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Abstract 

Passive millimetre-wave (PMMW) imaging is a technique that detects thermal radiation emitted 
and reflected by metallic and non-metallic objects. While visual and infra-red (IR) emissions 
are attenuated by atmospheric constituents, PMMW emissions are transmitted, resulting in 
consistent contrast between objects from day to night even in low-visibility conditions. The use 
of a PMMW imaging system on an unmanned aerial vehicle (UAV) has applications for 
airborne surveillance, but the size of the UAV precludes optical or mechanical scanning. One 
solution is a long, thin antenna fitted under the UAV. This antenna has a narrow beam along the 
plane perpendicular to the flight path, but a broad beam along the plane of the flight path blurs 
the image, making it difficult to determine the position of objects or to differentiate between 
objects. This paper proposes a technique of image reconstruction based on the Kalman filter to 
reconstruct an accurate image of the target area from such a detected signal. It is shown that 
given a simulated target area, the Kalman filter is able to reconstruct the image using the 
measured antenna pattern to model the scanning process and reverse the blurring effect. 

Keywords: Image Reconstruction, Kalman Filter, Passive Millimetre-Wave Imaging 

1. Introduction 

Passive millimetre-wave (PMMW) imaging is a technique that uses radiometers to detect 
thermal radiation emitted and reflected by metallic and non-metallic objects. While visual and 
infra-red (IR) emissions are attenuated by atmospheric constituents, PMMW emissions are 
transmitted, resulting in consistent contrast between objects from day to night even in low-
visibility conditions to form images for a range of security and inclement weather applications. 

Passive imaging techniques form images by exploiting the natural phenomena of objects 
within a target area and the medium surrounding the target area. The effective temperature of an 
object is a function of emission of physical temperature, reflection of illumination temperature 
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and transmission of background temperature. The detected temperature of an object is the 
effective temperature of the medium, with the object supplying the background temperature. 

In clear weather the use of optical radiometers to detect the reflected illumination off 
objects in the presence of sunlight and the use of IR radiometers to detect the emitted radiation 
of objects in the absence of sunlight are sufficient to form an image of the target area. The 
presence of atmospheric constituents within the medium separating the radiometer from the 
target area causes sufficient attenuation to cripple these imaging systems. 

PMMW imaging systems operate within the millimetre-wave (MMW) region, defined as 
30GHz  to 300GHz . Imaging within the MMW region in inclement weather is possible 
because the MMW region contains transmission windows around 35GHz , 94GHz , 140GHz  
and 220GHz , where the attenuation caused by atmospheric constituents such as oxygen, 
precipitation, suspended water particles and water vapour is low (Liebe 1983). 

The unique difference in signature in the MMW region between metallic objects, detected 
by strongly reflecting the illumination temperature, and non-metallic objects, detected by 
strongly emitting the physical temperature, result in high contrast images (Yujiri 2003). For a 
large range of atmospheric conditions even camouflaged metallic objects are distinguishable 
from the surrounding absorptive background (Wilson 1986). 

The concentration of natural illumination within the optical region, the concentration of 
natural emissions within the IR region and the minimal variation in transmission between 
different atmospheric constituents within the transmission windows of the MMW region result 
in PMMW images that have consistent contrast between different objects from day to night in 
clear weather and in low visibility conditions. 

These images are used in all-weather fixed and mobile land, air and sea surveillance and 
navigation (Wilson 1986, Appleby 2007), such as the location and point of origin of boats in 
search and rescue operations, for reconnaissance and in the apprehension of drug traffickers 
(Yujiri 2003). The transmission of MMW emissions through canvas and plastic is used to detect 
concealed personnel in soft-sided vehicles attempting to illegally cross borders (Hopper 2005). 

The contrast in emission between land, water, vegetation and minerals results in the 
identification of planetary surface composition to allow for mapping of annual rainfall levels 
(Chandrasekar 2003) and the degree of moisture in agricultural land (Ulaby 1986, §19.1). The 
extent of the change in emission of water caused by the introduction of oil and ice is used to 
map the extent and thickness of an oil spill at sea (Yujiri 2003) and map sea ice movements 
(Ulaby 1986, §18.5). 

The use of a PMMW imaging system on a unmanned aerial vehicle (UAV) has applications 
for airborne surveillance, but the size of the UAV precludes optical or mechanical scanning. 
One solution is a long, thin antenna fitted under the UAV. This antenna has a narrow beam 
along the plane perpendicular to the flight path, but a broad beam along the plane of the flight 
path blurs the image, making it difficult to determine the position of objects or to differentiate 
between objects. 

This paper proposes a technique of image reconstruction based on the Kalman filter 
(Kalman 1960), a recursive filter that uses feedback control to estimate the state of a partially 
observed process, to reconstruct an accurate image of the target area from the detected signal. 
Given a simulated target area, the Kalman filter is able to reconstruct the image using the 
measured antenna pattern to model the scanning process and reverse the blurring effect. 

In Section 2 the passive imaging system is designed, showing how the image is formed. In 
Section 3 the mathematical model of the Kalman filter is detailed, showing how the image is 



D. MP Smith et al: Image Reconstruction by means of Kalman Filtering in Passive Millimetre-Wave Imaging  

 

18 

reconstructed from noisy measurements. In Section 4 the implemented system is described, 
showing how the parameters are assigned for the given system. In Section 5 simulated results of 
the proposed technique are dissected, showing how the Kalman filter reconstructs the image. 

2. PMMW Imaging System 

In this paper a PMMW imaging system, designed to detect objects in low-visibility conditions, 
is proposed for fitting under a UAV. PMMW images are formed by capturing the emissions 
from the target area using antennae and measuring the magnitude of the captured emissions 
with detectors. The simplest model is a single antenna operating at a single frequency directed 
at a single orientation scanned over the target area by a mechanical motor, as depicted in Fig 1. 

 

Fig. 1. Total power peterodyne radiometer 

The antenna captures the emissions, the mixer converts the radio frequency (RF) RFf  signal 

to a lower intermediate frequency (IF) IFf  signal using the local oscillator (LO) frequency LOf , 

the filter removes the unwanted mixing products and the detector converts the wanted signal to 
a power level, with the amplifiers strengthening the signal. Good noise performance is vital to 
deal with the emissions that are between 1010  and 710  times smaller than IR emissions. 

The choice of atmospheric window is a compromise between price, transmission and 
resolution. Technology is immature within the transmission windows at 140GHz  and 
220GHz , thereby making these options not cost-effective. For a given antenna aperture the 
94GHz  window has greater spatial resolution, but the 35GHz  window is chosen for the greater 
transmission through atmospheric constituents and thin layers of absorbent materials. 

The speed of the simple model of Fig. 1 is increased by making use of multiple antennae, 
with the orientation of the antennae controlled using electronic, optical or mechanical 
techniques. The size of the UAV precludes any form of optical or mechanical scanning, thereby 
limiting the design to electronic scanning. In using the motion of the UAV to scan along the 
plane of the flight path, the antenna scans only along the plane perpendicular to the flight path. 

As the phase of the antenna tilts linearly as a function of frequency, by measuring the 
antenna over a wide frequency band the scan angle is swept over the target area. Frequency-
scanning arrays are simple, inexpensive and reliable as no expensive controlling electronics and 
no slow moving parts are required, with space-to-frequency mapping an inherent property, as 
depicted in Fig. 2. While the scan angle is limited, this is an economical, compact and fast 
system well suited to work with the available space and power on the UAV. 
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Fig. 2. Antenna patterns at different frequencies 

In using a frequency-scanned array for the antenna the captured emissions are split up into 
different frequency bands before detection to maintain the space-to-frequency mapping of the 
antenna. This is done by upgrading the simple model of Fig. 1 to include a multiplexer after the 
second IF amplifier and adding a filter and detector for each channel of the multiplexer, as 
depicted in Fig. 3. 

 

Fig. 3. Multi-channel passive millimetre-wave imaging radiometer 

The spatial resolution of an imaging system is defined by the number of resolvable pixels 
across the horizontal field of view, and is directly proportional to the size of the antenna and 
indirectly proportional to the wavelength of the emissions. MMW wavelengths are much longer 
than optical and IR wavelengths, requiring much larger antennae to achieve equivalent 
resolution to IR and optical imaging systems. 

The image is built up line by line as the antenna concurrently scans the target area along the 
plane perpendicular to the flight path, with each orientation scanned by a beam at a different 
frequency 0

mf . The frequency range Lf  to Hf  is divided into M  contiguous bands, each 

assigned to a different pixel column, mP . The flight path time-period 0t  to Nt  is divided into 

N  measurements taken at discrete time-intervals, each assigned to a different pixel row, nP . 

The combination of flight-measuring and scan-filtering maps the w h  coordinate system 
of the target area to the f t  coordinate system of the image of size N M , as depicted in Fig. 

4. Because of the antenna construction, it displays a narrow, high gain, frequency-scanned beam 
along the plane perpendicular to the flight path, but a very broad beam along the plane of the 
flight path that leads to a larger area than the target area being detected. 
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Fig. 4. Target area 

When flying over the target area the image of an object is blurred along the plane of the 
flight path, making it difficult to determine the position of objects or to differentiate between 
objects situated along the plane of the flight path. Prevention is impossible as the size of the 
UAV precludes the use of bulky optics to focus the antenna along the plane of the flight path as 
well. The solution is a post-processor that reconstructs the target area from the blurred image. 

3. Mathematical Model 

Image degradation is conventionally defined in literature as a combination of blurring of the 
edges between regions and the addition of random noise to the image. The conventional 
methodology of image reconstruction is to invert the effect of the degradation. As blurring and 
noising have opposing effects, the reconstruction algorithm must balance deblurring and 
denoising to reconstruct the original image. 

The conventional methodology makes use of algorithms incorporating iterative partial 
differential equations of the form 1 /k k kz z t z t      , where t  is the step size of the 

algorithm and the reconstruction method is determined by the formulation of /kz t  . There are 

three basic approaches to reconstruct an image, with the two denoising algorithm based on 
parabolic equations and the deblurring algorithm based on hyperbolic equations. 

The canonical axiomatic approach to denoising is isotropic diffusion, which is equivalent to 
a smoothing process with a Gaussian kernel. Isotropic diffusion contains no mechanism to 
differentiate between regions in an image and diffuses the image as a whole. Anisotropic 
diffusion (Perona 1990) was introduced in order to locate and diffuse regions separately while 
maintaining sharp edges by constructing a nonlinear adaptive denoising process. 

The canonical variational approach to denoising is total variation (Rudin 1992), which is a 
minimisation process. Total variation uses a globally defined scalar,  , that results in fine 
detail being diffused. Adaptive total variation (Gilboa 2003) was introduced in order to preserve 
texture by locally reformulating  . The locally defined   results in each region being 
denoised separately to improve the detail retention during denoising. 

The canonical approach to deblurring is the shock filter (Osher 1990), which behaves 
similar to deconvolution. The edges are sharpened by developing shocks at inflection points. 
The shock filter is sensitive to noise as noise adds inflection points to the image, disrupting the 
process and resulting in noise in the image being enhanced. The combination of diffusion and 
the shock filter was introduced in order to increase robustness to noise (Alvarez 1994). 

A perfect imaging system has a beam focused on a portion of landmass equal in size to a 
pixel, resulting in a one-to-one relationship between the target area and the detected image. 
However, no imaging system is perfect. Conventional blurring caused by an imperfectly 
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focused lens smoothes an image's edges between regions, as depicted in Fig. 5. Conventional 
blurring is localised as only the surrounding area is incorporated into the image. 

 

Fig. 5. Image blur 

In the proposed application the blurring problem is magnified as there is a many-to-one 
relationship between the target area and the detected signal due to the broad beam of the 
antenna. Each pixel of the image incorporates data from within the target area and outside of the 
target area, as depicted in Fig. 5. Conventional techniques cannot be used as they deal with 
localised object blurring, which is unable to counter the global object blurring of the antenna. 

The Kalman filter is a set of mathematical equations that estimate a process by using 
feedback control. The time update equations projecting forward in time the current state 
estimate to the next time step and then the measurement update equations obtain feedback in the 
form of noisy measurements to adjust the projected estimate to obtain an improved estimate. 

The non-stationary, discrete-time, linear process 1
n

k x  is modelled as 

 1k k k k k k  x A x B u v  (1) 

where l
k u  is the external control that drives the process from state kx  to state 1kx , kv  is 

the process noise, n n  matrix kA  relates state kx  to state 1kx  in the absence of both external 

control ku  and process noise kv  and n l  matrix kB  relates external control ku  to state kx . 

State kx  is accessible from the noise contaminated measurement m
k z  modelled as 

 k k k k z H x w  (2) 

where kw  is the measurement noise and m n  matrix kH  relates state kx  to measurement kz . 

Process noise kv  and measurement noise kw  are independent of each other, additive, zero-

mean, white and Gaussian with normal probability distributions 

 
( ~ ( , )

( ~ ( ,) )

)k k

k k

p

p

v 0 Q

w 0 R




 (3) 

where [ ]T
k k kEQ v v  is the process noise covariance, [ ]T

k k kER w w  is the measurement noise 

covariance and [ ] 0 [ ],T T
k n k nE E n k  v v w w . 

A priori estimate 1|
n

k k x  of state 1kx  is given by the expectation 

 1| 1[ | ]k
k k kE x x Z  (4) 
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where | ,i j i jx  is the estimate of state ix  using measurements 0{ , , }j
j Z z z  up to and 

including time j  and is obtained from the noise-free version of the process model of (1), a 

posteriori state estimate |k kx  and external control ku . 

A posteriori state estimate 1| 1
n

k k  x  is obtained from a priori state estimate 1|k kx  and 

the weighted difference between measurement 1kz  and a priori measurement estimate 1|k kz  

 1| 1 1| 1 1 1|( )k k k k k k k k       x x K z z  (5) 

where n m  matrix 1kK  is the Kalman gain. Kalman gain 1kK  is the optimal linear estimator 

that minimises a posteriori error covariance 1| 1k k P . 

A priori state error covariance 1|k kP  is obtained from a priori state estimate 1|k kx  

 1| |
T

k k k k k k k  P A P A Q  (6) 

where 1| 1 1|k k k k k   e x x  is the a priori state estimation error. 

A posteriori state error covariance 1| 1k k P is obtained from a posteriori state estimate 1| 1k k x  

 1| 1 1| 1| 1 1 1 1 1| 1 1 1| 1 1 1( )T T T T
k k k k k k k k k k k k k k k k k k k                 P P P H K K H P K H P H R K  (7) 

where 1| 1 1 1| 1k k k k k     e x x  is the a posteriori state estimation error. 

Making the derivative of a posteriori error covariance 1| 1k k P  with respect to Kalman gain 

1kK  equal to 0  and solving for 1kK  the optimal gain for a posteriori state estimate 1| 1k k x  is 

 1
1 1| 1 1 1| 1 1( )T T

k k k k k k k k k


       K P H H P H R  (8) 

which reduces a posteriori state error covariance 1| 1k k P  of (7) to the well known form 

 1| 1 1| 1 1 1|k k k k k k k k     P P K H P  (9) 

The recursion of a posteriori state error covariance 1| 1k k P  of (9) is ill-conditioned (Andrade-

Cetto2005). As the filter converges, the cancelling of significant digits on a posteriori state error 
covariance 1| 1k k P  leads to asymmetries or to a non positive semi definite (PSD) matrix, which 

cannot be true from the definition of a posteriori state error covariance 1| 1k k P . Therefore a 

posteriori state error covariance 1| 1k k P  of (9) is replaced by the Joseph form 

 1| 1 1 1 1| 1 1 1 1 1( ) ( ) T
k k k k k k k

T
k k k k            P K H P K H KRKI I  (10) 

which is PSD given its quadratic nature. 

For an uncertain measurement 1kz  and precise a priori state estimate 1|k kx  the prediction 

of a posteriori state estimate 1| 1k k x  relies more on the process model of (1) than measurement 

1kz  and a posteriori state error covariance 1| 1k k P  sees little reduction 
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For a precise measurement 1kz  and uncertain a priori state estimate 1|k kx  the prediction of a 

posteriori state estimate 1| 1k k x  relies more on measurement 1kz  than the process model of (1) 

and a posteriori state error covariance 1| 1k k P  is considerably reduced 
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The Kalman filter works because the combination of a priori state estimate 1|k kx  

conditioned on measurements kZ  and a posteriori state estimate |k kx , with state kx  distribution 

 | |( | ) ~ ( , )k k k k k kp x z x P  (13) 

into a posteriori state estimate 1| 1k k x  is an improved estimate of state 1kx , based on the 

probability principle that a more accurate estimate is obtained from the combination of two 
estimates, 2 1 2 1 2 1

1| 1 1| |( ) ( ) ( )k k k k k k
  

   P P P . 

4. Implementation 

For the proposed application of airborne surveillance for search and rescue operations, the 
antenna is fitted under a UAV flying over the ocean. The target area is assumed to be a constant 
distance from the UAV and consist only of sea water at a uniform temperature. The only 
discrepancy from this continuum is the sea vessels being searched for. Reconstruction of the 
target area is required to determine the position of objects and to differentiate between objects. 

For this proposal state kx  is the target area, process evolution kA  models the change of the 

target area due to the flight of the UAV, measurement kz  is the antenna output and 

measurement evolution kH  models the measured antenna pattern. The change from state kx  to 

state 1kx  is based entirely on the flight of the UAV, reducing the process model of (1) to 

 1k k k k  x A x v  (14) 

There is a large overlap between the target area scanned by measurement kz  and the target area 

scanned by measurement 1kz , as depicted in Fig. 6. The extension to the front of the UAV seen 

by measurement 1kz  is predicted and the extension to the back of the UAV no longer seen by 

measurement 1kz  is omitted, with the rest of the target area carried over from state kz . 

 

Fig. 6. Correlation between two states 
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As the target area is assumed to be static with a few slow moving objects on a stable 
background, the target area as seen by measurement kz  is assumed to be equal to the target area 

as seen by measurement 1kz . For the same reason the extension to the front on the UAV seen 

by measurement 1kz  is predicted to be equivalent to the target area just before this extension.  

Mathematically this is done by shifting pixel rows 2, ,|n
n NP    of a posteriori state estimate 

|k kx  unchanged into pixel rows 1, , 1|n
n NP    of a priori state estimate 1|k kx  and predicting pixel 

row NP  of state 1kx  as equal to pixel row NP  of state kx  using state evolution kA  defined as 

 

'

'
'

'

0 1 0 0

0 0 0
where

0 0 0 1

0 0 0 1

k

k
k k

k

   
   
       
   
    

A 0 0 0

0 A 0 0
A A

0 0 0

0 0 0 A




 (15) 

A posteriori state estimate |k kx  is initialised as | 0|kk k  x 0 , a '
kA  is required for each pixel 

column mP  and pixel columns mP  of state kx  are lexicographically ordered into one column 

for multiplication with state evolution kA . 

The antenna concurrently scans the target area along the plane perpendicular to the flight 
path, with each orientation scanned by a beam at a different frequency 0

mf . The frequency 

range Lf  to Hf  is divided into 9M   contiguous bands, each assigned to a different pixel 

column, mP . Even though the main beam at frequency 0
mf  is orientated to a particular part of 

the target, the whole target area is measured at frequency 0
mf . 

Therefore, the antenna patterns at the different frequencies 0
mf  are combined to reconstruct 

the target area. Mathematically this is done by combining the 9M   measured 2D  antenna 
patterns, 2DAnt , into one measurement evolution kH . Each row of measurement evolution kH  

relates one frequency component of measurement kz  to state kx , as depicted in Fig. 7. 

 

Fig. 7. Measurement model 

As the antenna has a narrow beam along the plane perpendicular to the flight path, only 

pixel column mP  is significant affected by 2DAntm . As the antenna has a broad beam along the 

plane of the flight path, many pixels within pixel column mP  are significant affected by 2DAntm . 

This blurs the image, making it difficult to determine the position of objects or to differentiate 
between objects situated along the flight path. 

The three covariance matrices are initialised as 
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where 1 , 2 and 3 reflect the degree of uncertainty in the state, the measurement and the process. 

Given the initial conditions of a posteriori state estimate 0| |k k kx  and a posteriori state error 

covariance 0| |k k kP , the Kalman filter is obtained iteratively by predicting the a priori estimates 
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and computing Kalman gain 1kK  to update the a posteriori estimates 
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 (18) 

5. Results 

Specific target areas are simulated to test the ability of the Kalman filter to model the flight 
process and to remove the blur of the measurement process. The input parameters are gradually 
increased from idealised values to the expected values to simplify the optimisation process. 

As a first experiment, the ability of the Kalman filter to model the flight process is tested 
for a target area containing a single frequency component and with measurement evolution kH  

of size 9 27  based on antenna measurements using a reflector that concentrates antenna 

pattern 2DAnt  into a 1 1   main beam, as depicted in Fig. 8. This idealisation removes the 

interfering effect of neighbouring frequency components and the blurring effect of the antenna 
pattern to simplify the problem to just one involving the modelling of the flight process. 

 

Fig. 8. Idealised measurement model 

The response to the change between pixel row nP  and pixel row 1nP   is not quick enough, 
resulting in a delayed response in a posteriori state estimate |k kx  to state kx , as depicted in Fig. 

9. An improved response is obtained by adding a velocity parameter kx  to state kx  that 

calculates the change between pixel row 1NP   and pixel row NP . 



D. MP Smith et al: Image Reconstruction by means of Kalman Filtering in Passive Millimetre-Wave Imaging  

 

26 

 

Fig. 9. Idealised Single Frequency Target Area 

For this position-velocity model pixel row NP  of state 1kx  is predicted as the sum of 

pixel row NP  of state kx  and the change between pixel row 1NP   and pixel row NP  of state 

kx  and the change between pixel row 1NP   and pixel row NP  of state 1kx  is equated with the 

change between pixel row 1NP   and pixel row NP  of state kx  using state evolution kA  

 

'

'
'
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0 1 0 0 0
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where 0 0 0 1 0
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0 0 0 0 1

k

k
k k

k

 
   
   
       
   
     

A 0 0 0

0 A 0 0
A A

0 0 0

0 0 0 A




 (19) 

With no correlation between the velocity parameter kx  of state kx  and measurement kz , 

measurement evolution kH  of Fig. 8 is altered to a form of size 9 36  by inserting a zero-

value column after each pixel column mP , as depicted in Fig. 10. 

 

Fig. 10. Idealised measurement model using position-velocity model 

A second experiment is performed to test the ability of the Kalman filter to model the flight 
process for the same target area, but this time with measurement evolution kH  of size 9 108  

based on antenna measurements using a reflector that concentrates antenna pattern 2DAnt  into a 

1 10   main beam, as depicted in Fig. 11. The idealisation of the measurement model is 
lessened to incorporate modelling of the blurring effect of the antenna pattern. The increased 

width of the main beam maps onto a larger surface than the 1 1   main beam, requiring a larger 
measurement evolution kH  to model the relationship between state kx  and measurement kz . 
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Fig. 11. Partially idealised measurement model 

The response to the change between pixel row nP  and pixel row 1nP   of state kx  is spread 

over a number of pixels proportional to the width of the main beam, resulting in a blurred 
response in a posteriori state estimate |k kx  to state kx , as depicted in Fig. 12. An improved 

response is obtained by increasing the number of time steps calculated per Kalman filter loop. 

 

Fig. 12. Partially idealised single frequency target area 

For this multi-measurement model state kx  is extended by c  pixel rows, where c  is the 

number of extra time steps calculated per Kalman filter loop, which extends the size of each 
'
kA  by c  in state evolution kA . 

For this multi-measurement model the rows within measurement evolution kH  are 

repeated c  times, but with a one pixel offsets due to the shift in focus from time step k  to time 
step 1k  , as depicted for measurement evolution kH  of size 9 198  with 10c   in Fig. 13. 

 

Fig. 13. Partially idealised measurement model using multi-measurement model 

The size of measurement evolution kH  has a direct effect on the number of time steps the 

Kalman filter takes to adapt to the model. The larger the area the main beam of antenna pattern 

2DAnt  maps onto, the more pixels that need to be predicted concurrently in the initialisation of 

a posteriori state estimate 0| |k k kx  and the longer the uncertainty period of a posteriori state 

estimate |k kx . The uncertainty period for the 1 10   main beam is longer than for the 1 1   

main beam, as depicted in Fig. 12. 
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The reason for the improved response of the multi-measurement model is accredited to the 
increased size of measurement evolution kH . For a single time step per Kalman filter loop and 

a single frequency component target area, the denominator of the Kalman gain kK  of (8) is a 

1 1  matrix that can only globally rectify the Kalman gain kK  of size 12 1 , and thereby only 

globally rectify the pixels of state kx . 

When the number of time steps is increased per Kalman filter loop to 11  with 10c  , the 
denominator of the Kalman gain kK  of (8) increases in size to 11 11 . In approaching the size 

of the Kalman gain kK  of 22 11 , the elements of Kalman gain kK  are rectified individually 

and thereby the pixels of state kx  are rectified  individually. Only when a large number of time 

steps are used per Kalman filter loop does 1
1k k


K H  when 1k R 0 . 

The final set of experiments test the ability of the Kalman filter to remove the errors in the 
measurement process using measurement evolution kH  of Fig. 13 and a full frequency range 

target area of size 9 50  containing a single central high intensity object of size 3 3  
surrounded by a low intensity background, as depicted in Fig. 14. The last idealisation is 
removed to incorporate modelling of the interfering effect of neighbouring frequency 
components. The large size of measurement evolution kH  results in a long uncertainty period. 

 

Fig. 14. Partially Idealised Full Target Area with Single Object 

The variance in absolute gain between the 9M   components of antenna pattern 2DAnt  

returns a false multi-level object and background, while the partial blurring of the object to 
neighbouring bands is accredited to non-ideal slope of the main beam. The Kalman filter is able 
to reduce both of these inaccuracies once the long uncertainty period has past, as depicted in 
Fig. 15. 

 

Fig. 15. Predicted Target Area for Partially Idealised Full Target Area with Single Object 

The ability of the Kalman filter to differentiate between objects situated along the plane of 
the flight path is tested using the same measurement evolution kH  of Fig. 13, but this time with 

a full frequency range target area of size 9 50 containing a single central high intensity object 
of size 3 3  bordered by two moderately high objects of size 7 7  and surrounded by a low 
intensity background, as depicted in Fig. 16. 



Journal of the Serbian Society for Computational Mechanics / Vol. 4 / No. 1, 2010 

 

29 

 

Fig. 16. Partially Idealised Full Target Area with Multiple Objects 

The ability of the Kalman filter to reduce the variance in absolute gain between the 9M   
components of antenna pattern 2DAnt  and the infringement of the main beam into neighbouring 

bands is not affected by the number of objects within the target area. The blurring effect of 
antenna pattern 2DAnt  merges the closely spaced objects into a single object, with a false 

higher intensity at the location of the two border objects. The Kalman filter is able to response 

quick enough to a change between pixel row nP  and pixel row 1nP   of state kx , resulting in 

the objects being individually sharpened and detached from each other, as depicted in Fig. 17. 

 

Fig. 17. Predicted target area for partially idealised full target area with multiple objects 

6. Conclusions 

Advances in UAV technology have created the option of introducing PMMW imaging 
capability into an autonomous vehicle for low-visibility conditions. However, the size of the 
UAV places restrictions on the design of the system in the inability to incorporate any measure 
to focus the antenna pattern before image creation that leads to a non-ideal antenna pattern. 

A technique is needed to reconstruct the image after image creation. Conventional image 
reconstruction processes deal with localised object blurring modelled by Gaussian noise, which 
is insufficient to counter the more global object blurring of the antenna pattern, and are 
designed for stationary stand-alone images. 

This paper proposes a new unconventional technique based on the Kalman filter. For each 
time-interval the Kalman filter makes a prediction of the detected signal using the measured 
antenna pattern. The comparison between the predicted signal and the detected signal is used to 
generate an accurate image of the target area. 

The Kalman filter corrects unequal gain between frequency components, reduces blur into 
other frequency components and other time intervals and separate closely spaced objects for a 
partially focused beam measuring a simulated target area. It remains to be proven whether the 
Kalman filter is functional for an unfocused beam measuring an actual target area. 
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