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Abstract 

The present study describes a sub-regional boundary element procedure for the analysis of 
cracked thermal barrier coatings under cyclic thermo-mechanical loads. The boundary integral 
equations of uncoupled quasi-static thermo-elasticity are employed to account for the transient 
nature of the thermal load. A crack is laid along the interface between a metallic substrate and a 
ceramic coating. Crack closure occurs on account of the thermal distortion and the pressure load 
that acts on the coating’s surface. Therefore, the heat flux between the crack faces is affected by 
the level of crack closure and the accurate determination of temperatures and displacements 
requires iterative solution of the thermal and mechanical part of the problem. The results reveal 
that parameters such as the coefficient of friction and thermal contact resistance have a severe 
impact on the predicted failure capacity of cracked structures and should be taken into 
consideration for the estimation of fatigue life. 

Key words: Thermal barrier coating, failure resistance, boundary elements, thermo-mechanical 
cycling, interfacial crack 

1. Introduction 

Thermal barrier coatings (TBCs) are ceramic layers covering metallic surfaces, submitted to 
extreme thermal and chemical environments. Their aim is to provide thermal insulation and 
oxidation resistance at high temperatures. Numerous applications can be found in aerospace and 
automotive industries. The main objective when designing a TBC is the structural integrity 
throughout its service life. This is a serious problem for the TBC designer since the material 
properties mismatch, in conjunction with thermal cycling, residual stresses and environmental 
effects, may initiate delamination and cracking (Chen et al. 2003). 

Consideration of the interfacial crack growth is of paramount importance when designing 
components protected by thermal barrier coatings in order to increase their endurance and 
efficiency. Although analytical treatments of interfacial fracture in dissimilar media, give 
valuable answers concerning fracture parameters and consequently structural integrity 
assessment, they have limitations in respect of geometric, material and loading complexity. As 
an alternative solution, computational methods like the finite and boundary element methods are 
capable of modelling complex crack geometries and loading conditions. Simulation of the near 
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tip singular stress and thermal flux behaviours can be achieved either by using special crack tip 
elements or by simply increasing the mesh density near the crack tip. Several numerical studies, 
related to the thermal response or fracture of TBCs, have been conducted utilizing the finite 
element method (Nusier and Newaz 2000, Rangaraj and Kokini 2003, Hattiangadi and 
Siegmund 2005). However, when the crack is growing under cyclic fatigue loads, the crack 
growth is modelled through a number of consecutive crack steps (Prasad et al. 1996, 
Hattiangadi and Siegmund 2005, Yan 2007). The geometry and element mesh should be 
updated at each crack step in order to account for the current crack length. The boundary 
element method is very efficient when analyzing growing cracks because only the boundary is 
meshed and not the whole domain of the problem (Prasad et al. 1996, Yan 2007); therefore, the 
reconfiguration of geometry and mesh is easier and additionally the boundary elements exhibit 
very high level of accuracy in analyzing crack problems utilizing a limited number of degrees of 
freedom (Prasad et al. 1996, Yan 2007, Keppas et al. 2008). 

The present paper presents a boundary element procedure based on the sub-regional 
technique and the quasi-static uncoupled theory of thermoelasticity for the analysis of 
interfacial crack growth in the presence of thermo-mechanical cycling. The coating’s surface is 
subjected to combined temperature and pressure loads and crack closure is caused by thermal 
distortions or mechanical compression. Therefore there is an interaction between the thermal 
end elastic fields around the crack tip which is treated by iterative solution of the equations of 
thermoelasticity. The results show significant influence of the level of thermal resistance and 
coefficient of friction on the behaviour of interfacial cracks and provide valuable information 
for the failure assessment of TBCs under cyclic loads.  

2. Boundary element procedure 

2.1 Boundary integral equations of quasi-static thermoelasticity 

The boundary integral equation of quasi-static thermo-elasticity that govern the behavior of a 
two-dimensional elastic solid defined on the region Ω and surrounded by the boundary S, in the 
absence of internal heat sources, body forces and inertia effects is (Brebbia 1984, Banerjee 
1994): 

   
F

0

t

t S

FFFFF txSt,xtt,ξ,xQt,xqtt,ξ,xΘt,ξξc )d()]d(),()(),([)()(   (1) 

 

 







F

0

t

t S

FF
i

FF
i

S

F
jij

F
jij

F
jij

txSt,xtt,ξ,xQt,xqtt,ξ,xΘ

xSt,xuξ,xPt,xpξ,xUt,ξuξc

)d()]d(),()(),([

)()]d()()()([)()(


 (2) 

Equation (1) accounts for the thermal and equation (2) for the elastic field. The symbols x 
and ξ denote boundary points and the constants c and cij depend on the geometry of the 
boundary at point ξ; the variables θ and q represent the temperature and heat flux and uj, pj are 
the components of the boundary displacement and traction vectors, respectively; t is the time, t0 
is the initial and tF the current time instant at which the response is evaluated. The kernels 

),( tt,ξ,xΘ F , ),( tt,ξ,xQ F , )( ξ,xPij , )( ξ,xUij , ),( tt,ξ,xΘ F
i , ),( tt,ξ,xQ F

i  are the 

fundamental solutions for uncoupled quasi-static thermoelasticity (Brebbia 1984, Banerjee 
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1994). The time-marching scheme is based on the convolution technique (Banerjee 1994) and 

constant time interpolation  constttt ff  1
 is used throughout the analysis; therefore, 

the equations (1), (2) can be written as follows: 
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The right part of equations (3), (4) includes the contribution of each past time instant f to 
the response at the current time instant F through the corresponding summations. The boundary 
S is descritized into elements and the application of equations (3), (4) on each boundary node 
leads to the following form of the equations:   
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The vectors }{ , }{q , }{u , }{p  are the nodal boundary values of temperatures, heat 

fluxes, displacements and tractions, respectively and the matrices ][Q , ][Θ , ][P , ][U , ][Q , 

][Θ  contain the contributions of the fundamental solutions.  

It is assumed that the domain Ω of the problem is divided into the sub-regions ΙΩ and ΙΙΩ. 
Then, a common boundary is created between the adjacent sub-regions that consist of a number 
of node pairs; one node of each pair belongs to ΙΩ and the other to ΙΙΩ. The boundary between 
ΙΩ, ΙΙΩ expresses the existence of a crack or a material interface. The present analysis assumes 
that a number of node-pairs are able to come into contact or to open representing the crack and 
some nodes remain coincident expressing the interface between the adjacent sub-regions. These 
situations are treated using appropriate constraint equations on the common boundary for every 
time instant F as provided in Table 1. The superscripts I, II refer to the sub-region, the 
subscripts n, τ denote the normal or tangential component of the displacement and traction with 
respect to the local coordinate system; μ is the coefficient of friction and R is the thermal 
resistance along the contacting crack faces that is dependent on the normal contact traction pn. 
The equations (5), (6) are applied to both ΙΩ and ΙΙΩ; the constraint equations of Table 1 are 
applied and after the assembly over the sub-regions a system of equations is created for the 
current time instant F. The equation for the thermal part is: 
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where the vectors  FIII, θ ,  FIII, q  are defined as: 
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and for the elastic part of the problem: 
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where the vectors  FIII, u ,  FIII, p  are defined as: 
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The subscripts o, c, i denote the open, contact state or the interface, respectively. Table 2 gives 
the criteria that are used during the procedure to check if the nodes of a pair come into contact 
or open and vice versa. 

If the contact state of a node pair has been altered then the thermo-mechanical conditions 
along the crack faces should be updated according to Table 1. This fact in conjunction with the 
existence of the contact pressure-dependent thermal resistance R demands repeated solution of 
equations (7), (9) for the current time step. This iterative procedure stops when there is no 
change in the contact state and the criterion for the thermal resistance is fulfilled: 

 0010100 .
R

RR
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prevlast 
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 (11) 

where Rlast and Rprev are the thermal resistances computed at the last and the previous iteration, 
respectively. Then, analysis proceeds to the next time step. 

 

 

Table 1. Thermal and mechanical contact conditions 
Initial state Check for state change 
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Table 2. Check of the contact state 

2.1 Computation of fracture magnitudes 

The displacement and stress fields behave in an oscillatory manner as the crack tip is 
approached, bounded by r ½ and r - ½ respectively. Chen and Huang (1992) examined the case of 
an interfacial crack under thermal loading conditions and proved that the singularity of heat flux 
and temperature near the crack tip is also of the r ½ and r - ½ respectively but without the 
oscillatory character observed in the stress and displacement fields. Therefore, quarter-point 
elements (QPEs) are used for the representation of temperature and displacement field while 
traction singular quarter-point elements (Katsareas and Anifantis 1996) are utilized to account 
for the heat flux and traction field near the crack tip. In order to analyze the interfacial fracture, 
the strain energy release rate (SERR) is employed. 

Contact Open Interface 

FIIFI qq   FIIFI qq   FIIFI qq   

FIIFI θθ  0q FI  FIIFI θθ   

FIIFI pp    FIIFI pp    FIIFI pp    

F
n

IIF
n

I pp   F
n

IIF
n

I pp   F
n

IIF
n

I pp   

F
n

IFI pμp   0pFI   FIIFI uu    

F
n

IIF
n

I uu   0pF
n

I   F
n

IIF
n

I uu   



Keppas and Anifantis: Boundary element prediction of the failure resistance of TBC …   

 

6 

The SERR G is related to the magnitude of complex stress intensity factor K0 according to 
the equation: 
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where νd, μd,  represent the Poisson’s ratio and shear modulus, respectively and the 
subscript d denotes  the coating C or the substrate S. The magnitude of K0 is computed via the 
traction formula of Gao and Tan (1992): 
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In equation (13) A
np  and A

p  refer to the normal and tangential component of traction at the 

crack tip A and   is the length of the crack tip element. The quantities ζ, ε are defined as ζ = (μC 
+ κC μS)/ (μS + κS μC) and ε = 0.5πlnζ with κd = 3 - 4νd for plane strain or κd = (3 - νd)/ (1+ νd) 
for plane stress. The traction formula  is very simple since it demands only the calculation of 
traction components at the crack tip and it is preferred in the present analysis against alternative 
displacement formulas because it is not sensitive to the length of the QPE; therefore; it ensures 
accurate calculations with relatively coarse mesh (Katsareas and Anifantis 1996). 

3. Computational results 

The problem under consideration is an interfacial crack extension in a TBC. Figure 1 depicts the 
geometry and the boundary conditions of the problem. It is a simple case of a coating–substrate 
bond. The upper surface of the coating is subjected to thermal or thermo-mechanical cyclic load 
which varies with time as shown in Fig. 2.  

 

Fig. 1. Geometry and boundary conditions of the problem 



Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 2, 2010 

 

7 

This temperature profile is very common in turbine blades where the components withstand 
very high heating and cooling rates. The thermal cyclic load may be combined by mechanical 
loading emanating from the pressure of hot gases 

The fracture behavior of TBCs under thermal shock has been investigated in a previous 
work (Keppas et al. 2008) and the procedure was validated through comparison with solutions 
available in the literature.  The bimaterial contains an edge crack of initial length αo = 0.05W.  
The ratios of dimensions are    Hs /Hc = 10 and W/Hs = 1.25. The crack is extended up to the 
length αf = 0.1W utilizing five equal crack increments of length Δα = 0.01W. The procedure for 
the determination of temperatures and displacements described in paragraph 2.1 is applied for 
the initial crack αo under the action of the cyclic load of Fig.  2. When SERR is calculated, the 
boundary element model is updated in order to simulate a crack of length αo + Δα. The cyclic 
load is imposed again leading to the calculation of the new SERR.  The numerical procedure is 
repeated adding each time a crack increment Δα up to the final length αf. The time step is Δt = 1 
sec and the length of QPE is  = α / 20, where α is the current length of the crack. The presence 
of pressure load on the top leads to crack closure, therefore the heat flux between the crack 
faces is controlled by the thermal contact resistance. It is supposed that the thermal resistance 
depends on the normal traction pn along the contacting crack faces with relations of the form: 
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The relation of the tractions on the contact region is controlled by the Coulomb’s friction 
law (Table 1). All the material properties are constant and throughout the temperature range. 
Though it is not the real case, it serves the purpose of the present approximation of interfacial 
crack growth under thermal cycling. The coefficient of heat convection is taken h = 50 W/m2 

oC. The non-dimensional stain energy release rate and the time are derived via the expressions: 
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with Δθ being the difference  Δθ = θmax – θmin, namely the range of temperature load beyond 
the1st cycle in (see Fig. 2). 
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Fig. 2. Thermo-mechanical cyclic load acting on the coating’s surface 

The first analysis regards pure thermal loading with the temperature profile of Fig. 2. The 
number of cycles required for the system to reach its steady cyclic response is not known a 
priori and should be detected with simulation of consecutive cycles. The analysis indicated that 
two consecutive cycles are sufficient for the computation of the representative range of G*. 
Beyond the 2nd cycle the response does not change. The transient behavior of G* is plotted in 
Fig. 3 for several non-dimensional crack lengths α* = α/W where α is the current crack length. 
These results correspond to the thermal resistance function R1 (equation 14) and SERR is 
calculated for the almost frictionless case μ = 0.01 and the more realistic μ = 0.1. Low values of 
coefficient of friction are valid in cases of repeated cyclic loading due to the polishing of the 
crack surfaces caused by the sliding contact. However, for pure thermal loading G* is not 
sensitive to the coefficient of friction.  

Figure 4 presents results with regard to the combined thermo-mechanical loading of Fig. 2 
assuming thermal resistance R1. Again, two consecutive cycles are adequate to account for the 
transient effect up to the steady cyclic response. In the presence of pressure load in phase with 
the applied temperature the impact of friction on the SERR is significant. SERR is drastically 
reduced because of the restriction of sliding due to the pressure. The decrease of the peak value 
of G* is totally responsible for the reduction of the range of SERR. This remark is valid for all 
the crack lengths and explained by the fact that the maximum pressure acts simultaneously with 
the maximum temperature. Comparing the results of Fig. 3 and 4 one can see that the peak 
value of G* is higher for the pure thermal cycling and takes lower values for the combined 
thermo-mechanical cycling; this is valid for all the dimensionless crack lengths plotted in the 
graphs. 
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Fig. 3. SERR variation for pure thermal cycling with thermal resistance R1 
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Fig. 4. SERR variation for thermo-mechanical cycling with thermal resistance R1 

The characteristic ranges *
max

*
max

* GGG  for a number of crack lengths can be further 

utilized in Paris type laws of the form   *GfdNd   to extract the fatigue life of the 

structure in terms of load cycles. Figures 5 and 6 present the evolution of ΔG* during the crack 
growth for different combinations of load, friction and thermal resistance.  
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Fig. 5. Effect of coefficient of friction on the range of SERR for thermal resistance R1 

The Fig. 5 depicts the range of SERR for a growing crack when the thermal resistance is 
R1. Apparently, when the loads is thermo-mechanical the range is reduced up to 45% comparing 
to the pure thermal loading which produce very similar ΔG*. This difference is more 
pronounced as the crack is extended. Another remark is that the higher the crack length is, the 
higher the ΔG*. This comes in agreement with the numerical data of Nusier and Newaz (2000) 
and it is also apparent in Fig. 6. The last figure provides the influence of the level of thermal 
resistance on the predicted ΔG*. The lower thermal resistance R2 permits the restriction of the 
temperature jump across the crack faces and subsequently reduces ΔG* up to one order of 
magnitude. This remark is very important should be taken into account when assessing the 
fatigue life and crack severity in bimaterials. 
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Fig. 6. Effect of thermal resistance on the range of SERR 
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4. Conclusions 

The transient nature of the load requires a number of consecutive load cycles to be simulated in 
order to estimate the steady response of the system. When the procedure is applied to interfacial 
crack growth an iterative procedure is necessary in order to take into account the effect of crack 
closure on the thermal field around the crack tip. Even a low coefficient of fiction is able to 
influence significantly the predicted range of strain energy release rate when a pressure load 
acts in phase with the temperature. The assumption for the level of the thermal resistance is of 
high importance for the fatigue life prediction and the assumptions for thermal insulation or 
perfect thermal contact along the crack faces may lead to conservative or optimistic results. 

Извод 
 

Предвиђање помоћу граничних елемената слома отпора термалне 
заштитне превлаке ( ТЗП) изложене термо-механичким оптерећењима 
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Резиме 

Ова студија описује под-доменски поступак помоћу граничних елемената за термалну 
заштитну превлаку са прслином изложену цикличним термо-механичким оптерећењима. 
Коришћене су неспрегнуте квази-статичке једначине термоеластичности на основу 
граничних интеграла да би се узео у обзир прелазни карактер термичког оптерећења. 
Прслина је постављена дуж додирних површина између металског подслоја и керамичке 
превлаке. Затварање прслине се догађа на рачун термичке дисторзије и притиска који 
делује на површину превлаке. Према томе,  на топлотни флукс између површина прслине 
утиче ниво затварања прслине, па тачно одређивање температура и померања захтева 
итеративно решавање термичког и механичког дела проблема. Резултати показују да 
параметри као што су коефицијент трења и отпор термичког контакта имају значајан 
утицај на капацитет предвиђеног слома конструкција са прслином и морају бити узети у 
обзир при процени века трајања услед замора. 

Кључне речи: Превлачење за термалну заштиту, слом отпора заштите, гранични 
елементи, циклично термо-механичко оптерећивање, међуповршинска прслина 
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