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Abstract 

In this research, the hyperbolic paraboloidal shell is investigated. The two components of the 
interacting system; the soil and the shell foundation, are modelled using the finite element 
method. In this study, 9-node isoparametric degenerated shell element with five degrees of 
freedom at each node was used. The soil-structure interaction between the shell elements and 
the supporting medium are model in this study by representing the soil medium by certain 
analytical equivalent such as Winkler model with both normal compressional and tangential 
frictional resistances.  

A parametric studies have been carried out to investigate the effect of some important 
parameters on the behaviour of shell foundations. These parameters are: shell thickness, shell 
warp, ridge and edge beams cross-sectional dimensions. 

Comparison between the results obtained by the present analysis and those obtained by 
many other investigations are made. The present analysis shows satisfactory results when 
compared with those obtained by other studies with largest percentage difference of 4.4097 % 
in the value of the vertical displacement value.   
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1. Introduction 

Shells, because their curved topology, have larger stiffness and strength than comparable and 
corresponding plane surface structural elements. This form enables shells to put a minimum of 
material to maximum structural advantages. While a plain element like a roof slab undergoes 
bending when subjected to a vertical loads including self-weight, a shell which is non-planar or 
a spatial system sustains the applied loads primarily by direct in-plane or membrane forces 
(compression or tension). Bending forces, even when present, it normally assumes only a place 
of secondary importance. Among the shells, which have come into wider use in foundations, the 
hyperbolic paraboloid (or briefly hypar) shell has been the most important type. Besides its 
geometric simplicity, resulting from its straight-lines property, the hypar shell has high 
structural efficiency. Four such shell quadrants jointed together by a system of edge and ridge 
beams, the latter terminating at the column base (Fig. 1) have been   widely used as column 
foundation in many parts of the world (Kurian 1982). A typical folded plate than can be 
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considered for use as foundation is the pyramidal combination of four inclined trapezoidal plate 
elements, that can support a column at its centre. Since these pyramidal folded plates can be 
rendered square or rectangular in plan, they can be combined to form multiple units to serve as 
combined footings. The construction is simpler as hypar footing. The pyramid shell foundation 
can be modeled by flat shell finite elements. 

 

Fig. 1. Individual hypar footing. 

The literature pertaining to the theoretical studies on the behavior of shell foundations is 
reviewed herein. 

Bairagi and Buragohain, (1985) have applied the finite element technique to study the 
stress analysis of a square hypar footing under axial and moment loads. In that study, various 
three dimensional isoparametric finite elements have been used to model the shell and the soil 
half space.   

Melerski, (1986) presented an approximate elastic solution to the statical problem of a 
reinforced concrete shell foundation, the method of analysis being based on the finite difference 
procedure in the variational formulation.   

Kurian, (1993) investigated the performance of shell foundations on soft soils. Two types 
of shell foundations have been used, which were the hypar and the conical shell foundations. 
The soil was represented by Winkler springs, in which the subgrade reaction (kn) of the soil is 
varied to simulate a wide range of soil conditions.   

Kurian, (1994) studied the behavior of shell foundations under subsidence of core soil. This 
problem has been addressed in respect of shell foundations in a single cone, a double cone and a 
hyperbolic paraboloid. These systems were analyzed by the finite element method.  

In his third paper, Kurian (1995) presented a parametric study on the behavior of conical 
shell foundations. The finite element method was also used with simulating the soil as a 
Winkler medium. The study was conducted to investigate the influence of the rise and thickness 
of the shell and the existence of ring beams at top and bottom.   
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 Al-Azzawi, (2000) studied the nonlinearity in material and geometry by using the finite 
element method for the analysis of reinforced concrete shell foundations under static loading. 
The response of reinforced concrete shell foundation was traced through its elastic, inelastic and 
ultimate load ranges. He also used a layered approach in his analysis by dividing the concrete 
into eight layers. Also, a number of steel reinforcement layers were smeared into the concrete 
layers at appropriate position. The shell was modeled by using nine-node curved shell element. 

 Hassan, (2002) investigated the behavior of hypar and conical shells on Winkler 
foundations. The two components of the interaction system; the soil and the foundation, were 
modeled using the finite element method. Four-node elements with six and five degrees of 
freedom per node were used in the analysis. 

2. Finite element method 

The Ahmad-type degenerated isoparametric shell elements based on independent rotational and 
translational displacement interpolation have become popular in recent years. In this element, 
the Mindlin-type theory is employed. The normal to the middle surface of the three-dimensional 
element is constrained to remain straight after deformation in order to overcome the numerical 
difficulty associated with the large stiffness ratio in the through-thickness direction. Also, this 
element neglects the strain energy associated with stresses perpendicular to the local '' yx   

surface and constrains the normal stress component to zero to simplify the constitutive 
equations. By adopting the isoparametric geometric description, the element can be used to 
represent thin and thick shells with arbitrary shapes, circumventing the complexities of classical 
shell theory and differential geometry (Ahmad et al. 1970). 

The four coordinate systems used in the degenerated shell element formulations are shown 
in Fig. 2. 

(1) Global Cartesian coordinate system (x, y, z or xi). 

(2) Natural coordinate system (,,). 

(3) Local Cartesian coordinate system ( '
i

''' xorz,y,x ). 

(4) Nodal Cartesian coordinate system ( k
3

k
2

k
1 V,V,V ). 
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Fig. 2. Coordinate systems for the degenerated shell element. 

3. Elastic foundation 

For a foundation represented by Winkler model for both compressional and frictional 
resistances, the stiffness matrix is given by Al-Azzawi (1995):  
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where n is the total number of nodes per element, and  wR  is defined as: 
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The stiffness of foundation is distributed on the nodes of the element like the distribution of 
pressure load on the bottom surface of the element ( = 1), thus at node k 
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where ''' zyx k   and k  ,k  are the subgrade reaction coefficients in the local coordinates 

k
s

''' h  ,z  and y ,x  is the thickness of the shell at node k,   η), (ξNk  is the shape function at 

node k and ζ)η,, J(ξ  is the determinant of the Jacobian matrix.  

4. Applications and discussions 

In this paper, an example have been analyzed by a computer program named SFAP (Shell 
Foundation Analysis Program), (Al-Azzawi 2000) which is developed from a program named 
PLAST (Huang 1989) by adding subroutines of foundation properties and stiffnesses in order to 
be capable of solving different types of shell foundations. 

4.1 Hyperbolic paraboloidal shell foundation 

Melerski (1986) analyzed a square hypar shell foundation by the finite difference method. The 
square hypar footing has 5m × 5m in plan with 0.5m rise and 0.1m thickness. The edge and 
ridge beams cross sectional dimensions are 0.2m × 0.3m and the footing is subjected to a central 
vertical load of 1600kN. The elastic properties of the hypar shell are (E = 24 × 106kN/m2 and    
 = 0). The footing is resting on a Winkler foundation with Kx = Ky = Kz = 12000 kN/m2/m). 
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The problem is solved by the finite element method and due to symmetry one quadrant of the 
shell is taken for the analysis. Due to symmetry, one quadrant of footing is analyzed by using 9-
node isoparametric degenerated shell elements as shown in Fig. 3. This problem was also 
solved by Hassan (2002) who used a different finite element model. In the present study, the 
results are compared with both Melerski (1986) and Hassan (2002). Figure 4 shows the 
variation of the vertical displacement along the diagonal of the footings. Figures 5 and 6 show 
the variation of axial force and the bending moment in the edge beam, respectively. Figures 7 
and 8 show the variation of axial force and bending moment in ridge beam, respectively. 

The percentage difference in results (for the vertical displacement) between the present 
study and Melerski (1986) is about 4.409 %. The percentage difference in results between the 
present study and Hassan (2002) is about 7.083 %. 

 

 

Fig. 3. Finite element mesh for hyperbolic paraboloidal footing with edge and ridge beams. 
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Fig. 4. Variation of vertical displacement along the diagonal of hypar shell. 

 

Fig. 5. Variation of axial force in ridge beam. 

 

Fig. 6. Variation of bending moment in ridge beam. 



R. J. Aziz et al: Finite element elastic analysis of hypar shells on winkler foundation 

 

8 

 

 Fig. 7. Variation of axial force in edge beam. 

 

Fig. 8. Variation of bending moment in edge beam. 

4.2 Parametric study  

In order to study the influence of variation of selected parameters on the behavior of the hypar 
shell foundations, four parameters are considered which are: shell warp, shell thickness, ridge 
beam cross sectional dimensions and edge beam cross sectional dimensions.  

4.2.1 Shell warp 

The influence of variation of shell warp ( abk f ) on its behavior is now considered. 

Different values are taken (k = 0.08, 0.16, 0.24, 0.32, 0.4m-1). Figure 9 shows the variation of 
the vertical displacement along the diagonal. From this figure, it is seen that with increasing the 
shell warp, the vertical displacement decreases near and at the center of the hypar shell while it 
increases when it approaches the edges. This behavior is due to the increase in the concentrated 
load component towards the edges of the shell with the increase in the shell warp.  

Figures 10 and 11 show the variation of the bending moment and shear force in the ridge 
beam, respectively. From these figures, it can be noticed that the bending moment and the 
shearing force decreases with the increasing in the shell warp, this is due to the decreases in the 
concentrated load normal component which causes the bending moment and the shear force in 
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the ridge beam. Figure 12 shows that the variation of the axial force in the ridge beam 
decreases. From this figure, it is seen that the axial force decreases with the increase in the shell 
warp which is due to reason that the increase in the shell warp will cause a decrease in the 
membrane shearing stress in the shell. 

4.2.2 Shell thickness 

The influence of variation of shell thickness is now considered. Five values of shell thickness 
were considered in this study (h = 0.1, 0.15, 0.2, 0.25 and 0.3m). Figure 13 shows the variation 
of the vertical displacement along the diagonal of the hypar footing. From this figure it is found 
that the vertical displacement decreases at the center of the footing (i.e. under the concentrated 
load) and increases near the edges. This behavior is the result of increasing the shell rigidity, i.e. 
the hypar shell tries to reduce the vertical displacement.  

Figures 14 and 15 show the variation in the bending moment and the shearing force in the 
ridge beams, respectively. It is seen that the bending moments and the shearing forces decreases 
with the increase in the shell thickness which is due to the decrease in the variation of the 
vertical displacement. Figure 16 shows the variation of the axial force in the ridge beam. From 
this figure it is seen that the axial force decreases with the increase in the shell thickness. 

4.2.3 Ridge beam cross sectional dimensions 

Four values of ridge beam cross sectional dimensions are taken (0.20m × 0.20m, 0.20m × 
0.25m, 0.20m × 0.30m and 0.20m × 0.35m). Figure 17 shows the variation of the vertical 
displacement along the ridge beam. It is seen that with increasing the cross sectional dimensions 
of the ridge beam, the vertical displacement at the center of the hypar shell will decrease. This 
behavior is due to the four ridge beams meeting at the center of the hypar shell and they will 
increase the hypar shell stiffness and so to decrease the vertical displacement at the same 
position. 

Figures 18, 19 and 20 show the variation of the bending moment, shear force and axial 
force in the ridge beam, respectively. The values of the bending moment, shearing force and 
axial force in the ridge beam will increases with increasing its cross sectional dimensions. This 
behavior is due to the fact that the ridge beam stiffness is increased and will attract more forces. 

4.2.4Edge beam cross sectional dimensions 

Four values of edge beam cross sectional dimensions are taken (0.20m × 0.20m, 0.20m × 
0.25m, 0.20m × 0.30m and 0.20m × 0.35m). Figure 21 shows the variation of the vertical 
displacement along the edge beam. It is seen that with increasing the cross sectional dimensions 
of the edge beam, the vertical displacement at the center of the beams will decrease while it will 
increase near edges. This behavior is due to the increase in the edge beam rigidity by increasing 
its cross sectional dimensions. 

Figures 22 and 23 show the variation of the bending moment and the shear force in the 
edge beam. It is seen that with increasing the cross sectional dimensions of the edge beam, the 
bending moment and the axial force in the edge beam will increase which is due to the increase 
in the beam stiffness. Figure 24 shows the variation of Axial force in the edge beam. It is seen 
that the shear force increases at the center of the beam with increasing its cross sectional 
dimensions which is due to the increase in its stiffness. 



R. J. Aziz et al: Finite element elastic analysis of hypar shells on winkler foundation 

 

10

 
 

Fig.  9. Effect of variation of shell warp on the vertical displacement along the diagonal. 

 

Fig. 10. Effect of variation of shell warp on the bending moment in ridge beam. 

 

Fig. 11. Effect of variation of shell warp on the shear force in ridge beam. 
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Fig. 12. Effect of variation of shell warp on the axial force in ridge beam. 

 

Fig. 13. Effect of variation of shell thickness on the vertical displacement along thediagonal. 

 

Fig. 14. Effect of variation of shell thickness on the bending moment in ridge beam. 
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Fig. 15.  Effect of variation of shell thickness on the shear force in ridge beam. 

 

Fig. 16. Effect of variation of shell thickness on the axial force in ridge beam 

 

Fig. 17. Effect of variation of ridge beam cross sectional dimensions on the vertical 
displacement along ridge beam. 
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Fig. 18. Effect of variation of ridge beam cross sectional dimensions on the bending moment in 
ridge beam. 

 

Fig. 19. Effect of variation of ridge beam cross sectional dimensions on the shear force in ridge 
beam. 

 

Fig. 20. Effect of variation of ridge beam cross sectional dimensions on the axial force in ridge 
beam. 
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Fig. 21. Effect of variation of edge beam cross sectional dimensions on the vertical 
displacement along edge beam. 

 

Fig. 22. Effect of variation of edge beam cross sectional dimensions on the bending moment in 
edge beam. 
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Fig. 23. Effect of variation of edge beam cross sectional dimensions on the shear force in edge 
beam. 

 

Fig..24. Effect of variation of edge beam cross sectional dimensions on the axial force in edge 
beam. 

5. Conclusions 

The major conclusions obtained from the study of the hypar shell foundation are: 

1. Increasing the shell warp from 0.08m-1 to 0.16m-1. 

 decreases the vertical displacement by about (31.5 %) near and at the center of the 
hypar shell while it increases by about (70.11 %) when it approaches the edges. 

 decreases the bending moments in the ridge beams by about (53.53 %). 

 decreases the shearing forces in the ridge beams by about (24.94 %). 

 decreases the axial forces in the ridge beams by about (16.33 %). 

2. Increasing shell thickness from 0.1 m to 0.15 m.  
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 decreases the vertical displacement by about (5.2 %) at the center of the hypar 
shell while it increases by about (10.78 %) when it approaches the edges. 

 decreases the bending moments in the ridge beams by about (21.22 %). 

 decreases the shearing forces in the ridge beams by about (15.97 %). 

 decreases the axial force in the ridge beams by about (20.48 %). 

3. Increasing edge beam cross sectional dimensions from 0.2m  0.2m to 0.2m  0.25m. 

 decreases the vertical displacement by about (1.25 %) at the center of the edge 
beams while it increases about (19.53 %) when it approaches the edges. 

 increasing the bending moments in the edge beams by about (41.46 %). 

 increasing the axial forces in the edge beams by about (11.43 %). 

 increasing the shearing forces by about (29.59 %) at the center of edge beams 
while it decreases by about (23.60 %) at the ends of those beams. 

4. Increasing ridge beam cross sectional dimensions from 0.2m  0.2m to 0.2m  0.25m. 

 decreases the vertical displacement by about (2.95 %) at the center of the hypar 
shell foundation. 

 increasing the bending moments in the ridge beams by about (41.42 %). 

 increasing the shearing forces in the ridge beams by about (23.53 %). 

 increasing the axial forces in the ridge beams by about (6.06 %). 

5. The most important aspect of the geometry of the hypar shell is its straight-line property, 
which renders its construction practically as simple as that of plain structure. In the in-situ 
method of construction, the foundation is poured on soil that is cut and dressed to the correct 
profile of the shell.  
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Извод 

Еластична анализа коначним елементима хyпар (хипербполично 
параболоидне) љуске на Винклеровој подлози 
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Резиме 

У овом раду, проучавана је хиперболична параболоидна љуска. Две компоненте система 
интеракције, тло и подлоге од љуске су моделиране користећи методу коначних 
елемената. У овој студији је коришћен деветоцворни изопараметарски дегенерисани 
елемент љуске са пет степена слободе у сваком чвору. Интеракција тло-структура 
измедју елемената љуске и потпорног слоја је моделована у овој студији представљањем 
слоја тла одређеним аналитичким еквивалентима као што су Винклеров модел са 
нормалним компресивним и тангецијалним фрикционалним отпорима.  

Изведене су параметарске студије како би се истражио утицај неких важних 
параметара на понашање подлоге од љуске. Ти параметри су: дебљина љуске, 
витоперење љуске и димензије гредних пресека ивица. 

Извршена су поређења резултата добијених садашњом анализом  и оних добијених 
многим другим истраживањима. Садашња анализа показује задовљавајуће резултате  
када се пореде са онима који су добијени другим студијама, са највецим процентом 
разлике од 4.4097 % у вредностима вертикалних померања. 

Клучне речи: Еластична анализа, коначни елементи, хyпар љуска, Wинклерова подлога 
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