et al. 2003) ,/'
80F — SS(GLPT) e 4
¥V HH (Thankam et al. 2003) v
60F — HH (GLPT) e E
O (CC (Thankam et al. 2003)
40 —— CC (GLPT nonlinear) )
CC (linear)
20f e HH (linear) ]
o 0 SS (linear)
20F i
40} i
) 45/-45 |
-80t //’ 4
-100 ot £ L L L L
-10 -8 -6 -4 2 0 2 4 6 8 10
wx 10

Fig. 5. Nonlinear bending of square angle ply 45/-45 plate with different boundary conditions
and a /h =10 central displacement versus load parameter.

100

50

-100
-1

O SS-(Thankam et al. 2003)
— SS-GLPT-present

V HH-(Thankam et al. 2003)
— HH-GLPT-present

O CC-(Thankam et al. 2003)
— CC-GLPT-present

I

I

I

I

I

)

f

I

I

I

I

I

:
00 -50

100

Fig. 6. Nonlinear bending of square cross ply 0/90 plate with different boundary conditions and

a/h =10; in plane stress SXX

versus load parameter.
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100

45/-45

O SS-(Thankam et al. 2003)
—— SS-GLPT-present

V HH-(Thankam et al. 2003)
— HH-GLPT-present

O  CC-(Thankam et al. 2003)
— CC-GLPT-present

__ 10 20
Sxx

30

Fig. 7. Nonlinear bending of square angle ply 45/-45 plate with different boundary conditions

Table 1. Stresses versus load parameter of square simply-supported (SS, SS1) orthotropic plate

and a /h =10 in plane stress S versus load parameter.

6}{}{ Cyy

q Thankam . Present Thankam - Present

etal 2003 O quarterplate ~ etal. 2003 B g}‘;‘;er
-100  —85.81 —87.7687 —91.4865 6.389 —6.2803 —6.1190
-80 —74.23 -80.2677 -83.2767 5.546 -5.4995 -5.3706
—60 —60.66 —64.9796 —66.6366 4551 —4.5429  —4.4573
—40 —44.24 —46.1771  -47.1425 3334 33316 —3.3083
20 —23.93 242330 -24.4841 1.814 -1.8280 -1.8198
20 23.76 22.8399 225550 1.827 1.8946  1.8201
40 43.66 415389  40.5038 3.379 35618 3.3021
60 59.57 562325  54.1600 4.635 49345 44838
80 72.59 68.1087  65.2326 5.674 6.0725 54087
100 83.61 779324 746326 6.559 6.5274  6.1561
w 1.2370 1.2115 1.2114 0.0940 0.0960  0.0960

LI

a/h=10.
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EXX Gvy

q Thatiksiti = Present Thatiksiti ﬁ]H Present »

etal. 2003 e quarter plate  etal. 2003 il g?ate -
—100 —39.0700 —37.8815 —37.1852 -2.5720 -2.7585 -2.7143
—80 —37.0900 —-35.6542 —-352788 —2.3440 -24965 -24756
—60 —33.7000 —-32.8219 —32.0224 -2.0350 -2.1942 -2.1512
—40 —27.7900 -26.8872 -26.3827 -1.5940 -1.7097 -1.6858
=20 —17.2700 -16.6923 —-16.5961 —0.9330 -1.0001 -0.9954
20 20.4900 20.1643 20.2555 09570 1.0238 1.0249
40 38.0800 37.6015 38.0757 1.6730 1.7686 1.7877
60 52.1200 51.5368 52.4040 2.1860 2.2869 23170
80 63.6200 63.6309 64.2721 2.5760 2.7131 2.7150
100 73.3600 71.8442 74.4556 2.8940 29282 3.0357
Wim 10100 0.9847 0.9848 0.0510 0.0545 0.0545

Table 2. Central displacement and stresses versus load parameter of square hinged (HH) cross
ply 0/90 plate with a /h =10.

554 Gy

q Thankam . Present Thankam . Present

tal 2003 T quarterplate el 2003 T g;‘aatl;er
-100 -21.4000 -20.5632 -19.2411 -2.1120 -2.1710 -2.2723
—80 —20.2300 -19.1365 —18.3254 —1.8910 -1.9245 -2.0278
-60 —18.0200 -16.8767 —-164203 -1.5970 -1.6135 -1.7035
—40 —14.2500 —-13.1940 —12.9932 -1.1970 —1.1990 -—1.2737
-20 -8.3160 -8.4576 —8.4757 -0.6620 -0.6576 -0.7026
20 9.7460 92713 9.3123 0.7064 0.7002 0.7525
40 19.4220 18.8206 18.9384 1.3556 1.3562 1.4554
60 28.2170 27.7584 28.0222 1.9089 1.9293 2.0654
80 36.0310 35.8038 36.2816 2.3748 2.4206 2.5803
100 43.0000 432176 43 8145 29925 2.8376 3.02543
Wi 04650 04353 04352 0.0350  0.0373  0.0373

LIN

Table 3. Central displacement and stresses versus load parameter of square clamped (CC) cross
ply 0/90 plate with a /h =10.
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_ Gxx Gy
! Thankam et al. Bregsiit Thankam et Pregsiit
2003 al. 2003
—100 —14.2100 -16.2177 —14.21 —15.1525
—80 —13.3280 —14.4082 —13.28 —14.4082
—60 -11.9700 -13.1740 -11.97 -13.1740
—40 —0 8840 -10.1196 —0 884 —10.1196
-20 —6.3090 -5.7065 -6.309 -5.7065
20 7.7410 6.7321 7.741 6.7321
40 14.1160 13.1960 14.116 13.1960
60 19.1260 19.0340 19.126 19.0340
80 23.2730 241754 23.273 24.1754
100 26.8130 28.7658 26.813 28.7658
w 0.3840 0.4136 0.3840 0.4136

LI

Table 4. Central displacement and stresses versus load parameter of square simply-supported
(SS) angle ply 45/-45 plate with a/h =10 .

- G Gyy
q
1 Thenkam Present TR Present
etal. 2003 et al. 2003
-100 -16.9800 -16.6682 —-16.9800 -16.6037
—-80 -15.3600 -15.0492 —15.3600 —14.9743
—60 -13.1700 -12.8871 -13.1700 -12.8074
—40 -10.1100 -9.8387 —10.1100 —9.7654
=20 -5.7630 -5.5954 -5.7630 -5.5457
20 6.3330 6.1515 6.3330 6.0767
40 12.0960 11.8130 12.0960 11.6517
60 16.9700 16.6419 16.9700 16.3936
80 21.1100 20.7937 21.1100 20.4630
100 24.7100 24.0000 24.7100 24.0042
w 0.3140 03041 03140 0.3009

LIN

Table 5. Central displacement and stresses versus load parameter of square hinged (HH) angle
ply 45/-45 plate with a /h =10.
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Gy Gyy

1 Thrslom Thankam

et al. Present et al. 2003 Present

2003 :
-100 —13.5812  —14.6400 -13.4659 —14.6400
—-80 -12.2698 —13.1800 -12.1617 —13.1800
—60 —10.4569 —11.1500 -10.3614 —11.1500
—40 —7.9629 —8.3790 —7.8876 —8.3790
—20 —4.4927 —4.6560 —4 4483 —4.6560
20 5.0711 3.1570 5.0145 5.1570
40 10.0477 10.2150 99274 10.2150
60 14.5717 14.8220 14.3851 14.8220
80 18.5663 18.9130 18.3136 18.9130
100 22.1323 22.5590 21.8148 22.5590
WHN 0.2510 0.2423 0.2510 0.2423

Table 6. Central displacement and stresses versus load parameter of square clamped (CC) angle
ply 45/-45 plate with a /h =10.

A 2x2 quarter plate and 4x4 full plate laminated GLPT models are analyzed and compared
with full 8x8 plate FSDT models (Thankam et al. 2003). The results for linear and nonlinear
deflections and in plane stresses are presented in Figs. 4,5,6,7 and tables 1-6. It is shown that
proposed GLPT model closely agree with FSDT model form literature. Also, the discrepancy
between linear and nonlinear solutions are larger for flexible plates, which are the plates with
simply supported boundary conditions (SS, SS1), compared to hinged (HH) and clamped (CC)
boundary conditions. The study has verified that the change in the sign of the load gives
unsymmetrical stress field and symmetrical displacement field, due to non-coincidence of the
neutral plane and the mid-plane in laminated composite plates.

Example 4.4. A nonlinear bending of square simply supported (SS1) general quasi-isotropic
(0/45/-45/90);, laminated plate with a=b=1 and h =0.1, made of material:

E] /Ez =40, Gu /Ez =0.6, G13 /Ez =0.6, G23 /Ez =0.5, Vi2 = V13 =V =0.25 (31)

subjected to uniform transverse pressure is analyzed. Using the load parameter
P =qo-a* /(E,h*), the incremental load vector is chosen to be:

{Aq}={50, 50, 50, 50, 50}- P -

with convergence tolerance € =0.01 and acceleration parameter y=0,8 .
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1.4

—W— Linear Argyris and Tanek 1994 HSDT
1.2} —>% Nonlinear Present
—®— Nonlinear Argyris and Tanek 1994

0.8

w/h

0.6

0.4

0.2

50 100 — 150 200 250
P

Fig. 8. Nonlinear bending of square simply supported (SS1) general quasi-isotropic (0/45/-
45/90)s laminated plate with a /h =10 ; central displacement versus load parameter

A 2x2 quarter plate continuum GLPT model is compared with 8x8 full plate HSDT model
(Argyris and Tanek 1994). The results for linear and nonlinear deflections are presented in Fig.
8. It is shown that proposed GLPT model closely agree with HSDT model form literature, with
the faster convergence.

5. Conclusion

In this paper a laminated layerwise finite element model for geometrically nonlinear small
strain, large deflection analysis of laminated composite plates is derived using the PVD. The
accuracy of the model is verified calculating nonlinear response of plates with different
mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle
ply), different plate thickness, different boundary conditions and different sign of the load
(unloading/loading). In despite of its mathematical complexity, proposed model has shown
better convergence characteristics than ESL models of CLPT, FDST and HSDT, still with less
computational cost than 3D elasticity model. Moreover, present model has no shear locking
problems, compared to ESL models, or aspect ratio problems, as the 3D finite element may
have when analyzing thin plate behavior. The analysis has also shown that the discrepancy of
nonlinear from linear response is greater for flexible plates, such as thick compared to thin
plates, or plates with SS compared to hinged (HH) and clamped (CC) boundary conditions. It is
verified that the change of the sign of load (unloading/loading) has no influence on
displacement field, while the stress field dependents on the sign of the load, due to non
coincidence of the natural plane and the mid plane of the plate.
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I'eMeTpHjCcKM HeJIMHEAPHA aHAJIM3A JIAMMHUPAHUX KOMIIO3UTHHUX IVIOLA
KOPHCLEHEeM CJI0jeBUTOI MO/iesIa IOMepamha
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Y oBOM pajy je pa3BHjeH reOMETPHjCKU HEIMHEeapaH JJAMHUHUPAHH MOJIe]l KOHAYHHUX eJeMeHaTa
KopumhemeM MPUHIHIIA BUPTYyaTHUX ToMepama. 3 /1 jelHaunHe eacTHYHOCTU Cy CBe/eHe Ha
2]1 npobGieM kopuimhemeM KHHEMAaTCKHX NPETIOCTaBKH 0a3MpaHUX Ha IPETHOCTaBJLEHOM
noJjpy momepama ciojeBa Penuja. Ca mpeTnocTaB/beHUM MOJBEM IOMeEpama, HEJIMHEApPHUM
I'pun — JlarpamxeBuM peranujama 3a Maie AedopMmanyje 1 BellMKa IOMepama, U JTHHEApHIM
OPTOTPOIHUM MaTepHjaTHIM KapaKTEpPUCTHKaMa 3a CBAKH cJI0j (IUI0YY ), IPUHIIAIT BUPTYATHUX
moMepama je KopummheH 3a moOujame crmabe Qopme. Crmaba Qopma wiam HeTHMHEapHE
WHTETpaJIHe PAaBHOTE)KHE jeIHAYMHE IUCKPETH30BaHH Cy KOpHIINEeHEeM H30IapaMeTapcKux
alpoKCHMaIlja y KOHaYHNM eJeMeHTHMa. HenmHeapHe HHKpeMeHTalHe anredapcke jeHadnHe
Cy pelIaBaHe MMOCTYIKOM AMPEKTHHUX urerpainuja. Hamucan je opurnnanaun MATJIAB nporpam
3a pellaBamkbe METOJOM KOHAa4YHUX eJieMeHara, KOjH je KOpHIIheH je 3a HUCTpaKHBambe
T€OMETPH]CKH HelIMHeapHUX e(eKara Ha ToJba IOMepama M HalloHa KOJl TAHKWU U Je0esuXx,
W30TPOITHUX, OPTOTPOITHMX M AHMU3OTPOIHUX CIIOJEBUTHX KOMIIO3WUTHHX IUIoYa ca
MPOMCHJbUBUM TPAaHWYHHMM YCJIIOBUMA M 3HakoM omnrepehema (omrepeheme - pactepehieme).
Taynoct Hymepudkor Mojena je BepudukoBaHa yropehuBameM ca pe3yinTaTuMa W3
JIUTEpaType W JIMHEApHUM pellekhHMa W3 TPETXONHOTr paxa. M3BexmeHu cy oxarosapajyhu
3aKJbYUIIH.

Kiby4He peun: reoMeTpHjCKH HEJMHEApHA aHAIN3a, CII0jEBUTH MOAET KOHAYHUX €JIEMEHTa
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