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Abstract 

Remote sensing can be defined as the technique that facilitates the acquisition of land surface 
data without contact with the material object of observation. The development of tools for 
analyzing and processing multispectral images captured by sensors aboard satellites has 
provided the automation of tasks that could not be possible otherwise. The main problem related 
with this discipline is the large volume of data of multidimensional nature that must be handled. 
The concept of spectral index emerged as an idea to reduce the number of dimensions to one, 
and thus facilitate the study of different features associated to the types of land cover categories 
that exhibits a multispectral image. Formally, a spectral index is defined as a combination of 
spectral bands whose function is to enhance the contribution of one type of land cover 
mitigating the rest of covers. In this work a no-supervised methodology to analyze and discover 
spectral indexes based on growing self-organizing neural network (GCS-Growing Cell 
Structures) is presented. 

Keywords: spectral index, self-organizing map, growing cell structures, topographic map, 
component planes. 

1. Introduction 

Address current issues like precision agriculture, quality water estimation or evaluation of 
damages caused by natural disasters need to deal with information remotely captured by sensors 
on board satellites. Spectral sensors allow registering data from large Earth surface areas within 
different parts of the electromagnetic spectrum, ranging from the visible light through the 
infrared and ending in the microwaves. This makes necessary to work with large multispectral 
satellite imageries formed by a great volume of pixels, with several radiometric measures 
(spectral bands) associated to each point. The process of extracting useful information from 
multispectral images to a reasonable cost makes the development of tools and techniques of 
data exploitation necessary. 

Spectral indexes are one of the empirical techniques that more widely have been used to 
analyze remote sensing data with the purpose of isolate some type of land cover or another type 
of characteristic in a multispectral image. They are defined as the combination of two or more 
spectral bands that emphasize those pixels in the image that represent a land cover with some 
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specific characteristics, masking the rest. Many spectral indexes have been proposed in the 
literature to detect different features of the images remotely detected. One of the most widely 
used is NDVI (Normalized Difference Vegetation Index), developed by Rouse et al. (1973). 
Some of the applications in which this index has been applied are for estimating leaf water 
content and other physiological variables for grasses (Tucker 1979), for deriving fuel moisture 
content (FMC) for Mediterranean grasslands and shrub species (Chuvieco et al. 2004), or for 
vegetation water content estimation (Jackson et al. 2004). Several alternatives of vegetation 
indexes for very specific applications and remote sensors have been proposed too, such as 
GEMI (Global Environment Monitoring Index) proposed in (Pinty & Verstraete 1992) and 
exploited in (Verstraete & Pynti 1996), GVMI (Global Vegetation Moisture Index) to study the 
vegetation water content (Ceccato et al. 1996), or SAVI (Soil Adjusted Vegetation Index) based 
on a NDVI modification to make it less dependent on variations of soil properties, for partial 
vegetation cover (Huete 1988). Water is another one of the terrestrial covers for which some 
spectral indexes have been developed. The best known is NDWI (Normalized Difference Water 
Index) (McFeeters 1996) proposed primarily to delineate water bodies and enhance its presence 
in remotely sensed imagery, while simultaneously eliminating soil and vegetation features. 
When remote sensors offer a good spectral definition, in particular the medium infrared, 
MNDWI (Modified Normalized Difference Water Index) can be used (Hui et al. 2008), that 
usually provides better results in the discrimination of water cover that the previous one. 
Although urban areas are a small fraction of the Earth’s surface, there are many satellite images 
including this type of covers, making very interesting having spectral indexes capable to 
discriminate them. When the spectral definition of the sensors includes near and medium 
infrared, NDBI (Normalized Difference Build-up Index) (Zha et al. 2003)(He & Xie 2008) can 
be used. 

The spectral (number of bands) and spatial (meters squared by pixel) definition of the 
remote sensors are two relevant aspects that strongly affects the type of spectral indexes that can 
be applied to the images captured by them. Higher spatial resolution assures better homogeneity 
of land covers within pixels (i.e., no mixtures), but a large spatial variability. On the other hand, 
higher spectral resolution gives more chances of finding specific spectral indexes. The specific 
characteristics of land covers present in the remotely registered geographical area, like the 
season of the year, the climatic conditions, etc, are other factors that also affect the type of 
spectral indexes that can be applied to images. All this peculiarities make necessary the 
development of tools that facilitate the design and validation of optimal spectral indexes for the 
specific characteristics of sensors and land covers which will be treated. 

This paper proposes a graphical tool based on self-organizing neural networks, for studying 
the viability of using different spectral indexes for specific spectral images captured by 
particular remote sensing instruments. Specifically, the self-organizing model used is the 
Growing Cell Structures (GCS) (Fritzke 1994). An image registered by the ETM+ sensor 
(Landsat 7) has been used to illustrate the proposed graphical technique to validate spectral 
indexes. It has been analyzed the most representative spectral indexes for vegetation, water, and 
soil covers. 

The rest of the paper is organized as follows: section 2 introduces the growing cell 
structures methodology, section 3 presents the experiments and finally, conclusions are included 
in section 4.  

2. Growing Cell Structures 

The search of an ordered topology map showing the existing relations in a high dimensional 
signal space was the origin of the self-organizing neural networks (Kohonen 2001). This feature 
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map can be used for several tasks of pattern preprocessing, e.g. for subsequent classification, or 
if the network has an output layer consisting of neurons arranged in a two-dimensional 
structure, to project and to visualize high dimensional signals in a two-dimensional space. Even 
though the first model of SOM proposed by Kohonen is a powerful tool that has been widely 
used in the field of exploratory data analysis, this network has associated several undesirable 
features. One of the most relevant is the static network architecture, that forces setting the 
complete topology before the training phase, and it is not possible to change it back later. This 
feature requires a good knowledge of the input space, to be able to establish an architecture that 
fits well, and thus to obtain a network with a good topology preserving grade. The network 
training process tries to find a simplified model of the input space, as well as the projection of 
multidimensional input space in the two-dimensional output layer, that will maintain the 
existing relations of the input patterns. Informally, the term topology preservation measures the 
quality of this simplified model. Not always it is possible to know well enough the input data 
space to set up a SOM network, and in some cases even knowing it, it is not possible to 
establish an architecture of a Kohonen network that well adapts to the input data model. When 
input data space has a high dimensional nature it is difficult to know the characteristics present 
in the space of signals. On the other hand, in many cases the input space is formed by signals 
that are distributed in isolated clusters separated by areas with low or null probability density. In 
these cases, the Kohonen’s model is not a good election. In 1994, B. Fritzke proposed a 
dynamic SOM network model called Growing Cell Structures (GCS), to address the limitations 
of the Kohonen’s SOM. Although GCS model exhibits very good characteristics, it has a 
weakness associated with the interpretation and the adjustment of some of the training 
parameters, in particular with those related to the removal of neurons. Therefore, in this work 
we have used the modification of the GCS training algorithm that we introduce in (Delgado et 
al. 2004). In the rest of this section, diverse aspects related to the GCS network model and the 
training algorithm used for this study are exposed. 

2.1 GCS architecture 

GCS network has an architecture consisting of an input layer containing so many units as 
dimensions have the input patterns and one output layer formed by several neurons. All the 
input units are connected with all the output ones through feed forward connections that have 
associated a weight. In addition, the units of the output layer are connected between them by 
neighborhood links, forming a topology of k-dimensional hyper tetrahedrons. For k=1 the basic 
neighborhood connection topology is a line segment connecting 2 units, for k=2 a triangle 
connecting 3 units, and for k=3 and higher is a tetrahedron or a hyper-tetrahedron connecting 
k+1 units. In order to use GCS networks to generate a two-dimensional map that facilitates the 
projection and visualization of high dimensional input signal in a two-dimensional space, a 
factor of k=2 has been used in all the experiments, so the neighbor connections exhibit 
structures formed by groups of triangles (Fig. 1). 

Each time a new input pattern e = (e1, …, en) is presented to the network, each one of the 
input units transmit a component, ei, to each one of the output neurons. On the other hand, each 
output neuron c compute the Euclidean distance between the pattern and its synaptic vector wc 
= (w1c,…, wnc). GCS network is based on the model of the winner takes it all, reason why only 
one output neuron, bmu (best matching unit), is activated whenever a pattern is presented to the 
network, which will be that one with the synaptic vector more similar to the input pattern: 

 arg minbmu cS e w   (1) 

Thereby ǁ·ǁ denotes the Euclidean vector norm. With this procedure, the input space is 
divided in a set of regions, each formed by the locations that have common nearest synaptic 



S. Delgado et al: Growing Cell Structures Neural Networks for Designing Spectral Indexes  

 

4 

vector wi. In this way, the set of all the synaptic vectors of the network represents a simplified 
model of the input signal space. 

At this point it is possible to give a formal definition of the topology preserving 
measurement in a GCS network. When all the similar input patterns are mapped by neighboring 
output neurons and all the neighboring output neurons respond to similar input patterns, it can 
be said the GCS network is perfectly topology preserving, which indicates the goodness of the 
simplified model that the network represents. This is a very important characteristic when the 
two-dimensional output layer is used to generate graphs to analyze the input signal space, as it 
is described in the following sections. 

 

 

Fig. 1. GCS architecture 

2.2 GCS adaptation process 

To obtain a GCS network that can be used as simplified model of a particular space of input 
signals is necessary to train the network through a learning phase. During this process, a set of 
training patterns are presented iteratively to the network and the synaptic vectors of the output 
neurons are adapted, looking for that each unit represents a group of similar input patterns. At 
the beginning of the training phase, a GCS network consists of three interconnected neurons (a 
basic k-dimensional structure, with k=2). On each adaptation step a new pattern is processed by 
the network, the bmu is calculated, and its synaptic vector and the synaptic vectors of its 
neighboring units are modified according to equations 2 and 3 (where εb > εn), respectively. 

  bmu b bmuw e w    (2) 

    neighbor ofc n cw e w c bmu     (3) 

Each λ iterations a new neuron is inserted into the output layer of the network and is connected 
with other neurons, so the topology of triangular groups of neighboring output units is 
guaranteed. Different approaches can be followed to determine the location in the output layer 
neighborhood mesh where the new neuron will be inserted. The most commonly used are 
"Looking for the Unknown Probability Distribution of the input patterns” (LUPD) and “Looking 
for Equalize an Accumulated Error measure” (LEAE) (Fritzke 1994). LUPD criterion ensures 
that at the end of the training process neurons are distributed so that the synaptic vectors exhibit 
a probability distribution similar to the input data model (new units are inserted close those 
which represent more volume of patterns). Using the second criterion, the goal is to insert new 
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units in such a way that the expected value of a certain error measure becomes equal for all the 
output neurons (i.e., the sum of the Euclidean distances between the synaptic vector of the 
neuron and all the patterns for which is the bmu). 

Periodically superfluous neurons are removed of the output layer of the network in order to 
achieve better topology preserving grades when the input signal space consists of several 
separated regions with positive probability density. The objective is to remove those neurons 
whose synaptic vectors are located in areas of the input space with low or null presence of 
patterns. During the removal procedure, some neighborhood connections are also destroyed 
ensuring that the output layer maintains the topology of triangular groups of neighboring 
neurons, although the neighborhood output mesh can result broken in two or more sub-meshes. 
All the details about the modifications of the GCS training algorithm that has been used in this 
work can be found in (Delgado et al 2004). 

2.3 GCS topographic map 

In a trained GCS network, the output layer is a map that exhibits the relations of the training 
patterns. When the neighborhood architecture of a GCS network is determined by a k=2 factor, 
the output layer is formed by one or more two-dimensional meshes that connect neurons by 
triangular neighborhood connections. If the GCS network exhibits a good degree of topology 
preserving, the output layer will hold relevant information about training patterns relations, so it 
would be very interesting to be able to generate a projection of this layer in a bi-dimensional 
plane and consequently have a graph to display this knowledge. This feature is really relevant 
when the input space has a high-dimensional nature that makes difficult its analysis. This graph 
is known as the topographic map and is formed by the neurons and the neighborhood 
connections of the output layer projected over the plane. The coordinates in which each neuron 
is shown in the topographic map are calculated during the training process, as detailed in 
(Delgado et al. 2007). Fig. 2 shows different phases of the evolution of the coordinates of the 
neurons in the topographic map during the training process of a GCS network. When the GCS 
output mesh results broken in two or more sub-meshes as consequence of the removal of 
neurons (Fig. 2e), the topographic map shows this characteristic without needing additional 
information, reason why it offers an immediate visualization of clusters of the input signal 
space. 

Fig. 2. Topographic map evolution during a GCS training process. 

The GCS network topographic map can be enriched including information stored by the 
network. In this way, several graphs can be generated to visualize different characteristics of the 
high-dimensional input space (Delgado et al. 2007). Two of the most widely used maps are the 
distances map and U-matrix. In the first, a value is assigned to each neuron, calculated as the 
mean value of the Euclidean distances between the synaptic vector of the unit and the synaptic 
vectors of all its neighbor units. With this information, a gray level within a scale delimited by 
the maximum and minimum value for all the neurons is assigned to the unit. U-map represents 
the same information than distances map but, in addition it includes the distance between all the 
neighboring neurons (painted in a circle shape between each pair of neighbor units). Both maps 
are often used for the analysis of clusters, where areas in dark tones identify clusters and zones 

(a)  (b)  (c)  (d)  (e) 
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in clear tones discover boundaries between them. Another map that turns out useful to clusters 
analysis is the direct visualization, where each neuron is drawn like a big square that contains 
the synaptic vector in graphical format (spectral signature). When GCS network is trained with 
removal of neurons, these three graphs can be used to validate the correct formation of clusters. 

Fig. 7 and 8 show two examples of U-matrix and direct visualization maps of two GCS 
trained networks. 

2.4 GCS component planes 

The simplified model of the input data that the GCS network represents is stored in the synaptic 
vectors of the output neurons, which have the same dimension that the input patterns. The first 
component of all synaptic vectors maintains the information of the first dimension of the input 
space, the second component about the second dimension, etc. The isolated analysis of each 
input space dimension can be performed using the maps of component planes. So many 
topographic maps are generated as dimensions have the synaptic vectors, and each one includes 
information about one component only. For example, in the first component plane each neuron 
has assigned the value of its first synaptic vector component. Using a scale delimited by the 
maximum and minimum value for all the neurons, a gray level is assigned to each unit. When 
all the component planes are generated, relations between weights can be appreciated if similar 
structures appear in identical places of two different component planes. Fig. 7 and 8 show the 
component planes of two GCS trained networks. 

2.5 GCS combined component planes 

This paper proposes a new gray scale topographic map for analyzing spectral indexes that can 
discriminate different types of land cover categories: the combined component plane. This map 
is generated using a specific combination of components. For example, (w4-w3)/(w4+w3) 
generates a topographic map in which each neuron has assigned the gray level associated to the 
value calculated subtracting the component 4 from component 3 of its synaptic vector and 
dividing by their addition. Clear zones in the combined component plane will identify neurons 
with high values of the spectral index, i.e., neurons sensitive to the spectral index. If the 
combined component plane of a GCS network with several isolated clusters in the output layer 
shows one or more clusters with all its units in a clear tone and the rest of clusters in dark tones 
(low values for the spectral index), this will be a good indicator of the discrimination capacity 
of the spectral index. 

3. Experiments and discussion 

To carry out the experiments described in this section it has been developed an application in 
the Java programming language that includes the functionality necessary to train GCS networks 
and generate all the topographic maps introduced in the previous section. Fig. 3 shows the 
outline functionality exported by the application. From a set of data obtained from a satellite 
image a new GCS network is trained. As stated in the previous section, this is an iterative 
process that ends when it reaches a predetermined ending condition. The application provides 
three possibilities to stop the training process: to get a specific number of neurons in the output 
layer, to obtain a minimum number of isolated clusters of neurons in the output layer, or 
manually (by order of operator). When the GCS network is trained, the application can generate 
all the topographic maps previously exposed, such as U-matrix, direct visualization map or 
component planes. In addition, using the GCS trained network, the software tool can create 
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several combined component planes from the arithmetic expressions established by the 
operator.  

Fig. 3. Computational scheme of the software tool developed. 

Some experiments have been carried out using this software tool. They are exposed in the 
remainder of this section. 

3.1 Data 

To perform the experiments, an image of 121500 pixels (324 rows x 375 columns) located in 
the West area of Madrid (Spain) and registered by ETM+ sensor (LANDSAT 7) the 20 of 
August of 1999, has been used (Fig. 4). Through field supervision six land cover categories 
have been identified: brushwood, deciduous forest, pine forest, bright soil, water and mixed 
(soil with vegetation). The six spectral bands with the same spatial resolution (30x30 meters) 
have been used, that is ETM1+, ETM2+, ETM3+, ETM4+, ETM5+ and ETM7+, that 
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correspond with Blue, Green, and Red visible spectrum, and with Near Infra Red (NIR), Mid-
Low-IR, and Mid-Hig-IR, respectively. 

A whole of 1500 representative pixels of the six land cover categories of this scene have 
been carefully selected and labeled in order to compare them with the results obtained with the 
GCS simplified model. Fig. 5 shows the mean values of each land cover calculated from these 
data.    

 

 

 

 

 

 

 

Fig. 4. Study area located in Spain. 

Fig. 5. Spectral signatures mean values for the six land cover categories. 

3.2 Methodology 

The original image of 324 rows by 375 columns of pixels has been divided in 9 areas with the 
same size of 13500 pixels (Fig. 6). The original volume of information is too high to train a 
single GCS network that represents a good simplified model of the input data. With each one of 
the 9 areas a GCS network with removal of neurons has been trained, ending when a stable 
number of clusters is fulfilled. LUPD insertion criterion has been used in all the networks, 
getting a GCS simplified model with the same probability distribution that the input space. 
Table 1 shows the number of clusters and the number of neurons that contains each of these 9 
networks. 
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Considering that the collection of all synaptic vectors of the 9 networks provides a 
simplified model of the 121500 pixels of the original image, a new data set with the information 
of the 335 synaptic vectors has been generated. With this group, two new GCS networks have 
been trained with removal of units, the first using LEAE insertion criterion and the second with 
LUPD, and finalizing the training phase when at least 6 isolated clusters of neurons appear in 
the output layer. The network trained with LEAE finally has 133 neurons and using LUPD 78, 
both with 6 isolated clusters in the output layer. Fig. 7 and 8 show the mean value of the 
synaptic vectors by cluster, the U-matrix, the direct visualization map and the component planes 
associated to both GCS networks. 

 

Fig. 6. Methodology phases. From left to right: original image divided in 9 cuts. Each cut has 
13500 pixels, and is used to train a GCS network. The 335 synaptic vectors are joined and used 

to train a final GCS network with 6 clusters.  

Area Number of clusters Number of neurons 
C1 2 40 
C2 5 35 
C3 3 40 
C4 3 37 
C5 4 29 
C6 4 40 
C7 4 34 
C8 4 42 
C9 4 38 

Table 1. Number of clusters and neurons obtained in the 9 GCS networks. 

Analyzing the graphical information in both networks, it can be observed that the LEAE 
insertion criterion seems to generate better land covers discrimination results inside each cluster 
that the obtained with LUPD. The U-matrix map of the LUPD GCS network shows that there 
exists one cluster that displays a clear area (the upper region of the leftmost cluster), indicating 
that this group of units should have result divided in two. In this cluster there appear neurons 
that represent two classes of covers (water and some type of vegetation). This information is 
corroborated by the direct visualization map 
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Fig. 7. (a) Synaptic vectors mean values calculated for the six cluster of the GCS network 
trained with LEAE. (b) U-matrix. (c) Direct visualization map. (d) Component planes. 

Fig. 8. (a) Synaptic vectors mean values calculated for the six cluster of the GCS network 
trained with LUPD. (b) U-matrix, (c) direct visualization map, and (d) component planes of this 

network. 
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3.3 Spectral indexes 

This section outlines some of the combined components maps that have been applied to the 
GCS network trained with LEAE criterion. In particular, the spectral indexes NDVI to 
discriminate vegetation, NDWI and MNDWI for water and, finally NDBI for soil covers have 
been explored. 

The formal definition of NDVI (Normalized Difference Vegetation Index) is: 

 NDVI nir red

nir red

 
 





 (4) 

This index exploits the fact that the vegetation covers absorb very well solar radiation in the 
visible band (due to the presence of chlorophyll and other absorbing pigments in the leaves) and 
strongly scatters solar radiation in the near-infrared band. Most other natural surfaces present a 
rather different spectral behavior. This spectral index takes values in the rank [- 1, 1], and takes 
relatively high values (0.3 to 0.6) on vegetation land covers. When a LANDSAT image is 
employed, bands TM4+ (NIR) and TM3+ (visible Red) are used to calculate the NDVI. Fig. 9 
shows the combined component plane of the GCS network using the NDVI. It can be seen that 
there is only one cluster of neurons that clearly identifies the vegetation land cover (the only 
one with clear colors). 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Combined component planes using NDVI. 

NDWI (Normalized Difference Water Index) and MNDWI (Modified Normalized 
Difference Water Index) indexes can discriminate water surfaces. The definition of both is 
given by equations 5 and 6 respectively. 

 NDWI green nir

green nir

 
 





 (5) 

 MNDWI green mir

green mir

 
 





 (6) 

The only difference between the two indexes is the use of near infrared or medium infrared. For 
LANDSAT imageries both indexes can be calculated, because it has enough spectral definition. 
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NDWI index make use of TM2+ (visible Green) and TM4+ (NIR) bands, and MNDWI TM2+ 
and TM5+ (Mid-IR). Fig. 10 includes the combined component plane of the GCS network using 
NDWI and MNDWI. Clearly, MNDWI index makes better discrimination of the water cover 
that NDWI. In this case, as in the NDVI index, there is only one cluster of neurons that clearly 
identifies the water cover. 

 

 

 

 

 

 

 

 

 

Fig. 10. Combined component planes using NDWI (left) and MNDWI (right). 

Finally, NDBI index can be used to discriminate soil covers: 

 NDBI mir nir

mir nir

 
 





 (7) 

The NDBI (Normalized Difference Build-up Index) index combines the Mid-IR and Near-
IR spectra, i.e. the TM4+ and TM5+ bands of the LANDSAT satellite, respectively. Fig. 11 
includes the combined component plane of the GCS network using NDBI. There are three 
clusters that identify different types of soil coverings (those with clear tones). The intermediate 
cluster that appears between the three soil clusters and the vegetation one characterizes a mixed 
cover of soil and vegetation. 

 

 

 

 

 

 

 

 

 

Fig. 11. Combined component planes using NDBI. 
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3.4 Image processing 

Making use of the spectral indexes, the GCS network can be used as a mask to discriminate 
different types of land covers present in the image. In order to do it, when a valid spectral index 
with the capacity to discriminate a specific land cover is identified using the GCS combined 
component plane, all the neurons within the clusters that clearly identifies that index are labeled 
with the name of the land cover. Only those clusters of neurons in which all the units identify 
the same land cover discriminated by the index are labeled. This labeling process can be 
performed applying several indices to the GCS network. The resulting network can be used to 
label all the pixels of the original image, where each pixel is processed by the GCS network, 
bmu is obtained and the land cover associated to that unit is used to label  the pixel. 

The latest GCS network trained with LEAE criterion has been labeled using the vegetation, 
water, and soil indexes previously exposed. There is one cluster of neurons that identifies water, 
one for vegetation, three for soil, and finally the single cluster that contains neurons that identify 
the two types of covers (vegetation and soil) has been labeled as mixed.  Using this network, the 
original image has been processed and each pixel has been labeled using the method previously 
described. Fig. 12 shows this image displayed in four colors that identify the water, soil, 
vegetation and mixed covers.  

 

 

Fig. 12. Water, vegetation and build-up indexes applied to the original image. Light gray color 
is associated to vegetation, white to water, dark gray to mixed, and black to soil covers. 

4. Conclusions 

In this work we have proposed a new non-supervised methodology to validate the usefulness of 
specific spectral indices, employing the GCS self-organizing neural network model. These 
networks, once trained, are simplified models of an input space composed by a high volume of 
data, which provide basic information about the different types of patterns present in the input 
space. Furthermore, the projection property of a multidimensional input space into the two-
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dimensional output layer of the network makes it possible to visualize the relationships between 
the input patterns, and various grayscale graphics can be generated providing relevant 
information about the knowledge inherent to the multidimensional input space.  

The proposed methodology applied to remote sensing data obtains a simplified model of an 
input space consisting of a high volume of pixels. This simplified model remains the most 
important information about the different land cover categories that can be identified in the 
image under study. The ability to generate various topographic maps from a GCS network 
trained with a remotely detected image is a powerful tool in the field of remote sensing and can 
be used in functions as common as the analysis of land cover, pixel classification or exploration 
of existing correlations between spectra bands. 

This paper has proposed a new original topographic map, the combined component plane, 
which has proved that can be exploited to analyze the possible arithmetic combinations of 
spectral bands that can discriminate a specific land cover on a multispectral image, with a 
specific content and features, such as the spectral and spatial resolution, the land cover types or 
the weather conditions when the image was captured. 

While the spectral indexes studied in the image used in the experiments are the classic for 
vegetation, water and soil covers, the proposed tool has demonstrated the ability to design new 
spectral indexes and validate its discrimination capacity for different types of land cover 
categories and sensors with other features. 
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