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Abstract 

In this paper the geometrically nonlinear laminated finite element model is developed using the 
principle of virtual displacements (PVD). The 3D elasticity equations are reduced to 2D 
problem using kinematical assumptions based on assumed layerwise displacement field of 
Reddy. With the assumed displacement field, nonlinear Green-Lagrange small strain large 
displacements relations and linear orthotropic material properties for each lamina, the PVD is 
used to obtain the weak form of the problem. The weak form or nonlinear integral equilibrium 
equations are discretized using isoparametric finite element approximation. The nonlinear 
incremental algebric equilibrium equations are solved using the direct iteration procedure. The 
original MATLAB computer program is coded for finite element solution and is used to 
investigate the geometrical nonlinear effects on displacement and stress field of thin and thick, 
isotropic, orthotropic and anisotropic laminated composite plates with various boundary 
conditions and the sign of the loading (loading/unloading). The accuracy of the numerical 
model is verified by comparison with results from the literature and the linear solutions from 
the previous paper. Appropriate conclusions are derived. 
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1. Introduction 

During the last decade, there has been increasing use of composites in the design of primary 
load carrying members in aerospace and automotive industry, ship building industry and bridge 
design. The low mass density associated with high tensile strength provides them with high 
strength to weight ratios and high specific modulus. As a result of their lightness, composites 
replaced most traditional materials without being constrained in slenderness and thickness. The 
second outstanding feature of composite laminates is their so called “controlled anisotropy” 
associated with manufacturing flexibility one has to control mechanical properties of composite 
laminates by adjusting at will the lamina orientation in the stacking sequence of the laminate. 
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The above mentioned features resulted in large weight savings and made possible the use of 
very thin composite plate elements. However these elements become susceptible to large 
deflections during their service life (Polat et al. 2007, Zhang et al. 2006). In such cases the 
geometry of structure is continually changing during the deformation and geometrically 
nonlinear analysis should be adopted. The geometrically nonlinear analysis seems also to be 
necessary for obtaining the structural response of unsymmetrical laminated composite materials 
(Zhang et al. 2003). Namely, the nonlinear response of these laminates is present even for small 
displacements, due to complex coupling between in-plane and out-of plane deformation.   

A considerable amount of research work has been carried out so far on the nonlinear 
analysis of laminated plates. Among the published works, the von Karman plate theory of plates 
undergoing large deflections has attracted outstanding attention and a number of papers have 
been published. The first authors investigating the nonlinear response using the von Karman 
nonlinear theory (Tanriover et al. 2004, Reddy et al. 1983) were: Leissa, Bennett, Bert, Chandra 
and Raju, Zaghloul and Kennedy, Chia and Prabhakara, Noor and Hartley, and in the last 
decades Han, Tabiei and Park, Singh, Lal and Kumar, Reddy and Chao, Zhang Kim and others. 

Mechanical response of laminated composite material is generally 3D problem of nonlinear 
mechanics. However, due to its mathematical complexity, analytical solutions using 3D theory 
of elasticity are usually difficult and some times even impossible to achieve, while numerical 
solutions are computationally inefficient and constrained to very specific domains. Thus, 
whenever possible, refined simplified mathematical models, with acceptable accuracy in a field 
of applications, should be used. It is shown that the Equivalent Single Layer theories (ESL) may 
give acceptable results when analyzing global response, such as gross deflections and gross 
stresses, critical buckling loads and fundamental frequencies of thin to moderate thick 
laminated composite plates (Vuksanovic 2000). However, a continuous displacement function 
in ESL is not able to accurately present the discontinuous zigzag variation of displacements in 
highly anisotropic plates and give adequate stress distribution at local or ply level (Cetkovic et 
al. 2009). A compromise between 3D theory of elasticity and ESL theories is then achieved 
with the use of Layer Wise theories (LW). In LW theories the in-plane displacement field, 
assumed for each layer, is interpolated through the thickness by appropriate layerwise Lagrange 
interpolation function or Heaviside step function (Reddy 2004), thus replacing 3D laminated 
element with N+1 2D plate elements (N is number of layers), which fulfills the continuity of 
displacement functions at the interfaces between adjacent layers. 

From the continuum mechanics it is known that two different level of geometrical 
nonlinearity may be modeled, which are: geometrically nonlinear models with small strain and 
large displacements (von Karman theory) and geometrically nonlinear models with large 
strains. In the first case, the geometry of the structure before deformation remains unchanged 
after the deformation. However, the structure is subjected to large displacements and the 
equilibrium is achieved on the configuration displaced from the undeformed one. In the second 
case the geometry of the structure is changing during the deformation and the equilibrium is 
achieved on the deformed configuration. In both cases equilibrium equations are nonlinear. 

In order to formulate nonlinear finite element model of laminated structures, which will be 
able to represent two above mentioned levels of geometrical nonlinearity, two distinct 
approaches have been reported in the literature (Reddy 2004). The first approach is based on 
laminate theory, in which 3D elasticity equations are reduced to 2D equations through certain 
kinematical assumptions and homogenization through the thickness. In this approach only first 
type of nonlinearity or small strain, large displacement assumption may be included. The finite 
elements based on such an assumptions are named the laminated elements. The second 
approach is based on 3D continuum formulation (total and updated Lagrange formulation) and 
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both types on nonlinearity may be included. Finite elements based on this approach are called 
the continuum elements.  

The aim of the author’s research on composite materials so far was to implement 
Layerwise theory of Reddy or Generalized Layerwise Plate Theory-GLPT (Reddy et al. 1989) 
on different levels of analysis of laminated composite plates. The previous work has been 
concerned with the linear analysis (Cetkovic et al. 2009), and the linear laminated plate element 
of GLPT has been formulated, while in the present paper the GLPT nonlinear laminated plate 
element with von Karman geometrical nonlinearity is presented.  

In this paper the mathematical and numerical model for geometrically nonlinear, small 
strain, large displacements problem of laminated composite plates is presented. The 3D 
elasticity equations are reduced to 2D problem using kinematical assumptions based on 
layerwise displacement field of Reddy (GLPT). With the assumed displacement field, nonlinear 
Green-Lagrange small strain large displacements relations and linear orthotropic material 
properties for each lamina, the principle of virtual displacement (PVD) is used to derive the 
weak form of the problem. The weak form or nonlinear integral equilibrium equations are 
discretized using isoparametric finite element approximation. The obtained nonlinear 
incremental algebric equilibrium equations are solved using direct iteration procedure. The 
originally coded MATLAB computer program for the finite element solution is used to 
investigate the effects of geometrical nonlinearity on displacement and stress field of thin and 
thick, isotropic, orthotropic and anisotropic laminated composite plates with various boundary 
conditions and the sign of the loading (loading/unloading). The accuracy of the numerical 
model is verified by being compared with available results from the literature and the linear 
solutions from the previous paper (Cetkovic et al. 2009). The appropriate conclusions are 
derived. 

2. Theoretical formulation 

2.1 Displacement field 

In the LW theory of Reddy (Reddy et al. 1989) or Generalized Layerwise Plate Theory (GLPT), 
in-plane displacements components  v,u  are interpolated through the thickness using 1D 

linear Lagrangian interpolation function  zI , while transverse displacement component w  

is assumed to be constant through the plate thickness. 
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thus giving the “zig-zag” or layer wise variation of the in-plane displacements. This “zig-zag” 
behavior is more pronounced for thick laminates, where the transverse shear modulus change 
abruptly through the thickness and can be seen in the exact 3D elasticity solutions obtained by 
Pagano, Srinavas and Rao, Noor etc. Therefore, layerwise displacement fields provide a much 
more kinematically correct representation of the moderate to severe cross sectional warping 
associated with the deformation of thick laminates. 
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2.2 Strain-displacement relations 

The Green Lagrange strain tensor associated with the displacement field Eq.(1) can be 
computed using von Karman strain-displacement relation to include geometric nonlinearities as 
follows: 
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2.3 Constitutive equations 

For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the 
following form: 
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where     Tk
yzxzxyyyxx

k σ and     Tk
yzxzxyyyxx

k ε  

are stress and strain components respectively, and  k
ijQ  are transformed elastic coefficients, of 

k-th lamina in global coordinates.  

2.4 Equilibrium equations 

Equilibrium equations may be obtained from the Principle of Virtual Displacements (PVD), in 
which sum of external virtual work done on the body and internal virtual work stored in the 
body should be equal zero: 
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where  0
z

0
y

0
x q,q,q is distributed load in z,y,x  directions, while internal forces are:  
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where A, B, BI, DJI matrices are given in (Cetkovic 2005), while internal force vectors are: 
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and strain vectors are: 

 

 
T

0

y
w

x
w

x
v

y
u

y
v

x
u




























ε
 

 

 
T22

m 00
x
w

x
w

y
w

2
1

x
w

2
1








































ε

 

 

 
T

II
IIII

I VU
x

V
y

U
y

V
x

U






















ε
 (10)1,2,3 

3.  Finite Element Model 

 

Fig. 1. Plate finite element with n layers and m nodes. 

The GLPT finite element consists of middle surface plane and I=1, N+1 planes through the 

plate thickness Fig. 1. The element requires only the 
0C  continuity of major unknowns, thus in 
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each node only displacement components are adopted, that are  w,v,u  in the middle surface 

element nodes and  II V,U  in the I-th plane element nodes. The generalized displacements 

over element 
e  can be expressed as: 
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(Cetkovic et al. 2009). Substituting element displacement field Eq.(6) in to weak form Eq.(4), 
the nonlinear laminated finite element  is obtained (Cetkovic et al. 2011): 
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With the known displacement field, the stress field over the element may be obtained as a 
part of a postprocessor, using strain displacement and constitutive relations, Eqs. (2), (3) as: 

                  
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where    ек
Ubσ  and    ек

Obσ are in-plane normal stresses  xyyyxx ,,   at bottom and upper 

plane in k-th layer of plate element ‘e’, while    ek
constsσ  are average transverse shear stresses 

 yzxz ,   in k-the layer of plate element. 

4. Numerical results and discussion 

Based on the previously derived laminated finite element model for the geometrically nonlinear 
analysis of laminated composite plates, the original computer program is coded using 
MATLAB programming language. The quadratic Lagrange rectangular element with nine 
nodes and associated polynomial was used for isoparametric FE approximation of in-plane 
displacement of plate element and geometry. The nonlinear finite element secant stiffness 
matrix is evaluated using Gauss–Legendre quadrature rule, which are 3x3 Gauss integration 
schemes or 2D quadratic Lagrange rectangular element for in-plane interpolation and 1D linear 
Lagrange element for through the thickness interpolation.  The direct iteration procedure, also 
known as the Picard iteration method was used as numerical procedure to solve nonlinear 
algebric equations, iterative in nature. The effects of plate thickness, lamination scheme, 
boundary conditions and the sign of the loading on nonlinear response of isotropic, orthotropic 
and anisotropic plates are analyzed. The accuracy of the present formulation is demonstrated 
through a number of examples and by comparison with results available from the literature.  

The following boundary conditions at the plate edges are analyzed (Thankam et al. 2003). 
Simply supported (SS): 

SS: 1N1,I0NNUwub:0,y
0NNVwva:0,x

I
yyyy

I
00

I
xxxx

I
00 





   (17) 

Simply supported-hinged (HH): 

HH: 1N1,I0NUwvub:0,y
0NVwvua:0,x

I
yy

I
000

I
xx

I
000 





   (18) 

Clamped (CC): 

CC: 1N1,I0VUwvub:0,y
0VUwvua:0,x

II
000

II
000 





   (19) 

When analyzing a quarter of a plate, boundary conditions in the plane of symmetry become: 

For cross ply laminates: 

SS1: 1N1,I0NNVv:2/by
0NNUu:2/ax

I
xxxx

I
0

I
yyyy

I
0 





   (20) 

For angle ply laminates:  

SS2: 1N1,I0NNVu:2/by
0NNUv:2/ax

I
xxyy

I
0

I
yyxx

I
0 





   (21) 
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Example 4.1. A nonlinear bending of square, simply supported (SS1), isotropic plate, with 
cm4.25ba   and cm54.2h   made of material: 

 3.0,2^cm/N37791,5E   (22) 

subjected to uniform transverse pressure is analyzed. Using the load parameter 

 44
0 Eh/aqP  , the incremental load vector is chosen to be: 

 
    P0.25,0.25,0.25,0.25,0.25,0.25,0.25,5.12,25.6,25.6P   (23) 

with convergence tolerance 01.0  and acceleration parameter 8,0 . The displacements 

and stresses are given in following nondimensional form: 

 
    E/1h/a,aq/Ehww 2

xxxx
4

0
3

0   (24) 
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Fig. 2. Nonlinear bending of square simply supported (SS1) isotropic plate with 10h/a  ; 

central displacement versus load parameter. 

A 3x3 quarter plate laminated GLPT model is compared with 4x4 quadratic FSDT model 
[Reddy 2004]. The results for linear and nonlinear deflections are presented on Fig. 2. It is 
shown that proposed GLPT model closely agree with FSDT model. The Fig. 2 also 
demonstrates the physical nature of geometrically nonlinear response. The study has proved that 
depending of applied load level, the plate goes from the state of pure bending, at small 
displacement ( h30.0w  ) to the phase of bending-stretching coupling, at large displacements. 
Namely, when the lateral displacement reaches approximately one half of plate thickness 
( h.5.0w   ), they take part in stretching, together with bending of the plate middle surface 
(nonlinear terms in Eq.(2)). This activates the tensile forces, thus enlarging the stiffness of the 
plates, and reducing displacements from the values predicted by linear theory. This may be the 
reason why this phenomena is also known as “plate stiffening” or “stress relaxation”. Moreover, 
the activation of tensile forces in laminated composite plates is of utmost importance, due to 
their high available specific tensile strength. 
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Example 4.2. A nonlinear bending of square simply supported (SS1), orthotropic plate made of 
high modulus glass-epoxy fiber reinforced material: 

 ,2.0E/G,5.0E/G,5.0E/G,25E/E 22321321221   

 
25.0231312 

 (25) 

subjected to uniform transverse pressure is analyzed. Using the load 

parameter  4
2

4
0 hE/aqP  , the incremental load vector is chosen to be: 

     P140,130,120,110,100,90,80,70,60,50,40,30,20,10P   (26) 

with convergence tolerance 01.0  and acceleration parameter 3,0 . The displacements 

and stresses are given in following nondimensional form: 

 
 4
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  (27)1,2 
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Fig. 3. Nonlinear bending of square simply supported (SS1) orthotropic plate; central 
displacement versus load parameter. 

A 2x2 quarter plate laminated GLPT model is compared with 8x8 CPT nonconforming and 
4x4 quadratic FSDT models (Polat et al. 2007). The results for thick and thin plates (а/h=10 and 
a/h=100) of linear and nonlinear deflections are presented on Fig. 3. It is shown that proposed 
GLPT model closely agree with CLPT and FSDT models. The more significant difference 
between linear and nonlinear solutions is observed for thick plates, while in thick plates larger 
lateral deflections have greater influence on nonlinear response, as it can be seen from the 
underlined nonlinear terms in Eq. (2). 
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Example 4.3. A nonlinear bending of square cross ply 0/90 and angle ply 45/-45 plates, with 
1ba   and 1.0h  , with three different boundary conditions (SS, SS1 HH and CC, Eqs. 17, 

18, 19, 20) , made of material: 

25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221   (28) 

subjected to uniform transverse pressure  
2

4

E
1

h
a

y,xqq 





 are analyzed. The incremental 

load vector is:  

    20,20,20,20,40,20,20,20,20,100q   (29) 

with convergence tolerance 01.0  and acceleration parameter 5,0 . The displacements 

and stresses are given in following nondimensional form: 

 100
q
E

a
h

ww 2
4

3

LIN  ,        
2

2

yyxxyyxx E
1

h
a

,, 





  (30) 
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Fig. 4. Nonlinear bending of square cross ply 0/90 plate with different boundary conditions and 
10h/a  ; central displacement versus load parameter. 
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Fig. 5. Nonlinear bending of square angle ply 45/-45 plate with different boundary conditions 
and 10h/a  ; central displacement versus load parameter. 

-100 -50 0 50 100
-100

-50

0

50

100

 Sxx

 q

 

 

SS-(Thankam et al. 2003)
SS-GLPT-present
HH-(Thankam et al. 2003)
HH-GLPT-present
CC-(Thankam et al. 2003)
CC-GLPT-present

0/90

 

Fig. 6. Nonlinear bending of square cross ply 0/90 plate with different boundary conditions and 

10h/a  ; in plane stress xxS  versus load parameter. 
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Fig. 7. Nonlinear bending of square angle ply 45/-45 plate with different boundary conditions 

and 10h/a  ; in plane stress xxS  versus load parameter. 

 

Table 1. Stresses versus load parameter of square simply-supported (SS, SS1) orthotropic plate 
10h/a  . 
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Table 2. Central displacement and stresses versus load parameter of square hinged (HH) cross 
ply 0/90 plate with 10h/a  . 

 

Table 3. Central displacement and stresses versus load parameter of square clamped (CC) cross 
ply 0/90 plate with 10h/a  . 
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Table 4. Central displacement and stresses versus load parameter of square simply-supported 
(SS) angle ply 45/-45 plate with 10h/a  . 

 

Table 5. Central displacement and stresses versus load parameter of square hinged (HH) angle 
ply 45/-45 plate with 10h/a  . 
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Table 6. Central displacement and stresses versus load parameter of square clamped (CC) angle 

ply 45/-45 plate with 10h/a  . 

A 2x2 quarter plate and 4x4 full plate laminated GLPT models are analyzed and compared 
with full 8x8 plate FSDT models (Thankam et al. 2003). The results for linear and nonlinear 
deflections and in plane stresses are presented in Figs. 4,5,6,7 and tables 1-6. It is shown that 
proposed GLPT model closely agree with FSDT model form literature. Also, the discrepancy 
between linear and nonlinear solutions are larger for flexible plates, which are the plates with 
simply supported boundary conditions (SS, SS1), compared to hinged (HH) and  clamped (CC) 
boundary conditions. The study has verified that the change in the sign of the load gives 
unsymmetrical stress field and symmetrical displacement field, due to non-coincidence of the 
neutral plane and the mid-plane in laminated composite plates. 

Example 4.4. A nonlinear bending of square simply supported (SS1) general quasi-isotropic 
(0/45/-45/90)s, laminated plate with 1ba   and 1.0h  , made of material: 

 25.0,5.0E/G,6.0E/G,6.0E/G,40E/E 23131222321321221   (31) 

subjected to uniform transverse pressure is analyzed. Using the load parameter 
 4

2
4

0 hE/aqP  , the incremental load vector is chosen to be: 

 
    P50,50,50,50,50q 

 (32) 

with convergence tolerance 01.0  and acceleration parameter 8,0 .  
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Fig. 8. Nonlinear bending of square simply supported (SS1) general quasi-isotropic (0/45/-
45/90)s laminated plate with 10h/a  ; central displacement versus load parameter 

A 2x2 quarter plate continuum GLPT model is compared with 8x8 full plate HSDT model 
(Argyris and Tanek 1994). The results for linear and nonlinear deflections are presented in Fig. 
8. It is shown that proposed GLPT model closely agree with HSDT model form literature, with 
the faster convergence. 

5. Conclusion 

In this paper a laminated layerwise finite element model for geometrically nonlinear small 
strain, large deflection analysis of laminated composite plates is derived using the PVD. The 
accuracy of the model is verified calculating nonlinear response of plates with different 
mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle 
ply), different plate thickness, different boundary conditions and different sign of the load 
(unloading/loading). In despite of its mathematical complexity, proposed model has shown 
better convergence characteristics than ESL models of CLPT, FDST and HSDT, still with less 
computational cost than 3D elasticity model. Moreover, present model has no shear locking 
problems, compared to ESL models, or aspect ratio problems, as the 3D finite element may 
have when analyzing thin plate behavior. The analysis has also shown that the discrepancy of 
nonlinear from linear response is greater for flexible plates, such as thick compared to thin 
plates, or plates with SS compared to hinged (HH) and clamped (CC) boundary conditions. It is 
verified that the change of the sign of load (unloading/loading) has no influence on 
displacement field, while the stress field dependents on the sign of the load, due to non 
coincidence of the natural plane and the mid plane of the plate. 
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Геметријски нелинеарна анализа ламинираних композитних плоца 
корисцењем слојевитог модела померања 
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У овом раду је развијен геометријски нелинеаран ламинирани модел коначних елемената 
коришћењем принципа виртуалних померања. 3Д једначине еластичности су сведене на 
2Д проблем коришћењем кинематских претпоставки базираних на претпостављеном 
пољу померања слојева Редија. Са претпостављеним пољем померања, нелинеарним 
Грин – Лагранжевим релацијама за мале деформације и велика померања, и линеарним 
ортотропним материјалним карактеристикама за сваки слој (плочу), принцип виртуалних 
померања  је коришћен за добијање слабе форме. Слаба форма или нелинеарне 
интегралне равнотежне једначине дискретизовани су коришћењем изопараметарских 
апроксимација у коначним елементима. Нелинеарне инкременталне алгебарске једначине 
су решаване поступком директних итеграција. Написан је оригинални МАТЛАБ програм 
за решавање методом коначних елемената, који је коришћен је за истраживање 
геометријски нелинеарних ефеката на поља померања и напона код танкии и дебелих, 
изотропних, ортотропних и анизотропних слојевитих композитних плоча са 
променљивим граничним условима и знаком оптерећења (оптерећење - растерећење). 
Тачност нумеричког модела је верификована упоређивањем са резултатима из 
литературе и линеарним решењима из претходног рада. Изведени су одговарајући 
закључци. 

Кључне речи: геометријски нелинеарна анализа, слојевити модел коначних елемента 
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