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Abstract 

This research deals with the nonlinear material and geometric behaviors of reinforced concrete 
deep beams resting on linear or nonlinear Winkler foundation. The finite elements through 
ANSYS (Release-11, 2007) computer software are used. The reinforced concrete deep beam is 
modeled using (SOLID 65) 8 node brick element and the soil is modeled using linear spring 
(COMBIN 14) element or nonlinear spring (COMBIN39) element. 

The results obtained from the present study are compared with available analytical or 
experimental results. Good agreement is obtained with available results which also indicate the 
efficiency of the finite element method used to model the problem. The difference in maximum 
deflection between large and small deflections theory is found to be small. The maximum stress 
is increased when the beam is resting on nonlinear Winkler foundation because of reduced 
foundation stiffness.  

Several important parameters are incorporated in the analysis - namely the vertical 
subgrade reaction, mesh size, and compressive strength of concrete - to study their effects on 
the beam behavior. The results demonstrate that the difference in maximum deflection between 
the linear and nonlinear model of soil is about (2.5%). 

Key words: Deep beams, finite elements, nonlinear elastic foundations  

1. Introduction 

Beams are one dimensional structural element that can sustain transverse loads by the 
development of bending, twisting and transverse shearing resistances in the transverse sections 
of the beam.  Mainly, two theories could be used for basic formulation of flexural beam models. 
In the case of a thin beam, the model is based on the classical theory (Euler-Bernoulli). This 
theory is based on the fundamental assumptions that the cross-sections of the beam remain 
plane and normal to the axis of bending, after loading it also implies that the strains and 
rotations of the beam are small compared to the beam depth. In the other case of a deep beam, 
the model is based on Timoshenko’s theory. This theory considers the effect of transverse 
shearing deformations. Thus, the cross sections of the beam remain plane but not necessarily 
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normal to the axis of bending. Deep beams are structural elements having a large (depth to 
span) ratio in which a significant amount of the load is transferred to the supports by a 
compression thrust joining the load and the reaction. As a result, the strain distribution is no 
longer considered linear, and the shear deformations become significant when compared to pure 
flexure.  Beams having a ratio of span to depth 5 or less are called deep beams. 

Reinforced concrete structures or deep beams are usually analyzed using first order linear 
load deflection relationship and both strains and displacements developed in the structure are 
assumed to be small. This means that geometric nonlinearities are not taken into account; 
therefore the expected behavior of the member differs from the real behavior leading to 
approximate solutions. The percentage difference in results if geometric nonlinearity included is 
unknown. It is known that plain concrete has low tensile strength, limited ductility and little 
resistance to crack propagation. Flaws or micro-cracks develop in the concrete during its 
manufacture and even before any load is applied. In compression, these micro-cracks propagate 
up to about one-third of the ultimate strength. In tension, they lead to brittle failure at about 
one-tenth of the compressive strength 

 Jamal (1997) utilized the large displacement analysis procedure for the beam-column 
element with gusset plates at its ends. A new formula for stability and bowing functions was 
derived. A developed local tangent stiffness matrix was obtained and used in the solutions of 
several examples. 

Al-Hachmi (1997) presented a theoretical analysis for predicting the large displacement 
elastic stability analysis of plane and space structures subjected to general static loading. The 
beam-column theory was used in the analysis, taking into accounts both bowing and axial force 
effects. The general equations of fixed end moments of a beam subjected to lateral loads were 
also derived. The work employed the analysis to study the behavior of beams with elastic 
foundations, piles driven into soil, and large displacements of submarine pipelines. 

Chen (1998) presented a new numerical approach for solving the problem of beams resting 
on an elastic foundation. The approach used the differential quadrature (DQ) to discretize the 
governing differential equations defined on all elements, the transition conditions defined on the 
inter-element boundaries of two adjacent elements, and the boundary conditions of the beam. 
By assembling all the discrete relation equations, a global linear algebraic system can be 
obtained. Numerical results of the solutions of beams resting on elastic foundations obtained by 
the DQEM were presented. 

Yin (2000-a) suggested a method for obtaining closed-form solutions for a reinforced 
concrete Timoshenko beam resting on an elastic foundation subjected to different pressure 
loading. A particular solution was obtained for uniform pressure loading at any location of the 
beam. This solution can be used to calculate settlement, rotation, bending moment and shear 
force of the beam. 

Yin (2000-b) derived the governing ordinary differential equations for a reinforced 
Timoshenko beam on an elastic foundation. An analytical solution was obtained for a point load 
on an infinite Timoshenko beam on an elastic foundation. Special attention was drawn to the 
location, tension and shear stiffness of reinforcement and its influence on settlement or 
deflection of the beam and reinforcement tension force. A finite element model was established 
for the same infinite beam problem. 

Onu (2000) derived a formulation leading to an explicit free-of meshing stiffness matrix for 
a beam finite element foundation model. The shear deformation contribution was considered 
and the formulation was based on exact solution of the governing differential equation. Two 
numerical examples were presented. The first one, a short beam on an elastic foundation was 
analyzed to validate the shear stiffness matrix. The second example examined a structure-
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foundation interaction problem of a seven-story building supported by a foundation beam on a 
two- parameter foundation model. 

Aristizabal-Ochoa (2001) developed, in a simplified manner, a nonlinear large deflection-
small strain analysis of a slender beam-column of symmetrical cross section with semi rigid 
connections under end loads (conservative and no conservative), including the effects of axial 
load eccentricities and out-of-plumpness. Timoshenko’s stability functions were utilized in the 
proposed method which, although approximate, can be used in the stability and nonlinear large 
deflection small strain elastic analyses of beam-columns with rigid, semi rigid and simple 
connections. 

Mahmoud (2001) used the rectangular isotropic eight node element for the representation 
of the concrete, while the steel was represented by a layer. He considered the effect of nonlinear 
behavior, bond slipping   and the shear transfers of the concrete after the cracks appeared. The 
steel was considered as one dimensional elastic-plastic and a computer program was used to 
study the nonlinear behavior of structures and the result for the deflection and the stress and 
strain for different structures were obtained. 

Guo and Weitsman (2002) made an analytical method, accompanied by a numerical 
scheme, to evaluate the response of beams on no uniform elastic formulation, where the 
foundation modulus is Kz= Kz (x). The method employed Green’s foundation formulation, 
which results in a system of nonsingular integral equations for the distributed reaction p(x). 
These equations can be discretized in a straightforward manner to yield a system of linear 
algebraic equations that can be solved by elementary numerical techniques. 

Lazem (2003) presented a theoretical analysis for large displacement elastic stability of in-
plane structures where some members were embedded into or resting on elastic foundations. 
The analysis was based on Eulerian formulation, which was developed initially for elastic 
structures and was extended to include soil-structure interaction. Local member force-
displacement relationship is based on beam-column approach. 

Al-Azzawi and Al-Ani (2004) studied the linear elastic behavior of thin or shallow beams 
on Winkler foundations with both normal and tangentional frictional resistances. The finite 
difference method was used to solve the governing differential equations and good results were 
obtained with the exact solutions for different load cases and boundary conditions. 

Al-Musawi (2005) studied the linear elastic behavior of beams resting on elastic 
foundations with both compressional and tangential resistances. The finite element method in 
Cartesian coordinates is formulated using different types of one, two and three dimensional 
isoparametric elements to compare and check the accuracy of the solutions. A computer 
program coded in fortran_77 for the analysis of beams on elastic foundations was developed in 
his study. 

Al-Shraify (2005) presented a three-dimensional nonlinear finite element model suitable 
for the analysis of reinforced concrete members. Concrete was modeled using 20-node 
isoparametric quadratic elements, while the reinforcing bars were modeled as axial members 
embedded within the concrete elements. The nonlinear equations of equilibrium have been 
solved using an incremental-iterative technique based on the modified Raphson methods. 

Al-Talaqany (2007) studied the geometric nonlinear behavior of beams resting on Winkler 
foundation. Timoshenko’s deep beam theory is extended to include the effect of large deflection 
theory. In the finite element method, the element SHELL 43 incorporated in ANSYS 5.4 was 
used. The finite difference method was also used to solve the problem of thin and deep beams 
and the obtained results were compared with the finite element method results (ANSYS 
program) to check the accuracy of the developed analysis. An incremental load approach with 
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Newton-Raphson iteration computational technique was used for solving the nonlinear sets of 
node equilibrium equations in the finite difference method. 

Andrejev (2008) made a survey of evolution of the theory about the constructions, placed 
on elastic foundation. Methods of computation of the reinforced beams, placed on elastic 
foundation, with accepted assumptions were analyzed.  Application of the solutions, pertaining 
to beams placed on elastic foundations, towards the construction elements, meant for the other 
assignments were considered. 

The present study deals with the nonlinear material and geometric behaviors of reinforced 
concrete deep beams resting on linear or nonlinear Winkler foundation. The finite elements 
through ANSYS (Release-11, 2007) computer software are used in this study. The reinforced 
concrete deep beam is molded using (SOLID 65) 8 node brick element and the soil is molded 
using linear spring (COMBIN 14) element or using nonlinear spring (COMBIN39) element. 
The simplest soil model is used in the present study because the main task is to study the 
reinforced concrete deep beam behavior rather than the soil or interface behavior. The interface 
elements between concrete and soil or steel reinforcement and concrete will not included in the 
present study. 

2. Material modeling 

2.1 Concrete 

2.1.1 Modeling of concrete in compression 

The behavior of concrete in compression can be simulated in ANSYS-11 by an elastoplastic 
work hardening model followed by a perfectly plastic response, which is terminated at the onset 
of crushing. The model used for compression is expressed in terms of yield criterion, a 
hardening rule and a flow rule.  

2.1.1.1 Yield criterion 

The material is assumed to behave elastically until it reaches the yield limit. For isotropic 
materials, the initial yield criterion should be independent of the orientation of the coordinate 
system in which the stress state is defined and therefore, it should be a function of the stress 
invariants only (Chen 1982). The yield criterion adopted in ANSYS-11 is the von-Misses 
criterion. It can be expressed as: 

         o
T sMsf  





2/1

2

3  (1) 

where,  

 s  is the deviatoric stress: 

      Tms 000111   (2) 

where,  

   is the stress vector. 

m  is the mean stress: 
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3

1  (3) 

and   is the equivalent effective stress. 

2.1.1.2  Hardening rule 

The hardening rule is required to define the expansion of the loading surfaces during plastic 
deformation. To describe the growth of the subsequent loading surfaces for strain or work-
hardening materials, many hardening rules are adopted to simulate concrete behavior. The 
hardening rule adopted by ANSYS-11 assumes that the yield surface expands uniformly 
without distortion as plastic deformation occurs as shown in figure 1 (Chen 1982). 

 

Fig. 1. Isotropic work hardening. 

Therefore, the subsequent loading surfaces may be written as: 

          





2/1
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3
sMsf T  (4) 

where, the effective stress or equivalent uniaxial stress   represents the stress level at which 
further plastic deformation will occur. In the present work, the effective stress   can be 

determined directly from the equivalent plastic strain pl
n̂ given in the following expression: 

 pl
n

Tc

Tc
y EE

EE  ˆ


  (5) 

where, 

Ec = modulus of elasticity. 

ET= tangent modulus from multilinear uniaxial stress-strain curve, [Fig. 2]. 

 plpl
n

pl
n  ˆˆˆ 1    (6) 

where, 

pl
n̂  = equivalent plastic strain for this time point, and 
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pl
n 1ˆ   = equivalent plastic strain from the previous time point. 

If there is no plastic strain ( )0ˆ pl , then   is equal to the yield stress. The equivalent 

uniaxial stress   only has meaning during the initial, monotonically increasing portion of the 
load history. If the loads were to be reversed after plastic loading, the stresses would fall below 

yield but   would register above yield (since )0ˆ pl .      

In order to define the expansion of the current loading surface, the incremental theory of 

plasticity implies a relationship between the accumulated (effective) plastic strain ( pl
n̂ ) and 

effective (equivalent) stress ( ) to extrapolate the results of a uniaxial test to a multiaxial 
situation. 

In the present model, a multilinear stress-strain curve is used for the uniaxial stress-strain 

relationship beyond the limit of elasticity, 
cf3.0 . This parabolic curve represents the work-

hardening stage of behavior. When the peak compressive stress is reached, a perfectly plastic 
response is assumed to occur. Figure (2) shows the equivalent uniaxial stress-strain curve 
adopted by ANSYS-11 at various stages of loading. 

 

Fig. 2. Multilinear stress-strain curve for concrete adopted in the analysis. 

2.1.1.3 Flow rule 

To construct the stress-strain relationship in the plastic range, an associated flow rule is usually 
employed. This means that the plastic deformation rate vector will be assumed normal to the 
yield surface. The plastic strain increment can be determined for a given stress increment as 
(Chen (1982): 

E 

1
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     
 






f

d p
 (7) 

where,   is the hardening or the loading parameter which determines the size of the plastic 
strain increment and      /f  defines the direction of the plastic strain increment vector 

 pd   as normal to the current loading surface.   

2.1.2 Behavior of concrete in tension  

Linear elastic model prior to cracking is usually used to simulate the behavior of concrete in 
tension. In general, the cracking criterion of concrete is expressed in terms of principal tensile 
stresses or strains. In the ANSYS-11, the onset of cracking is controlled by a maximum 
principal stress criterion. A smeared crack model with fixed orthogonal cracks is adopted to 
represent the fractured concrete (Chen 1982).  

The tensile stresses normal to the cracked plane are gradually released, and are usually 
represented by an average stress-strain curve. To obtain such a relationship, either the tension-
stiffening or strain-softening concepts may be used .In the present work, the tension-stiffening 
concept is adopted. Since the cracked concrete can still initially carry some tensile stresses in 
the direction normal to the crack, the tension-stiffing effect is considered. This has been 
achieved in ANSYS-11 by assuming gradual release of the concrete stress component normal to 
the cracked plane. In the present work, the normal stress that is carried by cracked concrete can 
be obtained from figure 3. 

 

Fig. 3. Post cracking model for concrete. 

where,  cr  is the cracking strain, ft   is the uniaxial tensile cracking stress, Tc is the  multiplier 

for amount of tensile stress (default in ANSYS11 = 0.6). 

Three different approaches for crack modeling have been employed in the analytical studies 
of concrete structures using the numerical technique of the finite element method. These are 
smeared cracking modeling as shown in figure 4, discrete cracking modeling as shown in figure 
5, and fracture mechanics modeling (Chen 1982). For (ANSYS-11) computer program, crack 
modeling of concrete depends on smeared cracks. 

  
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Fig. 4. Representation of a single crack in the smeared crack modeling approach (Chen 1982). 

 

Fig. 5. Two dimensional cracking representation in discrete crack modeling approach (Chen 
1982). 

2.1.3 Crushing modeling 

If the material at an integration point fails in uniaxial, biaxial or triaxial compression, the 
material is assumed to crush at that point. Under this condition, the material strength at the 
considered integration point is assumed to have degraded to an extent such that its contribution 
to the stiffness of an element in question can be ignored (ANSYS-11).  

2.1.4 Multiaxial behavior of concrete 

The response of concrete under triaxial compressive stresses, will exhibit strength, which 
increases with the confining pressure. Under very high confining stresses, extremely high 
strengths have been recorded. Experimental studies indicate that the three dimensional failure 
envelope is a function of the three principal stresses. Figure 6 shows a schematic failure surface 
of concrete in three dimensional stress space. The failure envelope is smooth, convex and its 
deviatoric sections (planes perpendicular to the hydrostatic axis, line of 321   ) become 

more circular in shape for increasing hydrostatic pressures. For smaller hydrostatics pressures, 
these cross sections are convex and non-circular (Chen 1982).  

The model to be used is capable of predicting failure for concrete materials. Both cracking 
and crushing types of failure model are accounted for. The two input strength parameters (i.e. 
ultimate uniaxial tensile and compressive strengths) are needed to define a failure surface of 
concrete. Consequently, a criterion for failure of concrete due to multiaxial stress states can be 
calculated. The limiting tensile stress required to define the onset of cracking can be calculated 
for states of triaxial tensile stress and for combinations of tension and compression principal 
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stresses. The stress function adopted in the present work has been used by William and Warnke. 
Both the function of stress and the failure surface are expressed in terms of principal stresses 
denoted as 1 , 

2  and 3  

where, ),max( ,1 zyx    

     ),min( ,3 zyx    

and if 321   , the failure of concrete is categorized into four domains: 

1. 3210   (compression- compression- compression). 

2. 321 0     (tension- compression- compression). 

3. 321 0     (tension- tension- compression). 

4. 0321     (tension- tension- tension). 

 

Fig. 6. Schematic representation of the elastic limit and failure surface of concrete in the three 
dimensional principal stresses.. 

2.2 Reinforcement steel modeling  

The mechanical properties of steel in compression are well known and understood. Steel is a 
homogeneous material and the stress-strain curves for steel are generally assumed to be 
identical in tension and compression, and it can generally be assumed to be capable of 
transmitting axial force only. Steel bars in reinforced concrete members are normally long and 
relatively slender and therefore they can be generally assumed to be capable of transmitting 
axial forces only. Steel fabric reinforcement is normally produced from cold formed steel wire 
(grade 460) with a regular mesh arrangement. During cold forming process, steel may be 
stressed beyond its yield stress into strain hardening (Chen 1982). In the present study, the 
uniaxial stress-strain behavior of reinforcement is simulated by an elastic-linear work hardening 
model as shown in figure 7. 
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Fig. 7. Stress strain relationship of steel bar. 

2.3 Elastic models of soil behavior 

In order to perform nonlinear analysis of soil, however, it is necessary to be able to describe the 
load-deflection behavior of soil in quantative terms, and to develop techniques for incorporating 
this behavior in the analysis. The modulus of subgrade reaction gives the relationship between 
the soil pressure and the resulting deflection. Soil configuration can be presented by using two 
kinds of moduli along the foundation length, the normal and tangential. The normal modulus ( 
Kz) is conventional subgrade reaction modulus. The tangential modulus (Kt) is the amount of 
skin-friction required to mobilize a unit axial displacement in the soil around the soil-structure 
interaction element. 

Since the behavior of the soil under compressive loading is nonlinear as verified by the 
results of plate-load test and considering the load settlement curve a plate-load test in the field, 
the beam element resting on soil can approximate the response be using the two-constant 
hyperbolic stress-strain equation 

 P=δ/(a+b δ) (8) 

 Kz=a/(a+b δ) 2 (9) 

where, P is the lateral load on beam element which is concentrated at the node, δ is the lateral 
displacement of the node and Kz is the normal subgrade reaction of the soil , a and b are the 
physical parameters required for the hyperbolic equation which can be obtained from the load-
settlement curve of the plate-load test . As shown in figure 8, "a" is the reciprocal of the initial 
tangent to the load-settlement curve of the plate-load test, and "b" is the reciprocal of the 
asymptotic value of load P at which the plate will continue to penetrate into the soil without any 
increment of the load applied (Hateam 2001). This model has been used in the present study. 
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Fig. 8. Plot of load settlement. 

3. Finite element analysis 

3.1 Reinforced concrete beam 

In the current study, three dimensional isoparametric solid elements (SOLID65) are used to 
model the reinforced concrete. The element is defined by eight nodes having three degrees of 
freedom at each node: translations in the nodal x, y and z directions. Up to three rebar 
specifications may be defined. The solid cracks in tension and crushes in compression are 
studied. The solid capability of the element may be used to model the concrete while the rebar 
capability is available for modeling the reinforcement, [Fig. 9].The reinforcement, which also 
incorporates plasticity, is assumed to be smeared throughout the element. Directional 
orientation is accomplished by user specified angles. 

Load P 

Settlement   
1 

1/a 
Asymptotic 1/b 

Settlement / Load,( / P) 

Settlement   

a    
b 

1 

a-Hyperbolic load-settlement curve of plate- load test . 

b-Transformed hyperbolic load settlement curve . 
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Fig. 9. 8-node 3-D reinforced concrete solid element. 

 Analysis of RC structures using the finite element method requires a simple, yet accurate way 
of representing the reinforcement. Three alternative representations have been usually used to 
simulate the reinforcement, which are: 

I) Embedded reinforcement. 

II) Smeared reinforcement. 

III) Discrete reinforcement. 

The embedded representation assumes that the reinforcing bar as an axial member is built 
into the isoparametric element which displacements are consistent with those of the element. 
The bars are restricted to lie parallel to the local coordinate axes of the basic element and 
perfect bond must be assumed between concrete and the reinforcement. 

For the smeared representation, the steel bars are assumed to be distributed into an 
equivalent layer within the concrete with axial properties in the direction of the bars only. A 
composite concrete – reinforcement constitutive relationship is used in this case and perfect 
bond is assumed between concrete and steel bars. 

A discrete representation of the reinforcement using one – dimensional element is the most 
widely used. For two dimensional analysis axial bar members with two degrees of freedom at 
each node are usually employed. A one dimensional flexural element with three degrees of 
freedom per node has also been adopted. A significant advantage of the discrete representation, 
in addition to its simplicity can account for possible displacement of reinforcement with respect 
to the surrounding concrete. Their disadvantages are to restrict the mesh and increase the total 
number of elements (Collins and Mitchell 1991). In the present study, the smeared and discrete 
representation are used. LINK8 which has been used to model the reinforcement is a bar (or 
truss) element which may be used in a variety of engineering applications. This 3-D spar 
element is a uniaxial tension-compression element with three degrees of freedom at each node. 
In translation in the nodal x, y, and z directions, as in a pin-jointed structure, no bending of the 
element is considered. This element is used in the present study to simulate the behavior of 
reinforcing bars which work as stirrups in resisting the vertical shear in concrete and main steel 
reinforcement in resisting the flexural stresses. The geometry, node locations, and the 
coordinate system for the element are shown in figure 10. 

a) Global coordinat system b) Local coordinate system 
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Fig. 10. LINK8 – 3-D spar. 

3.2 Elastic foundations 

The models of soil behavior for which the relationship between the applied forces and resulting 
displacements are given by linear or nonlinear functions are considered in this study. 

The stress-strain of any type of soil depends on a number of different factors including 
density, water content, structure, drainage conditions, strain condition (i.e. plane strain, triaxial), 
duration of loading, stress history, and confining pressure. 

The idealized model of soil media as proposed by Winkler in 1867 assumes that normal 
pressure p of the soil medium (soil reaction) at any point on the surface is directly proportional 
to the deflection w at that point and is independent of deflections occurring at other locations. 
Winkler idealization of the soil medium consists of a system of independent closely spaced 
spring elements with spring constant Kz (per unit deflection). One important feature of this soil 
model is that the z-displacement occurs immediately under the loaded area and outside this 
region the displacement is zero.   

Since the surface deflection in Winkler model is limited to the loading region, thus this 
model is restricted in applicability to soil media which possess very slight amount of cohesion 
for transmissibility of applied forces. It is a common experience that, in the case of soil media, 
surface deflections will occur not only immediately under the loaded region but also in certain 
limited zones neighboring the loaded region. In general, the application of the continuum theory 
of classical elasticity to soil-foundation interaction presents a complex mathematical problem 
(Al-Musawi 2005). 

3.2.1 Linear spring element 

The (COMBIN14) element or the longitudinal element spring-damper option is a uniaxial 
tension-compression element with up to three degrees of freedom at each node: translations in 
the nodal x, y, and z directions. No bending or torsion is considered. If damping is neglected the 
spring element will simply represent the linear Winkler model of one parameter Kz which is the 
simple model to represent soil [Fig.11] 
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.  

Fig. 11. Linear spring element. 
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and Cv = Cv1 + Cv2 |v| . 

where, Kz is the spring stiffness, Cv1 is the constant damping coefficient,. Cv2 is the linear 
damping coefficient and v is the relative velocity between nodes computed from the nodal 
Newmark velocities. 

3.2.2 Nonlinear spring element 

The (COMBIN39) element is a unidirectional spring element with nonlinear generalized force-
deflection capability. The element has a longitudinal capability (uniaxial tension-compression 
element) with up to three degrees of freedom at each node: translations in the nodal x, y and z 
directions. No bending or torsion is considered. The element is defined by two nodes and is 
used to resist slip [Fig. 12] . COMBIN39 spring element will simply represent the nonlinear 
Winkler model of one parameter Kz with different values obtained from the slope of  load 
settlement curve which is the improved model of COMBIN14. 

 

Fig. 12. Nonlinear spring element 
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The stiffness matrix of the element is given by:  

   












11

11
z

e KK  (12) 

where,  Kz  is the slope of active segment of the force-deflection curve of this element, [ Fig. 
12]. 

4. Applications for testing the models 

The numerical results obtained from the finite element analysis have been compared with 
available analytical and numerical results to check the accuracy of the method used in this 
study. The case studies include the geometric and material nonlinear behavior of beams resting 
on (Winkler type) elastic foundations. 

4.1 Uniformly loaded simply supported deep beam resting on Winkler foundation 

A beam of (E=25×106 kN/m2,  =0.15) and having a length of (2.0m), width (b=0.4m), depth 
(h=0.8m) and subjected to a uniformly distributed load (q=62.5kN/m2), is considered as shown 
in figure 13. The beam is resting on Winkler foundation with coefficient (Kz=10000 kN/m3) 
.This problem was solved by (Al-Talaqany, 2007) by using the finite difference method. In the 
present study, this problem is solved by using the finite element method with ANSYS program. 
The beam is modeled using 144 brick elements (SOLID65) with 8 node and the foundation is 
represented by 40 linear spring elements (COMBIN14) as shown in figure 14. The results of 
deflections, normal, and shear stresses are plotted with the results of Al-Talaqany (2007) as 
shown in figures 15 to 18. The figure 16 shows acceptable agreement for deflections. The 
percentage of difference between the maximum deflections for Al-Talaqany, (2007) solution 
and the present study is (10%). There is small difference between large and small deflection 
analyses by about (0.0012%) because of adding the stiffness of foundation. 

 

Fig. 13.  Uniformly loaded simply supported deep beam resting on Winkler foundation. 
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Fig. 14. Finite element mesh of uniformly loaded simply supported deep beam resting on 
Winkler foundation. 

 

Fig. 15. Contour plot for deflection of uniformly loaded simply supported deep beam resting on 
Winkler foundation. 
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Fig. 16. Deflection curves of uniformly loaded simply supported deep beam resting on Winkler 
foundation. 

 

Fig. 17. Contour plot of normal stress in x-direction of uniformly loaded simply supported deep 
beam resting on Winkler foundation. 
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Fig. 18. Contour plot of shear stress in xz plane of uniformly loaded simply supported deep 
beam resting on Winkler foundation. 

4.2 Free ends deep beam on nonlinear Winkler foundation with end load 

A beam of (E=25×106 kN/m2,  =0.15) and having a length of (1.8m), width (b=0.2m), depth 
(h=0.45m) and subjected to a concentrated load (P=220.5 kN), is considered as shown in figure 
19. The beam is resting on nonlinear Winkler foundation with modulus (Kz=2000kN/m3) 
(a=0.163, b=0.482) and this value is obtained from plate-load test. This problem was analyzed 
by Hateam (2001) by using the beam-column method. In the present study, the finite-element 
method is used to solve this problem. The concrete beam is idealized using 11 brick elements 
(SOLID65) and modeled by 6 nonlinear spring elements (COMBIN39) to  represent the soil 
nonlinear behavior as shown in figure 20. The equation of nonlinear spring is defined earlier.  
The present study and Hateam (2001) results of deflections are plotted as shown in figures 21 to 
24. The percentage difference between the two solutions is (2.5%) which shows good 
agreement. The difference between large and small deflection theories are found to be very 
small and about (0.0012%) and can be neglected because of the effect of foundation stiffness. 
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Fig. 19. End loaded free-ends deep beam resting on nonlinear Winkler foundation. 

 

Fig. 20. Finite element mesh of end loaded free-ends deep beam resting on nonlinear Winkler 
foundation. 
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Fig. 21. Contour plot for deflection for the free-ends deep beam resting on nonlinear Winkler 
foundation (small deflection theory). 

 

Fig. 22. Contour plot for deflection for the  free-ends deep beam resting on nonlinear Winkler 
foundation (large deflection theory). 



Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 2, 2010 

 

33 

0.00 1.00 2.00
Distance (m)

-40.00

0.00

40.00

80.00

D
ef

le
ct

io
n 

(m
m

)

small deflection theory

large deflection theory

 

Fig. 23. Deflection curves of the free ends deep beam (small and large deflection theories) at 
load 220.5kN.  
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Fig. 24. Load-deflection curves for the free-ends deep beam resting on nonlinear Winkler 
foundation at load 220.5kN. 
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4.3 Parametric study 

A parametric study is performed to investigate the influence of several important parameters on 
the behavior and strength of reinforced concrete deep beams resting on Winkler foundation and 
subjected to static loads. 

The following important parameters are studied and discussed in this section: 
 Effect of mesh size. 
 Effect of subgrade. 
 Effect of compressive strength. 

4.3.1 Mesh size 

In this section, a study has been made to investigate the effect of the mesh size on the load-
deflection response of continuous reinforced concrete deep beam under concentrated load (320 
kN). The beam having a length of (3.0m), width (0.12m), depth (0.625m), f′c=28 N/mm2, 
ft=2.11 N/mm2 is considered here. Mesh size effect is investigated by assigning two different 
meshes having 240 and 4368 elements as shown in figures 25 and figure 27. When the number 
of element increased, the error in calculating deflection decreased, but when we reach a specific 
number of mesh sizes, the effect will be small on the results. The obtained results and the load 
deflection curves of this investigation are shown in figure 29. It can noted that using mesh size 
of 4368 elements gives good agreement with the experimental load-deflection curves. 

 

 

Fig. 25. Finite element mesh of simply supported reinforced concrete deep beam (240 elements 
mesh). 
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Fig. 26. Contour plot for deflection of deep beam (240 elements mesh). 
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Fig. 27. Finite element mesh of simply supported reinforced concrete deep beam 3468 
elements. 
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Fig. 28. Contour plot for deflection of reinforced deep beam (4368 elements mesh). 

 

Fig. 29. Load -deflection curves of reinforced concrete deep beam. 
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4.3.2 Effect of subgrade 

 To show the effect of vertical subgrade reaction (Kz=10000kN/m2) on the results, the reinforced 
concrete beam is idealized using 200 brick elements (SOLID65) and the steel reinforcement is 
assumed to be smeared throughout the elements. The foundation is modeled by 33 nonlinear 
spring elements (COMBIN39) as shown in figure 30. Figure 31 shows the effect of nonlinear 
Winkler foundation on the maximum deflection for a simply supported deep beam under a 
concentrated load. From this figure, the deflection will increase when the foundations modeled 
as a beam on nonlinear Winkler foundation, because of the ability of the model to trace the real 
behavior of soil and the reduced modulus of subgrade reaction which is fixed in the linear 
model. The maximum deflection for the simply supported deep beam under a concentrated load 
is increased by (2.5%). Figure 32 shows the effect of nonlinear Winkler foundation on normal 
stress in x-direction of a simply supported deep beam under a concentrated load. From this 
figure, the maximum stress will increase when the beam is on nonlinear Winkler foundation 
with percentage of (3.6%) because of reduced stiffness. 
 

 

Fig. 30.Contour plot for deflection of simply supported deep beam under concentrated load on 
nonlinear Winkler foundation. 
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Fig. 31.  Deflection curves of simply supported deep beam under concentrated load on  linear 
and nonlinear Winkler foundation. 

0.00 500.00 1000.00 1500.00
Distance(mm)

-8.00

-4.00

0.00

4.00

st
re

ss
 (
N

/m
m

2)

 

Fig. 32. Normal stress curve in x- direction of simply supported deep beam under concentrated 
load on nonlinear Winkler foundation 

4.3.3 Effect of compressive strength 

In this study, different values of the compressive strength of concrete have been used. These 
values were 20, and 50 N/mm2. It can be noted that by increasing the compressive strength of 
concrete, the failure load is increased and the deflection is decreased (because of increasing in 
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the value of modulus of elasticity). When the concrete compressive strength increases from 20 
to 50 MPa, the ultimate load is increased by 20.07% as shown in figure 33. 
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Fig. 33. Effect of the compressive Strength of concrete on the predicted load deflection 
response 

5. Conclusions 

Based on the finite element analyses carried out in this research, the following conclusions are 
drawn: 

 Based on comparison of the computed results with the available analytical and 
experimental data, it is verified that the finite element method and materials models 
used in utilizing ANSYS computer program are reliable and accurate to predict the 
behavior of nonlinear geometric and nonlinear material behavior of deep beams resting 
on linear and nonlinear Winkler foundation. 

 The ANSYS v11 program that is used in the present study shows good agreement for 
deflections of about (8%). 

 It can be noted that by increasing the compressive strength of concrete the failure load 
is increased and the deflection was decreased (because of increasing the modulus of 
elasticity and different stress-strain curves). When the concrete compressive strength 
increases from 20 to 50 MPa the ultimate load is increased by 20.07%. 

 The effect of large deflections on deep beams was found to be small on results in about 
(0.11%). 

 The maximum deflection is increased by (2.5%) when the foundation is modeled as a 
beam on nonlinear Winkler model rather than linear Winkler model because of the 
cumulative deflection with load increments and reduced modulus subgrade reaction . 
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Извод 

Анализа методом коначних елемената дубоких греда на еластичним 
подлогама 

Dr. Adel A. Al- Azzawi 1,  Aula H. Mahdy2 and Omar Sh. Farhan3 

1Nahrian University, Baghdad, Iraq 
dr_adel_azzawi@yahoo.com 
2Nahrian University, Baghdad, Iraq 
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Резиме 

Ово истраживање се односи на материјално и геометријски нелинеарна понашања 
ојачаног бетона дубоких греда које се ослањају на линеарну или нелинеарну Винклерову 
(Winkler) подлогу. Метод коначних елемената је примењен користећи ANSYS (Release-
11, 2007) компјутерски софтвер. Ојачани бетон дубоке греде је моделиран коришћењем 
(SOLID 65) 8-чворног тродимензионалног елемента, а тле је моделирано помоћу 
елемента линеарне опруге (COMBIN 14) или нелинеарне опруге  (COMBIN39). 

Резултати добијени у овој студији су поређени са расположивим аналитичким и 
експерименталним резултатима. Добијено је добро слагање са расположивим 
резултатима, што показује и ефикасност методе коначних елемената коришћене за 
моделирање овог проблема. Утврђена је мала разлика у максималном угибу према 
теорији малих и великих угиба. Максимални напон је увећан када се греда ослања на 
нелинеарну Винклерову подлогу услед смањене крутости подлоге. 

Неколико значајних параметара су укључени у анализу, наиме вертикална подзидна 
ракција, величина мреже и компресиона јачина, да би се утврдили ефекти на понашање 
греде. Резултати показују да разлика у максималном угибу између линеарног и 
нелинеарног модела тла износи око 2.5%. 

Кључне речи: Дубоке греде, коначни елементи, нелинеарне еластичне подлоге 
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