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Abstract 

In this paper is investigated mechanical response of tissue strips under planar simple tension 
and constrained biaxial tension (strain behavior by Humprey) for a representative selection of 
two- and three-dimensional anisotropic strain energy functions, commonly used in arterial 
mechanics: Fung’s 2D and 3D models, logarithmic, polynomial and exponential Choi and Vito 
2D models, and structural exponential 3D model for artery layers. It has shown that all these 
models have limitations in capability of describing the considered states of deformation. By 
using material parameters from literature it was found that there are a considerable number of 
cases where unrealistic material response might be predicted, if the parameters are outside of 
the range for which fitting process was performed. In order to avoid instability of computed 
material response, we suggest that uniaxial loading conditions should be considered, together 
with constrained biaxial tension, in experimental investigations for establishing new material 
model or fitting constants of a selected model. 

Key words: biaxial testing; artery wall; constitutive modeling; finite deformations; strain 
energy function 

1. Introduction 

Besides laboratory and clinical investigations of mechanical behavior of cardiovascular system 
in physiologically normal and extreme conditions, and related to cardiovascular diseases which 
are overall dominant in today’s world, it is becoming increasingly important and useful to   
have also appropriate computer simulations. One of the central elements in a valuable computer 
simulation is to have the adequate mathematical description of a blood vessel material response 
under various loading conditions. This description is termed as a material law, or constitutive 
law - represented through stress-strain (or stress-stretch) relationships.  In the computational 
mechanics terminology, the constitutive laws are called material models. We here focus on 
anisotropic material models used for arterials walls. 
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Formulation of mechanical models, which adequately describe nonlinear anisotropic 
mechanical behavior of arterial walls, has been the subject of research of many investigators. 
Simple tension and equibiaxial inflation tests are generally used for isotropic biological 
membranes (Hildebrandt et al. 1969), while the anisotropic behavior of blood vessels - where 
biaxial conditions are common, is investigated by biaxial tension or inflation test of arteries. 
The models should be suitable for applications within computational methods in the 
simulations, such as the finite element (FE) method, i.e. they should be simple and reliable 
within the anticipated range of deformation conditions. Reliability means that a mechanical 
model will not lead to a response which is unrealistic even under extreme straining or loading.  

In this paper is presented an analysis of the conditions which material constants of a 
material model must satisfy in order to predict physically realistic material response when 
subjected to simple tension and constrained biaxial tension. It is of interest to have anisotropic 
models which give physically acceptable response under uniaxial loading despite the fact that 
uniaxial loading tests of soft tissue strips are not sufficient for the determination of 
multidimensional material models. To the authors’ knowledge, the issue of prediction of 
anisotropic membrane behavior under uniaxial loading, when anisotropic strain energy 
functions  are employed, has not been addressed in literature except in (Holzapfel 2006) where 
a method was proposed for determination of material models from uniaxial tests and histo-
structural data including fiber orientation of tissue. 

In Section 2 are summarized the relevant equations that describe in-plane response of an 
incompressible anisotropic hyperelastic material (Holzapfel and Ogden 2008) and the special 
cases of simple tension, equibiaxial tension and constrained biaxial tension. The last case 
assumes restrained deformation in one direction of arterial strip during its extension in the 
opposite direction (Humprey 1999). 

In section 3 are considered several two-dimensional models: exponential strain energy 
function (SEF) (Fung et al. 1979), logarithmic SEF (Takamizawa and Hayashi 1987), and 
polynomial SEF (Vaishnav et al. 1972). This presentation includes a typical reliability analysis 
of material models for arterial walls given in (Humprey 1999).  

In section 4 first is performed similar analyses for one phenomenological three-dimensional 
model - Fung’s exponential SEF (Choung and Fung 1983). Then, it is studied a structural three-
dimensional SEF for artery layers introduced in (Holzapfel et al. 2000), where the layers are 
treated as composites reinforced by two families of (collagen) fibers.  

For all considered models it is investigated prediction of physically realistic material 
response of both planar uniaxial simple tension and constrained biaxial tension. By inspection 
of the fitted material parameters from literature, it is shown that in a number of cases the 
parameters, used outside the range for which the fitting process was performed, might induce 
unrealistic material response. This result is due to the fact that unconstrained optimization 
processes were performed during the fitting material parameters of the strain energy functions. 

2. In-Plane response of an anisotropic material 

For a hyperelastic incompressible material considered here, there exists a strain energy function 
(SEF)   (defined per unit volume) in terms of the Green-Lagrange strain tensor ( ) / 2 E C I  

so that the second Piola-Kirchhoff stress tensor S  takes the form (Holzapfel and Ogden 2008, 
Holzapfel 2007)  
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where the inverse Cauchy-Green tensor 1 1 T  C F F  is defined with respect to the deformation 
gradient F ; p  is a Lagrange multiplier which represents a hydrostatic pressure, associated with 

the incompressibility constraint 

 det( ) 1C . (2) 

The components of the symmetric right Cauchy-Green tensor C  for planar biaxial 
deformations are 
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while the incompressibility constraint becomes 

 2 1
33 11 22 12( )C C C C   . (4) 

Plane stress state is defined with 13 23 33 0S S S    and a strain energy function   for 

planar biaxial deformations, only depends on 11E , 22E , 12E  and 33E , so that 

 11 22 12 33( ) ( , , , )E E E E E , (5) 

From (1) and (3) one obtains stresses for the considered planar biaxial state as  
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According to incompressibility constraint (4), only three of the four components 11E , 22E , 

12E  and 33E  are independent and one may introduce a reduced strain energy function ̂  as 

 11 22 12 11 22 12 33 11 22 12ˆ ( , , ) [ , , , ( , , )]E E E E E E E E E E  , (7) 

which leads to the stresses for the planar specialization of a three-dimensional strain energy 
function: 

 2
11 22 12 12 33

11 22 12 33

ˆ ˆ ˆ
, ,S S S C C

E E E E

      
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   

. (8) 

In a two dimensional theory, which is commonly used in arterial mechanics, in which ̂  

does not depend on 33E , corresponding two-dimensional stresses are given by 

 11 22 12
11 22 12

ˆ ˆ ˆ
, ,S S S

E E E

    
  
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. (9) 
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In the case of homogenous deformation, we have that in the principal directions of strain 
deformation tensor 12 0C  , 2

ii iC  , 1,2,3i  , where i  are the principal stretches, and 

incompressibility constraint (4) is replaced by 

 1 2 3 1    . (10) 

From relations (6) which represent the in-plane response of an anisotropic material, we 
obtain the stresses in principal directions of  strains 
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while for the stresses for the planar specialization of a three-dimensional strain energy function 
(7) and for two-dimensional theory, one simple have 
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or in terms of Cauchy stresses 
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1 2

ˆ ˆ
,
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where principal Green-Lagrange strains are defined by 2( 1) / 2i iE   , 1,2,3i  . Also 

directions 1 and 2 will be called the in-plane directions. Relations (11) – (13) are valid for 
standard planar biaxial tests in the absence of shear and these equations, unlike the isotropic 
case, are not (in general) symmetric in ( 1 , 2 ) or ( 1E , 2E ) (Holzapfel and Ogden 2008).  

(i) Simple tension 

For a simple uniaxial tension of an arterial wall strip material in the first principal direction of 
strains, one should set 22 0S   in equation (11) or (12), or 22 0   in (13) and obtain the 

uniaxial extension path 2 2 1( )E E E E  . Here, 20.5( 1)E    is the strain in the direction of 

tension, and   is the stretch in that direction. 

For a simple uniaxial tension in the orthogonal direction one should set 11 0S    in equation 

(11) or (12), or 11 0   in (13), and obtain the uniaxial extension path 1 1 2( )E E E E  . 

 (ii) Equibiaxial tension 

For the equibiaxial tension one has 1 2E E E  , where 20.5( 1)E    is the strain in each 

direction of tension, and   is the stretch in these directions. Since the considered materials are 
anisotropic, stresses in the principal directions of deformations are not equal, i.e. 11 22S S . 

(iii) Constrained biaxial tension 

A special case of biaxial tension, where the deformation in one direction during stretching is 
constrained, was introduced in (Humprey 1999) as a method to analyze if material parameters 
of strain energy function are physically realistic. The material response under these conditions 
is also referred as the strain behavior by Humprey. 
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There are two cases of this biaxial test. First, if 1 0E   ( 1 1  ) and 2 0E   ( 2 1  ), there 

is no deformation in direction 2; and second, 2 0E   ( 2 1  ) and 1 0E   ( 1 1  ), with no 

deformation in direction 1. 

3. Two-Dimensional models 

Here will be analyzed several 2D models where the plane stress (membrane) state is assumed, 
with the strain energy function (SEF) expressed in terms of the principal in-plane Green-
Lagrange strains. 

3.1. Strain-Energy Function of Fung’s type 

Two-dimensional exponential form of SEF introduced in (Fung et al. 1972) is the most 
extensively used function in arterial mechanics. This function is given by 

 2 2
1 1 2 2 4 1 2

ˆ ˆˆ exp( ) 1 , 2
2

c
Q Q a E a E a E E         (14) 

where 0c   is a stress-like material parameter; 1 2 4, ,a a a  are non-dimensional parameters; 1E  

and 2E  are components of the Green-Lagrange strain tensor in the circumferential ( ) and 

axial directions ( z ), respectively; we use the notation (1,2,3) ( , , )z r . The Piola-Kirchhoff 

stresses follow from (12): 

 1 1 1 4 2 2 4 1 2 2
ˆ ˆ( ) exp( ), ( ) exp( )S c a E a E Q S c a E a E Q     (15) 

In the case of constrained biaxial stretching, it was shown in (Humprey 1999) that the 
constants 1a , 2a  and 4a  must be positive in order to have tensional stresses in the material. On 

the other hand, it was shown in (Holzapfel et al. 2000) that the potential (14) is locally convex if 
and only if 1 2 4, , , 0c a a a   and  

 2
1 2 4a a a . (16) 

For the simple uniaxial tension, the lateral stress is equal to zero and from (15) follows that 
the lateral strains are: 

 4 4
2 1

2 1

,
a a

E E E E
a a

     (17) 

under tension in the directions 1 (circumferential) and 2 (axial), respectively. Here, 
20.5( 1)E    is the strain in the direction of tension, and   is the stretch in that direction. It 

can be seen that the in-plane lateral strain is negative for positive material constants 1a , 2a  and 

4a , which are the same conditions for the constants as in the case of constrained biaxial tension 

noted above.  

For several ratios 4/aa a , 1,2a  , Fig. 1 shows the dependence of lateral strain with 

respect to the strain in axial direction E  according to (17). For the high ratios 4/aa a  the two-

dimensional Fung potential (14) predicts very small, i.e. unrealistic strain in the lateral 
direction. For example, when 4/ 25aa a  , for deformation of 75 % in loading direction the 

potential predicts contraction of only 3.5 % in lateral direction (in isotropic case the 



Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 2, 2010 

 

59 

corresponding contraction is almost seven times larger, about 22.5 %), while for 4/aa a  about 

100 - the lateral contraction is below 1 %.  

 

Fig. 1. Dependence of the lateral Green-Lagrange strain Ea, a = 1,2 on the strain in the loading 
direction E during uniaxial tension for Fung’s two-dimensional exponential SEF (14). Isotropic 

path is represented by dashed line. 

The tensional Piola-Kirchhoff stresses are  

 
2 2

24 4

1 2 1 2

1 exp 1 , 1,2uni
a a a

a a
S ca E a E a

a a a a

    
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 (no sum on a ) (18) 

for tension in the directions 1 and 2. The condition 0uni
aS   leads to the convexity condition 

(16), i.e. if the values of material constants do not satisfy this condition there is no tensional 
stresses under simple uniaxial tension.  

Material constants in (Fung et al. 1972) were determined by using the membrane 
assumption for inflation tests of artery specimens and 19 sets of material constants were 
obtained, which all satisfied the convexity condition (16). But, in 5 cases, for experiments 
denoted as 71:1, 71:2, 81:1, 81:2 and 81:3  one has 1 4/ 25a a   so that the potential (14) 

predicts an unrealistic contraction of specimen in direction 2. 

In (Choung and Fung 1983) were evaluated 18 sets of material constants assuming 3D 
stress state for the same inflation experiments. Here, the SEF is not convex for 7 among these 
18 cases (experiments denoted as 72, 72:1, 72:2, 81:2, 81:3, 82:2, 82:3) which means that 
Fung’s two-dimensional potential (14) predicts unrealistic stresses during uniaxial extension. In 
Table 1 are given values of ratio 4/aa a , 1,2a   for the remaining 11 cases. Predicted 

contraction is not realistic ( 1 4/ 25a a  ) for 5 cases, for experiments denoted as 71, 71:1, 71:2, 

78:1 and 81. 

In (Takamizawa and Hayashi 1987) 16 sets of material constants were determined for 
Fung’s two-dimensional SEF (14) and material constant 4a  is negative in 5 cases, which means 

that the lateral strains (17) are increasing during uniaxial extension and that stresses are not 
tensional in the case of constrained biaxial tension (strain behavior by Humprey). 
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Exp. 71 71:1 71:2 78 78:1 78:2 78:3 81 81:1 82 82:1 

a1/a4 37.6 105  95.3   9.1 68.1   10.7   13.1   25.2   5.9    9.1    4.4    

a2/a4 53.3 107 48.6 0.9 32.0 1.0 1.5 32.4 0.7 4.4 0.7 

Table 1. Values of  ratios a1/a4 and a2/a4 for 11 material sets among 18 from (Choung and Fung 
1983) for which Fung’s two-dimensional strain energy function (14) is convex. 

3.2. Strain-Energy Function Proposed by Takamizawa and Hayashi  

A two-dimensional SEF proposed in (Takamizawa and Hayashi 1987)  has a logarithmic form 

 2 2
1 1 2 2 4 1 2

ˆ ˆˆ ln 1 , 2C Q Q a E a E a E E         , (19) 

where 0C   is a stress-like material parameter; 1 2 4, ,a a a  are non-dimensional parameters, 

with the notation as for the above Fung’s model. The in-plane stresses for this model follow 
from (12): 

 1 1 1 4 2 2 4 1 2 2

1 1
2 ( ) , 2 ( ) .

ˆ ˆ1 1
S C a E a E S C a E a E

Q Q
   

 
 (20) 

This model was analyzed in (Humprey 1999) assuming constrained biaxial tension, with a 
conclusion that is not possible to find general conditions for material constants, as for Fung’s 

model, which provides positive stresses. However, the potential (19) is defined for ˆ1 0Q   

and from this condition follows that all material constants must be positive, just the same 
condition as for Fung’s model. 

In the case of uniaxial loading, from the condition of zero lateral stress and expressions 
(20) follow the relations (17) for extensional paths. The uniaxial second Piola-Kirchhoff stress 
is 

 
2

4
2

21 2 4

1 2

1
2 1 , 1,2

1 1
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a a

a

a
S Ca E a

a a a
a E

a a

 
         

 

 (no sum on a ). (21) 

In order to have positive uniaxial stress, the convexity condition (16) must be satisfied. 

Note that the strain energy function tends to infinity, as well as the stresses, when ˆ 1Q   

(Holzapfel et al. 2000) which represents an additional restriction with respect to Fung’s model. 
Hence the model is only applicable for a limited range of states of deformation. Moreover, this 
strain energy function is convex under the same conditions (14). 

Material constants for this model are given in (Takamizawa and Hayashi 1987), obtained 
from experiments on a dog carotid artery during inflation experiments, considering the artery as 
a thick-walled cylinder; and using two hypotheses: 1) the uniform strain hypothesis, and 2) the 
zero stress state in the reference configuration. By inspecting the constants it can be found that 

4 0a   for one case when the zero initial stress hypothesis is used, and for 4 cases when the 

uniform strain hypothesis is used.  
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3.3. Strain-Energy Function Proposed by Choi and Vito 

Choi and Vito (Choi and Vito 1990) proposed a form of the exponential SEF (for canine 
pericardium) as 

  2 2
0 1 1 2 2 3 1 2ˆ exp(0.5 ) exp(0.5 ) exp( ) 3b b E b E b E E     , (22) 

where the constant 0 0b   has the dimension of stress, while the other constants are 

dimensionless; the axes and notation for the Green-Lagrange strains are as for the above 
models. 

The main advantage of this model with respect to Fung’s model is that it is suitable for 
description of material behavior with very pronounced hardening characteristic. It has been 
applied to modeling of hyperelastic orthotropic membranes, as in either the case of abdominal 
aorta aneurism (Vande Geest et al. 2006), or natural and chemically treated pericardium (Choi 
and Vito 1990, Sacks and Choung 1998). We further demonstrate that this model can lead to an 
increase of lateral in-plane dimension under uniaxial loading. 

The principal Piola-Kirchhoff in-plane stresses are now: 

 
2

1 0 1 1 1 1 3 2 3 1 2

2
2 0 3 1 3 1 2 2 2 2 2

[ exp(0.5 ) exp( )],

[ exp( ) exp(0.5 )].

S b b E b E b E b E E

S b b E b E E b E b E

 

 
 (23) 

It was shown (Vande Geest et al. 2006) that all material constants must be positive in order 
to have positive stresses under constrained biaxial tension (strain behavior by Humprey). 

In the case of uniaxial loading, the lateral in-plane Green-Lagrange strain cannot be 
expressed in an analytical form and it must be numerically determined from the condition either 

2 0S   or 1 0S   for a given strain E  in the loading direction. If we denote the lateral in-plane 

strain by aE  ( 2a   for loading in direction 1, and 1a   for loading in direction 2), then the 

zero lateral stress is expressed by the equation: 

 2
3 3exp(0.5 ) exp( ) 0a a a a ab E b E b E b EE  ,   2,1a   (no sum on a ). (24) 

Note that from this equation follows that the lateral strain is always less than zero, i.e. 
0aE  , since the coefficients 1b , 2b  and 3b  and the strain E  are positive.  

The extreme value of aE  corresponds to the zero derivative, / 0adE dE  , and from (24) it 

occurs when 31/( )aE b E  . Substituting this value into (24) and introducing a variable 
20.5 a az b E , we obtain the equation 

 ln(2 ) 1 0z z    (25) 

which yields the solution 0.157185z  , and then 

 2
1

3

1

0.31437
cr b

E
b

 ,     1
2

3

1

0.31437
cr b

E
b

  (26) 

where 1
crE  and 2

crE are the critical values of strain in the loading directions. For the values of 

uniaxial strain crE E  the lateral strain decreases, reaches minimum for crE E , and then 

increases. This type of extensional paths during simple tension is physically unrealistic because 
strain in lateral direction should decrease monotonically. 
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Dog # #01 #04 #06 #08 #09 

E1
cr 0.51 0.15 0.23 0.44 0.40 

E2
cr 0.51 0.08 0.12 0.40 0.30 

Table 2. Critical strains, calculated from (26), for uniaxial loading of dog canine pericardium. 
Model is defined by the two-dimensional exponential SEF (22) and constants obtained by 

fitting biaxial experiments (Choi and Vito 1990) 

We further analyze in detail whether the sets of material constants, obtained by fitting 
results of biaxial experiments, give physically realistic response of material when subjected to 
uniaxial loading. In Table 2 are given critical uniaxial strains 1

crE  and 2
crE  calculated from 

material constants obtained by 5 experiments on dog canine pericardium (Choi HS and Vito RP, 
1990). It can be seen that 1

crE  and 2
crE  are in the range of the strains reached in standard biaxial 

tests (strains in experiments were up to 0.5). Therefore, using these constants, the model 
specified by the SEF (22) will give the lateral strain which is increasing when the uniaxial strain 
is above the critical values (26). This lateral strain increase cannot physically be justified. 

 

Fig. 2. Lateral stretch in terms of the stretch in the loading direction. Exponential SEF (22) 
proposed in (Choi and Vito 1990) and material constants for dog  #06. The doted curve 

corresponds to the isotropic case. 

Figure 2 shows the dependence of lateral strain (either 2E  or 1E ) in terms of the uniaxial 

strain E , for loading in directions 1 and 2, and for the specimen  #06 of Table 2. It can be seen 
that when loading is in direction 1, we have that the lateral strain 2E  decreases, reaches 

minimum at 1 0.23crE E  , and then increases. On the other hand, for loading in the direction 

2, the lateral stretch 1E  decreases and reaches the minimum at 2 0.12crE E  . For comparison, 
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the isotropic curve is also shown in the figure. The sets of material constants of other 
experiments lead to the results similar to these for the specimen #06. 

We also give comments on material constants of the SEF (22) given in (Vande Geest et al. 
2006), which are obtained by biaxial tests of squared specimen of Human Abdominal Aortic 
Aneurism (AAA). The 26 sets of material constants were inspected and we found that the 
critical strain for uniaxial loading lies in the range of the strains achieved in biaxial experiments 
for all sets of material constants, except for the specimen number 3. 

3.4. Polynomial Strain-Energy Function Proposed by Vaishnav  et al. 

Vaishnav et al. (Vaishnav et al. 1972) proposed a 2D the strain energy function in a polynomial 
form for modeling the canine thoracic aorta: 

 2 2 3 2 2 3
1 1 2 1 2 3 2 4 1 5 1 2 6 1 2 7 2ˆ c E c E E c E c E c E E c E E c E        , (27) 

where the material constants ic , 1,2,...7i   have the dimension of stress. The Piola-Kirchhoff 

stresses follow from (12) 

 
2 2

1 1 1 2 2 4 1 5 1 2 6 2

2 2
2 2 1 3 2 5 1 6 1 2 7 2

2 3 2 ,

2 2 3 .

S c E c E c E c E E c E

S c E c E c E c E E c E

    

    
 (28) 

Under constrained biaxial stretching, the stresses are: 

 2 2
1 1 1 4 1 2 2 1 5 12 3 , ,S c E c E S c E c E     (29) 

 2 2
1 2 2 6 2 2 3 2 7 2, 2 3 .S c E c E S c E c E     (30) 

By analysis of the above relations it can be seen that all material constants must be positive 
for this case of biaxial loading in order to have tensional stresses. However, none of the sets of 
material constants given in (Vaishnav et al. 1972) and (Fung et al. 1979) satisfy these 
conditions, although the model (27) (for the fitted constants) show the material behavior 
prediction which agrees with the inflation experiments. 

We illustrate our findings in Fig. 3. The constants used here are from Experiment 71 in 
(Fung et al. 1979), and are given in (kPa): 1 24.385c   , 2 3.589c   , 3 1.982c   , 

4 46.334c  , 5 32.321c  , 6 3.743c  , 7 3.266c  . It can be seen that the stresses are negative 

at the start of loading, Fig. 3a; and that the stresses are negative and small when straining is in 
the direction 2 (axial direction), Fig. 3b. 

It was emphasized in (Holzapfel et al. 2000) that the polynomial SEF (27) is not convex 
due to its cubic character. This character has a direct implication to adequate modeling of 
uniaxial loading. Since the conditions for uniaxial loading cannot be obtained in analytical 
form, we numerically investigated these conditions and found that all 27 sets of material 
constants given in (Fung et al. 1979), and 3 sets in (Vaishnav et al. 1972) do not provide 
adequate modeling of uniaxial conditions (in the sense of the above discussion). 
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Fig. 3. Piola-Kirchhoff stresses in constrained biaxial loading, Experiment 71 in (Fung et al.  
1979), polynomial SEF proposed in (Vaishnav et al. 1972). a) Loading in direction 1 

(circumferential) and restrained deformation in axial direction; b) Loading in direction 2 and 
restrained deformation in direction 1. (Strain behavior by Humprey). 

4. Three-Dimensional models 

Here, we consider 3D models with the strain energy function expressed in terms of the three 
principal Green-Lagrange strains, or in terms of the invariants specified below. Among these 
models, we analyze two-phenomenological Fung’s exponential model (Choung and Fung  
1983), and the structural exponential model for artery layers (Holzapfel et al. 2000). As in 
Section 3, we investigated if the considered three-dimensional models predict physically 
realistic material response under the simple tension and constrained biaxial tension. 

4.1. Strain-Energy Function of Fung’s type   

A generalization of the model (14) to a three-dimensional regime (Choung and Fung 1983) 
assumes that the principal directions of the stress tensor coincide with circumferential, axial and 
radial directions of the artery (Holzapfel et al. 2000), labeled as the axes 1, 2 and 3, 
respectively. The strain energy function is given by 

 
 

2 2 2
1 1 2 2 3 3 4 1 2 5 3 2 6 3 1

exp( ) 1
2

2 2 2

c
Q

Q b E b E b E b E E b E E b E E

  

     
 (31) 

where c  is stress-like material parameter and ib , 1,...6i   are non-dimensional material 

parameters. 

The non-zero principal Piola-Kirchhoff stress components for a biaxial membrane stress 
state follow from (11): 
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2 2
1 1 1 4 2 6 3 3 1 6 1 5 2 3 3

2 2
2 4 1 2 2 5 3 3 2 6 1 5 2 3 3

( ) ( ) exp( ),

( ) ( ) exp( ),

S c b E b E b E b E b E b E Q

S c b E b E b E b E b E b E Q

 

 





       
       

 (32) 

where the stretch 1
3 1 2( )     follow from the incompressibility condition (10).  

In the case of uniaxial loading, the condition that the in-plane lateral stress is equal to zero 
can be expressed by the equation 

 4 3
4 3 1 0 0p y p y p y p     (33) 

where 2
ay   is the squared stretch in the lateral direction. The coefficient 0p  is 

 4
0 3p b    (34) 

while kp , 1,2,3k   for uniaxial loading in direction 1 are  

 2 2
1 3 5 6 6 3 4 2 5 4 2( ) , ( 1) , ,p b b b b p b b b p b           (35) 

and for uniaxial loading in direction 2, the coefficients are 

 2 2
1 3 5 6 5 3 4 1 6 4 1( ) , ( 1) , .p b b b b p b b b p b           (36) 

It is in general possible that, for a certain set of material constants, there can be a case when 
the solutions of equation (33) are not real, or that the real solution is out of the acceptable range 
of stretch (0,1), or that the lateral stretch is increasing during uniaxial tension.  

We do not show here a graphical interpretation of biaxial or uniaxial loading, but 
summarize the results of the analysis of constrained biaxial and simple uniaxial tests. We have 
found that among 18 material sets, in 7 cases the stresses are negative under uniaxial loading 
(protocols: 72, 72:1, 72:2, 78:1, 82, 82:1, 82:3) and for 1 case in the constrained biaxial loading 
(protocol 82:2). Also stresses are close to zero in 3 cases for constrained biaxial loading 
(protocols 71:2, 72:1, 82:1). 

4.2. Structural Strain Energy Function for the Artery Layers (Holzapfel et al, 2000) 

The SEF introduced in (Holzapfel et al. 2000) describes a constitutive model which 
incorporates some histological structure of arterial walls (i.e. includes fiber directions) and 
consider each layer of the artery as a fiber-reinforced composite. 

The basic idea of this model consists in the additive split of   into a part iso , associated 

with isotropic deformations, and a part aniso  associated with anisotropic deformations. Hence, 

the potential is written as 

 iso aniso    . (37) 

The neo-Hookean model was used to determine the isotropic response of non-collagenous 
matrix material, so that iso  is given as 

 1 1( ) ( 3)
2iso

c
I I    (38) 

where 0c   is a stress-like material parameter, 1 trI  C  is the first invariant of the symmetric 

right Cauchy-Green deformation tensor C . For the description of strain energy stored in 
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collagen fibers which represents the part aniso , the following expression was used in 

(Holzapfel et al. 2000): 

 21
4 6 2

4,62

( , ) {exp[ ( 1) ] 1}
2aniso a

k
I I k I

k 




    (39) 

where 4I  and 6I  are the pseudo-invariants (Holzapfel 2007); 1 0k   is a stress-like material 

parameter, and 2 0k   is a dimensionless material parameter. The anisotropic term aniso  

contributes only when the fibers are extended, i.e. when either 4 1I   or 6 1I  , or both. The 

above form of the SEF is used for two layers of an artery, i.e. for media and adventitia, with 
different sets of material constants. 

According to the authors, “an appropriate choice of 1k  and 2k  enables the histologically-

based assumption that the collagen fibers do not influence the mechanical response of the artery 
in the low pressure domain to be modeled”. On the other hand, we will further show that under 
physiological domain of strains, when stretches 1 2, 1   , the fibers are always stretched; while 

in the case of simple planar uniaxial tension, the value of stretch when the collagen fibers are 
activated, depends only on the angle   of the fibers with respect to circumferential direction of 

the artery.  

For a general biaxial deformation on a thin planar specimen excised from the arterial wall, 
which yields a plane state of stress, we have 

 2 2 2 2
4 6 1 2cos sinI I       . (40) 

Since the model is symmetric with respect to interchange of 4I  and 6I  and principal axes 

of stresses and deformations coincide (Ogden 2003), the principal Piola-Kirchhoff stresses for 
the model (37) follows from (13), by using 2

a a aS   : 

  
4 2 2 2

1 1 2 1 4 2 4

2 4 2 2
2 1 2 1 4 2 4

(1 ) 4 cos ( 1)exp[ ( 1) ]

(1 ) 4 sin ( 1)exp[ ( 1) ]

S c k I k I

S c k I k I

  

  

 

 

    

    
 (41) 

where the anisotropic terms only contribute when the fibers are extended, i.e. when 4 6 1I I  . 

General relations for the stresses in case of hyperelastic matrix reinforced by two families of 
fibers are given in (Ogden 2003).  

Analyzing the expressions for stresses (40) in the case of simple planar  uniaxial tension, 
we can reach the following conclusions. When the fibers are stretched, the anisotropic part of 
stress is positive, and in order to have zero lateral stress, the isotropic part of the lateral stress 
must be negative. This is possible only if the following condition between lateral stretch a  and 

the stretch in the loading direction   is fulfilled: 

 1/ 2
a   (42) 

where 2a   and 1a   for loading in directions 1 and 2, respectively. This result agrees well 
with experimental findings in (Holzapfel 2006). 

Next it is determined the stretch at which the collagen fibers start to be extended under 
uniaxial loading.  According to the above discussion, in order to have positive anisotropic part 
of stress, it must be 4 6 1I I  , hence the start of fiber extension corresponds to 4 6 1I I  . 

During isotropic part of loading we have that the lateral stretch is 1/ 2 . Hence, substituting 
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first 1   and 1/ 2
2   into equation (40) we obtain the stretch 1

aniso , at the point at which 

4 6 1I I  , as follows: 

  2
1

1
1 4 tan 1

2
aniso    . (43) 

For the uniaxial extension in direction 2, it will be 2  , 1/ 2
1  . From that and 

relation (40) we obtain the stretch 2
aniso  at the point at which is 4 6 1I I  , 

  2
2

1
1 4 / tan 1

2
aniso    . (44) 

Therefore, the values of stretches in direction of uniaxial loading at which a fiber begins to 
extend, 1

aniso  and 2
aniso , depend on the angle   only, but not on the material constants. 

Graphical representation of functions 1 ( )aniso   and 2 ( )aniso   is shown in Fig. 4.  

 

Fig. 4. Stretch at which the extension of fibers starts during simple planar uniaxial tension, in 
terms of the fiber angle . The structural SEF is introduced in (Holzapfel et al. 2000) 

It can be seen that at uniaxial loading in the direction 1 and for 0(0, 54.7 )   stretch of 

fibers increases from the start of loading because 1 ( ) 1aniso   , while for 054.7   the 

isotropic response occurs first, and the anisotropic response starts at stretch determined by 
equation (43). On the other hand, at uniaxial loading in direction 2, stretch of fibers starts from 
the beginning of loading  for 0 0(35.3 , 90 )  , while for 035.3   the deformation is first 

isotropic and changes to anisotropic at stretch determined by the expression (44). 
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Experimental extensional paths for adventitial layer of human aorta, consisting of nearly 
isotropic, transitional and anisotropic parts, are presented in (Holzapfel 2006). It has been 
shown here that the structural model for artery layers (Holzapfel et al. 2000) can predict the 
observed extensional paths for simple tension of tissue strip for limited range of fiber angles, 
i.e. for loading in direction 1 for 054.7   and for 035.3   when simple tension is in 

direction 2. 

Further, we note that for any biaxial straining when 1 2, 1   , i.e. in physiological strain 

domain which covers the cyclic inflation and axial extension of an artery (Holzapfel 2006), we 
have from (40) that 4 6 1I I  , with no dependence on the fiber angle  ; hence, the fibers are 

under stretch from the start of straining. This and the above uniaxial case represent the 
exceptions from the basic hypothesis in (Holzapfel et al. 2000) that by selecting the material 
constants 1k  and 2k  it is possible to interpret the (histologically-based) assumption that 

collagen fibers do not affect the mechanical response of tissue in the low pressure domain. 

In the case of constrained biaxial loading when 2 1   and 1  , from (40) we obtain 
2 2

4 1 ( 1)cosI     , and the stresses (41) are now  

 
4 4 2 4 2 2

1 1 2

2 2 2 4 2 2
2 1 2

(1 ) 4 cos ( 1)exp[ cos ( 1) ],

(1 ) sin (2 ) ( 1)exp[ cos ( 1) ],

S c k k

S c k k

    

    





    

    
 (45) 

while for constrained biaxial loading when 1 1   and 2   we have 2 2
4 1 ( 1)sinI     , 

and the stresses (41) become 

 
2 2 2 4 2 2

1 1 2

4 4 2 4 2 2
2 1 2

(1 ) sin (2 ) ( 1)exp[ sin ( 1) ],

(1 ) 4 sin ( 1)exp[ sin ( 1) ].

S c k k

S c k k

    

    





    

    
 (46) 

From relations (45) and (46) we see that isotropic parts of stress are not  bigger than the 
material constant c , while the anisotropic part of stress is a function of 4cos   in the first case 

and of 4sin   in the second case of loading. According to this, the anisotropic parts of stresses 

for constrained biaxial tension are of the same order of magnitude only if fiber angle is close to 
45 [o]. For example, for 2   and 2 1k   (common value in (Holzapfel et al. 2000) and 

(Holzapfel et al. 2004) is 2 1k  ), and for 60   [o]  or 30   [o],  anisotropic part of stresses 

is about 270 times larger in the case 1 than in case 2 of constrained biaxial loading. When 
75   [o] or 15   [o], this ratio is about 34000. This leads to a conclusion that structural 

model (37) – (39) might predict unrealistic ratio of anisotropy for constrained biaxial loading. 

Next, consider data given in (Holzapfel et al. 2004) where 18 sets of material constants for 
media and adventitia are determined using Fung’s 18 sets for the model (31) (Choung and Fung  
1983). Five of these 18 sets for the model (37) – (39), experiments denoted as: 72, 78:1, 78:2, 
82 and 82:2, for both media and adventitia have the constant 0c  , hence the uniaxial loading 
conditions cannot be modeled (see the above discussion about the finding that there must be a 
negative isotropic part of stress for proper modeling of uniaxial loading). 

If one perform an analysis of simple planar uniaxial tests for the rest of material sets, he 
can find that activation of the fibers starts from the beginning of uniaxial loading for both 
principal directions of adventitia in all cases, except for experiment denoted as 71; and for all 
sets for the media when the loading is in direction 1 and in two cases (experiment 71:1 and 
81:1) when the loading is in direction 2. 
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In Fig. 5 is shown the dependence of lateral stretch on the stretch in the loading direction, 
for simple uniaxial tension and material data for adventitia of a rabbit carotid artery (Holzapfel  
et al. 2004). Figure 5a corresponds to the experiment denoted as 71 ( 0.7662c   [kPa], 

1 0.8255k   [kPa], 2 1.0301k   and 65   [o]), while Fig. 5b is for experiment 71:2 

( 0.9190c   [kPa], 1 1.2061k   [kPa], 2 1.2368k   and 49  [o]). 

 

Fig. 5. Dependence of lateral stretches on the stretch in the loading direction (simple uniaxial 
tension), according to structural SEF introduced in (Holzapfel et al. 2000). Data for adventitia 

of a rabbit carotid artery (Holzapfel et al. 2004); a) Material parameters for experiment denoted 
as 71 ( = 65o); b) Material parameters for experiment 71:2 ( = 49o). The dashed lines 

represent the isotropic relationships. 

The calculated strain paths are close to the experimental ones in (Holzapfel 2006) (not 
shown here) only when the loading is in direction 1 for experiment denoted as 71, where the 
isotropic response occurs first until the stretch is 1 1 1.7aniso   . As we discussed above, the 

point at which straining of fibers starts during simple tension for structural model (37) – (39) is 
determined only by the value of fiber angle  . On the other hand, the fibers are always 

stretched in the physiological strain domain for biaxial state of deformation, when 1 2, 1   .  

Finally, in Fig. 6 are shown dependences of the stresses during simple uniaxial tension, 
equibiaxial and constrained biaxial tension, for material parameters of adventitia of rabbit, for 
experiment denoted as 71 in (Holzapfel et al. 2004). As can be seen, the magnitude of stress is 
very low during simple tension (in direction 1 below 2 [kPa] even at stretch 1.8  ) and for 
constrained biaxial tension when 2 0E  , i.e. 2 1   (case c in Fig. 6).  
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Fig. 6. Dependence of stresses according to structural SEF introduced in (Holzapfel et al. 2000). 
Material data for adventitia of a rabbit carotid artery for experiment denoted as 71 (Holzapfel et 
al. 2004); a) Simple uniaxial tension; b) Equibiaxial tension c) Constrained biaxial tension with 

2 = 1; d) Constrained biaxial tension with 1 = 1. 

For the constrained biaxial loading, the isotropic part of stress (as mentioned above) is 
always lower then the value of material constant c . In this case, for experiment 71 in Holzapfel 

et al. (2004), value of c  is 0.7662c   [kPa], which means that isotropic part of stress is 
practically negligible. The fiber angle was found during fitting process in (Holzapfel et al. 

2004) to be 65   [o]. Then, in the case of constrained biaxial tension in direction 1, when 

2 1  , the anisotropic parts of stresses in (45) are about 100 times smaller than the stresses 
(46) for the loading in direction 2. Obviously, this stress ratio is unrealistic.  

By detailed inspection of the remaining 13 sets of material constant for media and 
adventitia given in (Holzapfel et al. 2004),  we have found that there is no unrealistic prediction 
of stresses during simple tension and constrained biaxial tension only  when the fitted value of 
fiber angle is close to 45 [o]. Note that in 6 cases for adventitia it was found 45   [o], which 

means that the tissue has the isotropic mechanical response. 



Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 2, 2010 

 

71 

5. Summary 

A representative selection of two and three-dimensional anisotropic strain energy functions 
(SEFs) in common use in arterial mechanics has been investigated in this paper with respect to 
the mechanical response of tissue strips under planar uniaxial tension and constrained biaxial 
tension (strain behavior by Humprey). The goal of this simple study was to provide information 
which might be useful in a process of fitting material parameters for considered models, and in 
the evaluation of some alternative forms of strain energy function for arterial wall. 

The two-dimensional SEFs were analyzed for the following models: exponential model 
(Fung et al. 1972), logarithmic model (Takamizawa and Hayashi 1987), exponential model 
(Choi and Vito 1990), and polynomial model (Vaishnav et al. 1972).  

Convexity conditions for two-dimensional exponential Fung’s and logarithmic SEF were 
derived in (Holzapfel et al. 2000). Also, in (Humprey 1999) it was emphasized that all material 
constants must be positive in order to have tensional stresses under constrained biaxial tension. 
As we showed here, the convexity conditions for these models are equivalent to the conditions 
that a tensional stress develops and the lateral strain is decreasing under simple tension. Also, 
these SEFs predict unrealistic small or even negligible contraction in lateral direction during 
simple tension when the ratio of material constants 4/aa a  1,2a   is large. For example, when 

4/ 25aa a   for a strain of 75 % in loading direction these two SEFs predict a contraction of 

only 3.5 % in lateral direction; while for 4/aa a  about 100, the lateral contraction is below 1 %. 

By inspection of material constants given in (Fung et al. 1979, Choung and Fung 1983, 
Takamizawa and Hayashi 1987), we found that in a significant number of cases the non-convex 
sets of material parameters were fitted because an unconstrained optimization was performed 
during the fitting processes. Hence, these two models cannot describe planar simple tension 
and/or constrained biaxial tension. Among the rest of material sets, there are cases when the 
prediction of lateral contraction under simple tension is unrealistic. 

For the exponential model introduced in (Choi and Vito 1990), it is not possible to find an 
explicit expression for the extensional paths during simple tension, but this model always 
predicts unrealistic material response through the increase of lateral dimension. For the fitted 
material parameters from (Choi and Vito 1990), and (Vande Geest et al. 2006), we found that 
for all material sets the critical strains at which decreasing of lateral dimension starts is in the 
range of strains recorded in biaxial experiments.  

Because of its cubic nature, the polynomial SEF with seven material parameters (Vaishnav  
et al. 1972) is not convex for any set of values of the material constants (Holzapfel et al. 2000). 
This character has a direct implication to adequate modeling of uniaxial loading. Since it is not 
possible to find the conditions for uniaxial loading in an analytical form we numerically 
investigated these conditions and found that all 27 sets of material constants in (Fung et al. 
1979), and 3 sets in (Vaishnav et al. 1972) do not provide modeling uniaxial conditions. Also 
we found that all materials constants should to be positive in order to have tensional stresses 
during constrained biaxial tension according to (Humprey 1999). 

The three-dimensional forms of the SEF considered here include: phenomenological 
exponential model (Choung and Fung 1983), and the so-called structural exponential model for 
the artery layers (Holzapfel et al. 2000). 

For Fung’s three-dimensional model it was recommended in (Humprey 1999) every set of 
material parameters should numerically be tested with respect to stresses under the constrained 
biaxial tension. We showed here that these tests should include simple tension since, in general, 
there can be cases when extensional paths cannot be modeled, or the solution is out of the 
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acceptable range of stretches (0,1). Also, the lateral stretch can be non-monotonic or increasing 
during simple tension, or the predicted stresses are not tensional. We used material sets of 
(Choung and Fung 1983) to illustrate these unphysical predictions. 

For the structural exponential model (Holzapfel et al. 2000), it was investigated the 
conditions when materials response turn from isotropic to anisotropic under uniaxial and biaxial 
tension. It was showed here that extension of tissue fibers in the isotropic hyperelastic matrix 
always occurs under biaxial loading when 1 2, 1   . However, the point of the fibers activation 

under uniaxial tension depends on the angle of fibers only, rather than on material constants 
(Holzapfel et al. 2000). We showed that the structural model for artery layers can predict the 
extensional path in agreement with experiments in (Holzapfel 2006) for limited range of fiber 
angles only, i.e. for loading in direction 1 for 054.7   and for 035.3   when simple tension 

is in direction 2. It is also showed that in the case of constrained biaxial tension, the anisotropic 
part of stress is the function of 4cos   in case 1, and  4sin   when loading is in direction 2. 

Hence, when fiber angle is not close to 45o the model might predicts unrealistic magnitude of 
stresses for constrained biaxial loading. For example, for experiment 71 in (Holzapfel et al. 
2004) 65   [o], the anisotropic parts of stresses in the case of constrained biaxial tension in 

direction 1 are about 100 times smaller than the stresses for the loading in direction 2, which 
might be unrealistic. By detailed inspection of material parameters from (Holzapfel et al. 2004), 
where 18 sets of material constants for media and adventitia were determined, we found that 
five of these sets for both media and adventitia have the constant 0c  , hence the uniaxial 
loading conditions cannot be modeled .  

The presented analysis suggests that in experimental investigations, in order to establish a 
new computational model or to fit the constants for a selected model, uniaxial loading 
conditions should be considered together with constrained biaxial tension, in order to avoid 
inadequate model prediction of material response. 
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Резиме 

У овом раду је истраживан механички одзив исечака ткива при раванском једноосном и 
ограниченом биаксијалном затезању (деформационо понашање према Хамфрију 
(Humprey)) за репрезентативни избор дво- и тро-димензионалне функције деформационе 
енергије, уобичајено коришћене у механици артерија: Фангови (Fung) 2Д и 3Д модели, 
логаритамски, полиномиални и експоненцијални Чои и Вито (Choi и Vito) 2Д модели, и 
структурални експоненцијални 3Д модели за слојеве артерије. Показано је да сви ови 
модели имају ограничења у могућности описивања посматраних стања деформације. 
Коришћењем параметара из литературе утврђено је да постоји значајан број случајева где 
се може предвидети нереални одзив материјала, ако су параметри ван опсега у коме је 
изведен процес фитовања. Да би се избегла нестабилност израчунатог одзива материјала, 
сугерирамо да треба да се размотре једноосни услови оптерећења, заједно са 
ограниченим биаксијалним затезањем, у експерименталним истраживањима при увођењу 
новог материјалног модела, или при фитовању константи изабраног модела. 

Кључне речи: биаксијално тестирање, артеријски зид, конститутивно моделирање, 
коначне деформације, функција енергије деформације 
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