Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 2, 2010 / pp. 1-12

(UDC: 666.3-135)

Boundary element prediction of the failure resistance of thermal barrier
coating (TBC) subjected to thermo-mechanical loading

L.K. Keppas', N.K.Anifantis>"

'Mechanical and Aeronautics Engineering Dept., University of Patras, Greece, GR-26500
lkeppas@mech.upatras.gr

*Mechanical and Aeronautics Engineering Dept., University of Patras, Greece, GR-26500
nanif@mech.upatras.gr

*Corresponding author

Abstract

The present study describes a sub-regional boundary element procedure for the analysis of
cracked thermal barrier coatings under cyclic thermo-mechanical loads. The boundary integral
equations of uncoupled quasi-static thermo-elasticity are employed to account for the transient
nature of the thermal load. A crack is laid along the interface between a metallic substrate and a
ceramic coating. Crack closure occurs on account of the thermal distortion and the pressure load
that acts on the coating’s surface. Therefore, the heat flux between the crack faces is affected by
the level of crack closure and the accurate determination of temperatures and displacements
requires iterative solution of the thermal and mechanical part of the problem. The results reveal
that parameters such as the coefficient of friction and thermal contact resistance have a severe
impact on the predicted failure capacity of cracked structures and should be taken into
consideration for the estimation of fatigue life.
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1. Introduction

Thermal barrier coatings (TBCs) are ceramic layers covering metallic surfaces, submitted to
extreme thermal and chemical environments. Their aim is to provide thermal insulation and
oxidation resistance at high temperatures. Numerous applications can be found in aerospace and
automotive industries. The main objective when designing a TBC is the structural integrity
throughout its service life. This is a serious problem for the TBC designer since the material
properties mismatch, in conjunction with thermal cycling, residual stresses and environmental
effects, may initiate delamination and cracking (Chen et al. 2003).

Consideration of the interfacial crack growth is of paramount importance when designing
components protected by thermal barrier coatings in order to increase their endurance and
efficiency. Although analytical treatments of interfacial fracture in dissimilar media, give
valuable answers concerning fracture parameters and consequently structural integrity
assessment, they have limitations in respect of geometric, material and loading complexity. As
an alternative solution, computational methods like the finite and boundary element methods are
capable of modelling complex crack geometries and loading conditions. Simulation of the near
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tip singular stress and thermal flux behaviours can be achieved either by using special crack tip
elements or by simply increasing the mesh density near the crack tip. Several numerical studies,
related to the thermal response or fracture of TBCs, have been conducted utilizing the finite
element method (Nusier and Newaz 2000, Rangaraj and Kokini 2003, Hattiangadi and
Siegmund 2005). However, when the crack is growing under cyclic fatigue loads, the crack
growth is modelled through a number of consecutive crack steps (Prasad et al. 1996,
Hattiangadi and Siegmund 2005, Yan 2007). The geometry and element mesh should be
updated at each crack step in order to account for the current crack length. The boundary
element method is very efficient when analyzing growing cracks because only the boundary is
meshed and not the whole domain of the problem (Prasad et al. 1996, Yan 2007); therefore, the
reconfiguration of geometry and mesh is easier and additionally the boundary elements exhibit
very high level of accuracy in analyzing crack problems utilizing a limited number of degrees of
freedom (Prasad et al. 1996, Yan 2007, Keppas et al. 2008).

The present paper presents a boundary element procedure based on the sub-regional
technique and the quasi-static uncoupled theory of thermoeclasticity for the analysis of
interfacial crack growth in the presence of thermo-mechanical cycling. The coating’s surface is
subjected to combined temperature and pressure loads and crack closure is caused by thermal
distortions or mechanical compression. Therefore there is an interaction between the thermal
end elastic fields around the crack tip which is treated by iterative solution of the equations of
thermoelasticity. The results show significant influence of the level of thermal resistance and
coefficient of friction on the behaviour of interfacial cracks and provide valuable information
for the failure assessment of TBCs under cyclic loads.

2. Boundary element procedure

2.1 Boundary integral equations of quasi-static thermoelasticity

The boundary integral equation of quasi-static thermo-elasticity that govern the behavior of a
two-dimensional elastic solid defined on the region 2 and surrounded by the boundary S, in the
absence of internal heat sources, body forces and inertia effects is (Brebbia 1984, Banerjee
1994):
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Equation (1) accounts for the thermal and equation (2) for the elastic field. The symbols x
and ¢ denote boundary points and the constants ¢ and c; depend on the geometry of the
boundary at point &; the variables 6 and g represent the temperature and heat flux and u;, p; are
the components of the boundary displacement and traction vectors, respectively; 7 is the time, 7
is the initial and ¢/ the current time instant at which the response is evaluated. The kernels

O(x,&t" 1), Ox.¢t",1), P(x&), Uylx&), Ox&t" 1), OQxéit'r) are the

fundamental solutions for uncoupled quasi-static thermoelasticity (Brebbia 1984, Banerjee
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1994). The time-marching scheme is based on the convolution technique (Banerjee 1994) and

. . . 4SS . .
constant time interpolation A% =1 —1"" = const is ysed throughout the analysis; therefore,

the equations (1), (2) can be written as follows:
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The right part of equations (3), (4) includes the contribution of each past time instant f to
the response at the current time instant ' through the corresponding summations. The boundary
S is descritized into elements and the application of equations (3), (4) on each boundary node
leads to the following form of the equations:
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The vectors {6}, {q}. {u},{p} are the nodal boundary values of temperatures, heat
fluxes, displacements and tractions, respectively and the matrices [Q], [O], [P], [U], [O],

[5 ] contain the contributions of the fundamental solutions.

It is assumed that the domain  of the problem is divided into the sub-regions ‘Q and “Q.
Then, a common boundary is created between the adjacent sub-regions that consist of a number
of node pairs; one node of each pair belongs to ‘Q and the other to ”Q. The boundary between
', "Q expresses the existence of a crack or a material interface. The present analysis assumes
that a number of node-pairs are able to come into contact or to open representing the crack and
some nodes remain coincident expressing the interface between the adjacent sub-regions. These
situations are treated using appropriate constraint equations on the common boundary for every
time instant F as provided in Table 1. The superscripts /, /I refer to the sub-region, the
subscripts #, 7 denote the normal or tangential component of the displacement and traction with
respect to the local coordinate system; u is the coefficient of friction and R is the thermal
resistance along the contacting crack faces that is dependent on the normal contact traction p,.
The equations (5), (6) are applied to both ‘Q and Q; the constraint equations of Table 1 are
applied and after the assembly over the sub-regions a system of equations is created for the
current time instant /. The equation for the thermal part is:
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The subscripts o, ¢, i denote the open, contact state or the interface, respectively. Table 2 gives
the criteria that are used during the procedure to check if the nodes of a pair come into contact
or open and vice versa.

If the contact state of a node pair has been altered then the thermo-mechanical conditions
along the crack faces should be updated according to Table 1. This fact in conjunction with the
existence of the contact pressure-dependent thermal resistance R demands repeated solution of
equations (7), (9) for the current time step. This iterative procedure stops when there is no
change in the contact state and the criterion for the thermal resistance is fulfilled:

R _—R
st T prev 100 < 0.001 an

last

where R, and R, are the thermal resistances computed at the last and the previous iteration,
respectively. Then, analysis proceeds to the next time step.

Contact Open Interface
IqF =_Iqu IqF =_11qF IqF =_Iqu
1gF _ligF IqF =0 IgF _llgF
PE=tpf pr =l pE =t
e P
'pl=tu'p; 'pi =0 fur="ug
IunF:Hu:IF 1p5=0 IunF:Huf

Table 1. Thermal and mechanical contact conditions

Initial state Check for state change
Open Contact
n,F I F n,F I
Open ‘un—un >0 ‘un—un‘SO
Contact "pF>0 "pF <0

Table 2. Check of the contact state

2.1 Computation of fracture magnitudes

The displacement and stress fields behave in an oscillatory manner as the crack tip is
approached, bounded by » “and r ~ " respectively. Chen and Huang (1992) examined the case of
an interfacial crack under thermal loading conditions and proved that the singularity of heat flux
and temperature near the crack tip is also of the r * and r ~ " respectively but without the
oscillatory character observed in the stress and displacement fields. Therefore, quarter-point
elements (QPEs) are used for the representation of temperature and displacement field while
traction singular quarter-point elements (Katsareas and Anifantis 1996) are utilized to account
for the heat flux and traction field near the crack tip. In order to analyze the interfacial fracture,
the strain energy release rate (SERR) is employed.
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The SERR G is related to the magnitude of complex stress intensity factor K, according to
the equation:

2
G- %) (1—% +1‘VSJ (12)
Hc Hs

where v,, ug4, represent the Poisson’s ratio and shear modulus, respectively and the
subscript d denotes the coating C or the substrate S. The magnitude of K is computed via the
traction formula of Gao and Tan (1992):

N2/
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13)
In equation (13) pf‘ and pf refer to the normal and tangential component of traction at the

crack tip 4 and £ is the length of the crack tip element. The quantities ¢, ¢ are defined as = (u¢
+ ke us) (us + ks 1c) and & = 0.5zInd with x, = 3 - 4v, for plane strain or x; = (3 - v,)/ (1+ v,)
for plane stress. The traction formula is very simple since it demands only the calculation of
traction components at the crack tip and it is preferred in the present analysis against alternative
displacement formulas because it is not sensitive to the length of the QPE; therefore; it ensures
accurate calculations with relatively coarse mesh (Katsareas and Anifantis 1996).

3. Computational results

The problem under consideration is an interfacial crack extension in a TBC. Figure 1 depicts the
geometry and the boundary conditions of the problem. It is a simple case of a coating—substrate
bond. The upper surface of the coating is subjected to thermal or thermo-mechanical cyclic load
which varies with time as shown in Fig. 2.

p=p
R

g=10 )T'_=R(p”) 9=0(, h Coating (C) q=0 H
-
(4

[

Substrate (S5)

X g=10
/4

Fig. 1. Geometry and boundary conditions of the problem
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This temperature profile is very common in turbine blades where the components withstand
very high heating and cooling rates. The thermal cyclic load may be combined by mechanical
loading emanating from the pressure of hot gases

The fracture behavior of TBCs under thermal shock has been investigated in a previous
work (Keppas et al. 2008) and the procedure was validated through comparison with solutions
available in the literature. The bimaterial contains an edge crack of initial length a, = 0.05W.
The ratios of dimensions are  H, /H. = 10 and W/H, = 1.25. The crack is extended up to the
length o= 0.1/ utilizing five equal crack increments of length Aa = 0.01W. The procedure for
the determination of temperatures and displacements described in paragraph 2.1 is applied for
the initial crack a, under the action of the cyclic load of Fig. 2. When SERR is calculated, the
boundary element model is updated in order to simulate a crack of length a, + Aa. The cyclic
load is imposed again leading to the calculation of the new SERR. The numerical procedure is
repeated adding each time a crack increment Aa up to the final length o, The time step is At =1
sec and the length of QPE is £ = a / 20, where a is the current length of the crack. The presence
of pressure load on the top leads to crack closure, therefore the heat flux between the crack
faces is controlled by the thermal contact resistance. It is supposed that the thermal resistance
depends on the normal traction p, along the contacting crack faces with relations of the form:

R, =R,(p,)=0.001xexp(10* p,)

(14)
R, =R,(p,)=0.0002xexp(10° p,)

The relation of the tractions on the contact region is controlled by the Coulomb’s friction
law (Table 1). All the material properties are constant and throughout the temperature range.
Though it is not the real case, it serves the purpose of the present approximation of interfacial
crack growth under thermal cycling. The coefficient of heat convection is taken 2 = 50 W/m®
°C. The non-dimensional stain energy release rate and the time are derived via the expressions:

S Y 0
E.ac(AO) Hy pcCcHy

with Af being the difference A& = 6,,,, — 6,.i,, namely the range of temperature load beyond
thel™ cycle in (see Fig. 2).
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Fig. 2. Thermo-mechanical cyclic load acting on the coating’s surface

The first analysis regards pure thermal loading with the temperature profile of Fig. 2. The
number of cycles required for the system to reach its steady cyclic response is not known a
priori and should be detected with simulation of consecutive cycles. The analysis indicated that
two consecutive cycles are sufficient for the computation of the representative range of G
Beyond the 2™ cycle the response does not change. The transient behavior of G is plotted in
Fig. 3 for several non-dimensional crack lengths o = o/ where a is the current crack length.
These results correspond to the thermal resistance function R; (equation 14) and SERR is
calculated for the almost frictionless case ¢ = 0.01 and the more realistic x = 0.1. Low values of
coefficient of friction are valid in cases of repeated cyclic loading due to the polishing of the
crack surfaces caused by the sliding contact. However, for pure thermal loading G~ is not
sensitive to the coefficient of friction.

Figure 4 presents results with regard to the combined thermo-mechanical loading of Fig. 2
assuming thermal resistance R;. Again, two consecutive cycles are adequate to account for the
transient effect up to the steady cyclic response. In the presence of pressure load in phase with
the applied temperature the impact of friction on the SERR is significant. SERR is drastically
reduced because of the restriction of sliding due to the pressure. The decrease of the peak value
of G is totally responsible for the reduction of the range of SERR. This remark is valid for all
the crack lengths and explained by the fact that the maximum pressure acts simultaneously with
the maximum temperature. Comparing the results of Fig. 3 and 4 one can see that the peak
value of G is higher for the pure thermal cycling and takes lower values for the combined
thermo-mechanical cycling; this is valid for all the dimensionless crack lengths plotted in the
graphs.
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Fig. 4. SERR variation for thermo-mechanical cycling with thermal resistance R,

The characteristic ranges AG™ = G;m - G;ax for a number of crack lengths can be further

utilized in Paris type laws of the form da/dN = f (AG*) to extract the fatigue life of the
structure in terms of load cycles. Figures 5 and 6 present the evolution of AG™ during the crack

growth for different combinations of load, friction and thermal resistance.
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Fig. 5. Effect of coefficient of friction on the range of SERR for thermal resistance R

The Fig. 5 depicts the range of SERR for a growing crack when the thermal resistance is

R,. Apparently, when the loads is thermo-mechanical the range is reduced up to 45% comparing

to the pure thermal loading which produce very similar AG". This difference is more
pronounced as the crack is extended. Another remark is that the higher the crack length is, the
higher the AG". This comes in agreement with the numerical data of Nusier and Newaz (2000)
and it is also apparent in Fig. 6. The last figure provides the influence of the level of thermal
resistance on the predicted AG". The lower thermal resistance R, permits the restriction of the
temperature jump across the crack faces and subsequently reduces AG™ up to one order of
magnitude. This remark is very important should be taken into account when assessing the
fatigue life and crack severity in bimaterials.
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Fig. 6. Effect of thermal resistance on the range of SERR
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4. Conclusions

The transient nature of the load requires a number of consecutive load cycles to be simulated in
order to estimate the steady response of the system. When the procedure is applied to interfacial
crack growth an iterative procedure is necessary in order to take into account the effect of crack
closure on the thermal field around the crack tip. Even a low coefficient of fiction is able to
influence significantly the predicted range of strain energy release rate when a pressure load
acts in phase with the temperature. The assumption for the level of the thermal resistance is of
high importance for the fatigue life prediction and the assumptions for thermal insulation or
perfect thermal contact along the crack faces may lead to conservative or optimistic results.

UsBon

IIpeaBuhame momohy rpaHMYHMX e1eMeHATa CJIOMAa OTIIOPA TepMaJIHe
3amTuTHe npesiaake ( T3II) usioxene Tepmo-MexaHM4KUM onrepehemnma
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Pe3ume

OBa cTyadja OMUCYje MOA-IOMEHCKH MOCTYNMaKk MoMoNy rpaHMYHHX €JIEMEHATa 3a TEPMAJIHY
3allITUTHY IMPCBJIAKY Ca MPCIMHOM HU3JI0OKEHY HUKINYHHUM TEPMO-MEXaHUIKUM OHTepeheH)I/IMa.
Kopumnihene cy HecmperHyTe KBa3wW-CTaTHYKE jeJHAYMHE TEPMOETACTHYHOCTH Ha OCHOBY
IPaHUYHUX HHTErpana ja Ou ce y3eo y 003Up mpena3Hu KapakTep TepMuykor onrtepehema.
[pcnuHa je mocraBsbeHa JyK JOAUPHUX MOBPIIUHA U3Mel)y METaICKOr MoJCoja U KepaMHuKe
npesiake. 3aTBapame MpciuHe ce jorala Ha payyH TEPMHUYKE AUCTOP3Uje U MPUTHCKA KOjU
Jienyje Ha noBpiinHy npesnake. [Ipema Tome, Ha TOIUIOTHU (iayKe u3Mel)y MOBPIIUHA PCIUHE
yTHYe HHMBO 3aTBaparba IPCIUHE, [a Ta4HO ojJpehuBame TemmepaTypa U momepara 3aXTeBa
UTEPATUBHO pEIIaBabe TEPMUYKOT W MEXaHHYKOI Jena npobiiema. Pesynaratu mokasyjy na
napameTpy Kao ITO Cy KOeUIHjeHT Tpermha W OTIOp TEPMHUUYKOr KOHTAaKTa MMajy 3HadajaH
YTHIQ] Ha KanaluTeT npeaBueHor cioMa KOHCTPYKIIMja ca MPCIMHOM U MOpajy OUTH y3eTH Y
003up 1pH MPOLIEHH BeKa Tpajama ycliel 3aMopa.

Kibyune peum: IlpeBmaueme 3a TepMaiHy 3allTHTy, CIOM OTIOpa 3allTHTE, I'PAaHUYHHU
€JIEMEHTH, IMKIMYHO TEPMO-MeXaHH4KO onTepehuBame, Mel)ymoBpIInHCKa IPCIIMHA
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