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Abstract 

The main objective of the present investigation is to carryout a nonlinear analysis of reinforced 
concrete beams resting on elastic foundation. Material nonlinearities due to cracking of 
concrete, plastic flow, crushing of concrete and yielding of reinforcement are considered. 
Foundation representation is assumed linear using Winkler model. 

The reinforced concrete beams is modeled by using three dimensional finite elements with 
steel bars as smeared layers. The examples have been chosen in order to demonstrate the 
applicability of the modified computer program (Dynamic Analysis of Reinforced Concrete 
Beams on Elastic Foundations DARCEF) by comparing the predicted behavior with that from 
other experimental and analytical observations. 

The program modified in the present research work is capable of simulating the behavior of 
reinforced concrete beams resting on Winkler foundation and subjected to different types of 
loading. The program solutions obtained for different reinforced concrete beams resting on 
elastic foundations are in good agreement with the available results. Maximum percentage 
difference in deflection is 15%.  

Keywords: Deep beams , elastic foundations, finite element,  reinforced concrete,  three 
dimensional. 

1. Introduction 

It is a common practice to use a linear analysis for reinforced concrete structures. Both the 
strains and displacements developed in the structure are assumed to be small. This means that 
the material and geometrical nonlinearities are not taken into account; therefore the expected 
behavior of the member differs from the real behavior leading to approximate solutions. It is 
known that, plain concrete has low tensile strength, limited ductility and little resistance to 
crack propagation. Flaws or micro-cracks develop in concrete during its manufacture and even 
before any load is applied. Published papers have shown that when reinforced concrete is 
subjected to different types of loading it will exhibit a highly nonlinear behavior due to 
cracking, crushing aggregate interlock, dowel action and yielding of reinforcement. 
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 Problem of reinforced concrete beams on elastic foundations with both compressional and 
frictional resistances are good examples to extend the applications to foundations. In these 
problems, the compressional resistances of the elastic medium to the bottom face of the beams 
are determined by considering the linear relationships of the normal displacement to the 
compressional reactions (Winkler model). The frictional restraints are modeled by considering 
the linear relation to the horizontal displacement (Winkler model). 

Winkler (1867) proposed the first model of beam on an elastic foundation based on pure 
bending beam theory, later Pasternak in 1954 proposed the shear model based on the 
assumption of pure shear of the beam. Both of these two models take an extreme point of view 
on the deformation behavior of the beam. Timoshenko in 1921 proposed models for the 
vibration of deep beams; his beam theory still attracts people's attention for studying the static 
and dynamic responses of deep beams (Bowles 1974).  

Biot (1937) considered the problem of bending, under a concentrated load, of infinite 
flexible beams on a homogeneous elastic-isotopic subgrade. 

Levinson (1949) suggested that the contact pressure is represented by a number of 
redundant reactions which would create a set of simultaneous equations in terms of pressures 
diagram coordinates and elasticity constants. 

Terzaghi (1955) established a number of equations to calculate the modulus of subgrade 
reaction for cohesive and cohesionless soils, depending on plate load test results. 

Cheung and Nag (1968) studied the effects of separation of contact surfaces due to uplift 
forces. In addition, they have enabled the prediction of the bending and torsion moments in the 
plate sections by adopting three degrees of freedom per node. 

Bowles (1974) developed a computer program to carry out the analysis of beams on elastic 
foundation by using the finite element method, in which Winkler model is adopted to represent 
the elastic foundation. 

Selvadurai (1979) presented a theoretical analysis of the interaction between a rigid circular 
foundation resting on elastic half space and a distributed external load of finite extent which 
acts at an exterior region of the half space. 

Yankelevsky et al. (1988) presented an iterative procedure for the analysis of beams resting 
on nonlinear elastic foundation based on the exact solution for beams on a linear elastic 
foundation. 

Yin (2000) derived the governing ordinary differential equation for a reinforced 
Timoshenko beam on an elastic foundation. 

Guo and Wietsman (2002) made an analytical method, accompanied by a numerical 
scheme, to evaluate the response of beams on the space-varying foundation modulus, which is 
called the modulus of subgrade reaction (Kz=Kz(x)). 

2. Material modeling 

2.1 Numerical modeling of concrete 

The numerical modeling of concrete, which is used in the nonlinear finite element program, 
includes the following: 

A stress-strain model to represent the behavior of concrete in compression. 
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Failure criteria to simulate cracking and crushing types of fracture. 

A suitable crack representation model. 

A post-cracking stress-strain relationship. 

2.1.1 Stress-strain models for concrete in compression 

Because of the complex behavior of reinforcement and concrete under general load, a 
mathematical description of the material properties of concrete is established by using suitable 
constitutive equations. Several models have been proposed to define the complicate stress-strain 
behavior of concrete in compression under various stress states (Chen 1982). These models can 
be generally classified into: 

Elasticity based models. 

Plasticity based models. 

2.1.2 Modeling of concrete fracture 

Fracture of concrete can be classified as crushing or cracking. The crushing type of fracture is 
defined by progressive degradation of the material internal structure under compressive stresses. 
The cracking type of fracture is characterized by a general growth of micro-cracks which join 
together to form a failure plane. 

In general, two different methods were employed to represent the cracks in the finite 
element analysis of concrete structures. These are the discrete crack representation and the 
smeared cracks representation. 

In the first model, the cracks are simulated by physical separation or disconnection by the 
displacements at nodal points for adjoining element (Fig. 1). The major difficulty in this 
approach is that the location and orientation of the cracks are not known in advance. 

 

(a)  One dimensional cracking                                     (b) Two dimensioal cracking 

Fig. 1. Discrete crack representation. 

In the second approach, the cracked concrete is assumed to remain a continuum and implies 
an infinite number of parallel fissures across that part of a finite element (Fig. 2). The cracks are 
assumed to be distributed, or smeared, over the volume of the sampling point under 
consideration. 
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Fig. 2. Smeared crack representation. 

2.1.3 Post-cracking behavior 

Many experimental studies show that when the concrete cracks, the tensile stresses normal to 
the cracked plane are gradually released as the crack width increases. This response can be 
generally modeled in the finite element analysis using the tension-stiffening model. 

When the tensile stress reaches the limiting tensile strength, primary cracks will be formed. 
The properties of cracks, and their number and extent, depend on the size, position and 
orientation of the reinforcing bars with respect to the plane of cracks. 

2.1.4 Yield criterion 

 As mentioned earlier, a yield criterion must be independent of the coordinates 
system in which the stress state is defined. Therefore, it must be a function of 
stress invariants only. Under multiaxial state of stresses, the yield criterion for 
concrete is assumed to depend on three stress invariants. However, a yield 
criterion, which depends on two stress invariants, has been proved to be 
adequate for most practical situations. The yield criterion incorporated in the 
present model is expressed as (Chen 1982): 

          2
1

2121 3, JIJIff  (1) 

where,  and   are the material parameters,  

I1 and J2 are the first stress invariant and the second deviatoric stress invariant, respectively 
that are given by: 
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The stress (  ) is the equivalent effective stress at the onset of plastic deformation which 

can be determined from uniaxial compression test as: 

 '. cP fC  (3) 
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The coefficient (Cp) is the plasticity coefficient, which is used to mark the initiation of 
plasticity deformation. 

The material parameters  and   can be determined from the uniaxial compression test 

and biaxial test under equal compressive stresses. The parameters  and   have been found to 

be (0.35468) and (1.35468) respectively and equation (1) can be rewritten as: 

         2/1
21 32 JIcf  (4) 

where, 

   7734.12/  c  (5) 

Equation (4) can be solved for (  ) as: 

         2
1

2
2

11 3 JcIcIf  (6) 

The hardening rule is necessary to describe the motion of the loading surfaces during 
plastic deformation. In the present study an isotropic hardening rule is adopted. Therefore, 
equation (6) can be expressed for the subsequent loading functions as: 

       *
2

2
11

2
1

3   JcIcIf  (7) 

where,   

* represents the stress level at which further plastic deformation will occur and is termed 
as the effective stress or the equivalent uniaxial stress. The incremental theory of plasticity 
implies a relationship between the effective stress and the effective plastic strain to extrapolate 
the results of a uniaxial state of stress to multiaxial states. 

The effective, accumulated, plastic strain, p , can be calculated by integrating the effective 

plastic strain increment, pd , along the strain path as: 

 pp d   (8) 

The effective plastic strain increment may be determined using the work hardening 
hypothesis as: 
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In the present model, the stress-strain curve is assumed to have a parabolic relationship for 
both normal and high strength concrete. This parabolic curve represents the work-hardening 
stage of behavior, when the peak compressive stress is reached, a perfectly plastic response is 
assumed to occur. Figure 3 shows the equivalent uniaxial stress-strain curve in the various 
stages of behavior, which is given: 

1. During the elastic stage, when '* . cp fC    

 cE  .*   (10) 
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2. After the initial yield, and up to the peak concrete compressive strength, when 
'*'. ccp ffC   , then 
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3. Beyond the peak stress, when '
 c   

 '*
cf  (12) 

where, '
 , is the total strain corresponding to the parabolic part of the curve given by: 

   EfC cp  .12'
  (13) 

 

Fig. 3. Equivalent effective stress-strain curve for concrete. 

In the present study, values of 0.3 and 0.5 are assumed for plastic coefficient Cp for the 
normal and high strength concrete respectively, and the plastic yielding begin at a stress level of 
Cp fc

'(Al-Ani, 2000). If Cp=1.0, then the elastic perfectly plastic behavior is specified (Fig. 3). 

2.2 Modeling of reinforcement 

The mechanical properties of steel in compression are well known and understood. Steel is a 
homogeneous material and the stress-strain behavior can be assumed to be identical in tension 
and compression. Steel bars in reinforced concrete members are normally long and relatively 
slender and therefore they can be generally assumed to be capable of transmitting axial forces 
only. 

In the present study, the uniaxial stress-strain behavior of reinforcement is simulated by an 
elastic-linear work hardening model, as shown in figure 4.   

  
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Fig. 4. Stress strain relationship of steel bar. 

3. Finite element representation 

The finite element idealization of reinforced concrete is necessary for the application to 
reinforced concrete beams under static loads. In the present study, concrete is simulated by 
brick elements, and reinforcement bars are modeled as a smeared layer (Al-Obaidie 2005). 

3.1 Concrete representation 

The 20-node isoparametric quadratic brick element is used in the present study to represent the 
concrete. 

3.1.1 Displacement representation 

The displacement field within the element is defined in terms of the shape functions and 
displacement values at the nodes. Each nodal point has three degrees of freedom u, v and w 
along the Cartesian coordinates x, y and z, respectively. 

Therefore, for each element the displacement vector is:  

   202020222111 ,,.........,,.........,,,,, wvuwvuwvua   (14) 

The strains are given by : 
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or 

     aB  (16) 

where, [B] is the strain displacement matrix. 

The stresses are given by : 
 

        aBDD   ][  (17) 

where, [D] is the stress-strain elastic relation matrix given by: 
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where,  
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in which E is the Young’s modulus,    is the Poisson’s ratio and G is the shear modulus.  

3.1.2 Element stiffness matrix formulation 

The stiffness matrix for a concrete element of volume ve can be expressed as 

        e

V

Te
b dVBDBK

e
  (19) 

The element volume dVe can be written in terms of global and local coordinate system as 
follows: 
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  dddJdxdydzdve   (20) 

where, 

J , is the determinant of Jacobian matrix. 

Therefore, equation (19) can be written as: 
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where, for the natural coordinates, the limits of integration become -1 and +1. 

3.2 Reinforcement representation 

There are three alternative representations, which have been widely used to simulate the 
reinforcement in connection with the finite element formulation. These representations are 
(Scordelis 1971): 

a- Discrete representation. 

b- Distributed representation. 

c-Embedded representation. 

In the present study, the distributed representation is used (Fig.5). For this representation, 
the steel bars are assumed to be distributed over the concrete element in any direction in a layer 
with uniaxial properties. A composite concrete-reinforcement constitutive relation is used in 
this case. To derive such a relation, perfect bond is assumed between concrete and steel. 

 

Fig.  5. Distributed representation of reinforcement. 
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3.3 Stiffness matrix for the foundation-Kf   

For a foundation represented by Winkler model for both compressional and frictional restraints, 
the stiffness matrix for the foundation is: 
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where , 
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The element stiffness matrix of the beam-foundation system can be calculated from the 
following expression: 

      fb KKK   (24) 

A modified computer program (DARCEF) (Dynamic Analysis of Reinforced Concrete 
Beams on Elastic Foundations) (Al-Obaidie 2005) of the original program (DARC3) (Dynamic 
Analysis of Reinforced Concrete in 3D) (Hinton 1988) is developed for solving the problems of 
reinforced concrete beams resting on elastic foundations. The Winkler model for compressional 
and frictional resistances is added to the original program to represent the foundation. 

4. Applications 

 A simply supported beam resting on an elastic foundation is analyzed using the computer 
program (DARCEF), such beam was tested by Al-Jubory (1992) and also by Al-Musawi (2005) 
with a uniformly distributed load at the top face of the beam, as shown in figure 6. Due to the 
symmetry of geometry and loading, only one half of the beam is analyzed using 5-elements 
with total number of nodes equal to 68 as shown in figure 7. The beam was analyzed assuming 
linear elastic material behavior and without steel reinforcement. In the present study, the beam 
is analyzed linearly and nonlinearly to show the difference in the deflection and to compare the 
results with the exact solutions. The material properties are: 

 25000cE N/mm2, 15.0c , 30cf  N/mm2, 3tf  N/mm2, 

 0035.0cu , (concrete density) 5.24 ×10-6 N/mm3,  

 1zK  N/mm3, 2 yx KK  N/mm3 

The beam dimensions are length (1000 mm), width (100 mm) and depth (200 mm), and the 
beam is subjected to uniformly distributed load of (q = 250×10-3 N/mm2) (Fig. 6). Al-Musawi 
(2005) used three types of finite elements meshes to analyze this beam. Only two types of 
elements are chosen in the comparison of the results, which are (brick elements and beam 
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elements). The values of deflections with distances are drawn in figure 8 as a comparison with 
the exact linear solution from Hetenyi (1949). 

 

Fig.  6. Simply supported beam resting on an elastic foundation and subjected to a uniformly 

 

Fig. 7. Simply supported beam details and sections. 

 

Fig.  8. Deflection curves for simply supported beam resting on an elastic foundation 
(comparison with previous studies). 

Brick elements and nodes details. 
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Fig.  9. Deflections curves for linear and nonlinear material solutions. 

From figure 9, the value of deflection for the nonlinear analysis is greater than that for the 
linear analysis due to the effect of the cracking and the nonlinearity in the material as given in 
Table 1.  

 

Method of analysis  
Deflection at mid span  

(x10-3) (mm) 
Percentage difference from 
the nonlinear analysis (%) 

 Al-Musawi (2005) Beam element -119 21.7 % 

Al-Musawi (2005) Brick element -117 23 % 

Exact solution [Hetenyi , (1979). -118 22.4 % 

Al-Jubory (1992)  -122 19.7 % 

Present study (linear analysis) -127 16.4 % 

Present study (nonlinear analysis) -152 0 % 

Table 1. Values of deflection at mid span of simply supported beam resting on an elastic 
foundation as a comparison with previous studies. 
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The second example is a simply supported beam resting on an elastic foundation. The beam 
is analyzed using the computer program (DARCEF), such beam was tested by Yin in 2000 [9] 
with a limited uniformly distributed load at the top face of the beam, as shown in figure 10. Due 
to the symmetry of geometry and loading only one half of the beam is analyzed using 5 
elements with total number of nodes equal to 68 as shown in figure 11. The beam was analyzed 
to obtain closed-form solution for a reinforced Timoshenko beam on an elastic foundation. Yin 
in 2000 analyzed this beam with two solutions as shown in figure 10. The material properties 
are: 

50cE ×103 Ν/ mm 2, 3.0c , 25cf  Ν/ mm 2, 5.2tf  Ν/ mm 2,     400yf  

Ν/ mm 2, 0035.0cu , 5.24 ×10-6 Ν/ mm 3, 027.0zK  Ν/ mm 3, 0 yx KK  
(Reinforcement thickness = 20 mm in one layer) 

The beam dimensions are length (3000 mm), width (100 mm) and depth  (640 mm). The 
beam is subjected to a finite uniformly distributed load (q =1000×10-3  N/mm2). This load is 
applied at the top face of element number 5 as shown in figure 11.   

The variation of deflections with distances is drawn in figure 12. Also, the steel stress in 
comparison with Yin solution is listed in figure 13. A comparison between the deflections 
values is listed also in Table 2 with the difference in percentage in those values. A good 
agreement in results was obtained in this comparison. 

 

Fig.  10. Simply supported beam on an elastic foundation and subjected to a finite uniformly 
distributed load. 

 

Fig. 11. Simply supported beam details and sections. 
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Fig. 12. Defection curves for simply supported beam resting on an elastic foundationin 
comparison with other studies. 

 

Fig. 13. Steel stress compared with previous study. 
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Distance (mm) 
Deflections by (Yin 2000) 

solution 1 (mm) 
Deflections by  (Yin 

2000) solution 2 (mm) 
Present 

study (mm) 

0 0 0 0 

500 -0.05 -0.048 -0.053 

1000 -1.7 -1.6 -1.9 

1500 -3 -3.6 -2.98 

Table 2. Values of deflections at mid span for half of simply supported beam resting on an 
elastic foundation in comparison with previous solutions. 

5. Parametric study 

A parametric study is performed to show the influence of several important parameters on the 
behavior of reinforced concrete beams resting on elastic foundations and subjected to two 
concentrated loads. 

The following important parameters are studied and discussed in this section: 

1. The effects of increasing beam dimensions on the behavior of beams resting on elastic 
foundation. 

2. The effects of horizontal and vertical subgrade reactions (Kx, Ky) and (Kz) on the beam 
behavior. 

To study the effects of these parameters, a simply supported reinforced concrete beam 
resting on an elastic foundation under two concentrated loads is considered with geometrical 
quantities and material constants shown in figure 14 and figure 15. 

 

Fig. 14. Simply supported beam resting on an elastic foundation under two concentrated loads. 
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Fig. 15. Geometry, loading and finite element mesh of the simply supported reinforced concrete 
beam resting on an elastic foundation.  
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The material properties of the reinforced concrete beam are: 

  N/mm2, 0.15υc  , 36cf  N/mm2, 8.3tf  N/mm2, 

 , 200000sE  N/mm2, 333yf  N/mm2, 

 1983sA  mm2, 5.24 ×10-6 N/mm3, 

 Reinforcement thickness  t = 3.91 mm)     (P/2 = 90 ×103 N) 

5.1 Effects of beam dimensions on the behavior 

To show the effects of increasing the beam dimensions on the behavior of reinforced concrete 
beams, different values of dimensions are considered. In the first case the effects of beam width 
is studied.  The same properties of the beam are used except the width of the beam is taken 
equal to two times and three times of its original value (b = 300 mm and b = 450 mm).  

The effect of increasing the beam width on maximum deflection is shown in figure 16. 
From this figure, the maximum deflection will decrease at a decreasing rate as the beam width 
is increased. It was found that by increasing the width of the beam from (150 to 450 mm), the 
maximum deflection for the beam is decreased by (31.25%). 

The effect of increasing the beam width on maximum steel stress is shown in figure 17. 
From this figure, the maximum steel stress will decrease at a decreasing rate as the beam width 
is increased. It was found that by increasing the width of the beam from (150 to 450 mm), the 
maximum steel stress for the beam is decreased by (21.21%). 

 

Fig. 16. Effect of beam width on the maximum deflection.  
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Fig. 17. Effect of beam width on maximum steel stress.  

In the second case, the effect of beam depth on the behavior is considered.  The same 
properties of the beam are used except the depth of the beam is taken equal to two and three 
times of its original value (h = 600 mm and h = 900 mm). 

The effect of increasing the beam depth on maximum deflection is shown in figure 18. 
From this figure, the maximum deflection will decrease at a decreasing rate as the beam depth 
is increased. It was found that by increasing the depth of the beam from (300 to 900 mm), the 
maximum deflection for the beam is decreased by (16.67%). 

 

Fig. 18. Effect of beam depth on the maximum deflection. 

The effect of increasing the beam depth on maximum steel stress is shown in figure 19. 
From this figure, the maximum steel stress will decrease at a decreasing rate as the beam depth 
is increased. It was found that by increasing the depth of the beam from (300 to 900 mm), the 
maximum steel stress for the beam is decreased by (12.12%). 
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Fig. 19. Effect of beam depth on maximum steel stress. 

5.2 Effects of vertical and horizontal modulus of subgrade reactions on the behavior 

To show the effect of vertical subgrade reaction (Kz), on the behavior, different values of Kz  
are taken. The values of the horizontal subgrade reactions (Kx and Ky) are assumed to be zero to 
consider the effect of vertical subgrade reaction Kz which is assumed (0.128 N/mm3, 0.256 
N/mm3, 0.512 N/mm3, and 1.024 N/mm3) 

The effect of increasing the vertical subgrade reaction on the mid span deflection of 
reinforced concrete beam resting on an elastic foundation is listed in Table 3 with the 
percentage difference from the original value. It is seen that as the value of the modulus of 
subgrade reaction is increased form 0.128 N/mm3 to 1.024 N/mm3, the mid span deflection 
value decreased by about (51 %) from the original value. 

To study the effect of the horizontal subgrade reactions (Kx and Ky) the vertical subgrade 
reaction is assumed constant and equal to (Kz =0 .128 N/mm3). The values of horizontal 
subgrade reaction are assumed as (0.0, 0.128 N/mm3, 0.512 N/mm3, 1.024 N/mm3). The effect 
of horizontal subgrade reaction (Kx and Ky) on the displacement in y-direction of reinforced 
concrete beam resting on an elastic foundation is listed in Table 4, and the effect of horizontal 
subgrade reactions on the deflection value are listed in Table 5. From Table 4, when the value 
of the horizontal modulus of subgrade reaction is increased as the mid span horizontal 
displacement value is decreased by about (45.75 %) from the original value. From Table 5 the 
effect of horizontal subgrade reaction on the mid span deflection value is about (9 %) from the 
original value. From the tables, it is seen that both the horizontal and vertical modulus of 
subgrade reactions have effects on the deflection value.  
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Modulus of subgrade 
reaction (Kz)  N/mm3 

Deflection at mid-span Z-
direction   (mm) 

Percentage difference from the 
original value [25.23 mm] as 

(%) 

0.128 -23.23 7% 

0.256 -22.2 12 % 

0.512 -18.9 25 % 

1.024 -12.15 51 % 

50 

(assumed) 
-1.54 93% 

 

Table 3. Effect of vertical subgrade reaction (Kz) on the mid-span deflection of reinforced 
concrete beam resting on an elastic foundation. 

Modulus of subgrade 
reactions (Kx and Ky)  

N/mm3 

Displacement at mid-
span Y-direction (mm) 

Percentage difference from the 
original value [-0.43198 mm] as (%) 

0.0 -0.43198 0 % 

0.128 -0.42629 1.5 % 

0.512 -0.24919 42.3 % 

1.024 -0.23417 45.75 % 

Table 4. Effect of horizontal subgrade reactions (Kx and Ky) on the mid-span horizontal 
displacement of reinforced concrete beam resting on an elastic foundation.  

Modulus of subgrade 
reactions (Kx and Ky)  

N/mm3 

Deflection at mid-span 
Z-direction   (mm) 

Percentage difference 
from the original value 

[25.23 mm] as (%) 
0.128 -25.23 0 % 
0.512 -23.7 6.1 % 
1.024 -23.02 9 % 

 

Table 5. Effect of horizontal subgrade reactions (Kx and Ky) on the mid span deflection of 
reinforced concrete beam resting on an elastic foundation.  
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6. Conclusions 

 The (DARCEF) program used in the present research work is capable of simulating the 
behavior of reinforced concrete beams resting on elastic foundations and 
subjected to different types of loading. The program solutions obtained for 
different reinforced concrete beams resting on elastic foundations are in good 
agreement with the available results. Maximum percentage difference in 
deflection is 15%. 

 The maximum deflection will decrease at a decreasing rate as the beam width is 
increased. It was found that by increasing the width of the beam from (150 to 450 
mm), the maximum deflection for the beam is decreased by (31.25%). 

 The maximum steel stress will decrease at a decreasing rate as the beam width is 
increased. It was found that by increasing the width of the beam from  (150 to 450 
mm), the maximum steel stress for the beam is decreased by (21.21%). 

 The maximum steel stress will decrease at a decreasing rate as the beam depth is 
increased. It was found that by increasing the depth of the beam from (300 to 900 
mm), the maximum steel stress for the beam is decreased by (12.12%). 

 The maximum deflection will decrease as the vertical subgrade reaction is increased. 
Also, the maximum deflection will decrease as the horizontal subgrade reaction is 
increased. It was found that by increasing the vertical and horizontal subgrade 
reactions for the beam from (0.128 N/mm3 to 1.024 N/mm3), the maximum 
deflection is decreased by (51%) and (9%) respectively.  
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