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Abstract

GLARE is a Fiber-Metal Laminated material used in aerospace structures which are frequently
subjected to various impact damages. Hence, response of GLARE plates subjected to lateral
indentation is very important. No FEM or other analytical solution of this problem is known to
the authors.

This paper deals with the static response of thin circular clamped GLARE plates under the
action of a lateral hemispherical indentor located at their center. We propose a finite element
modeling procedure for the calculation of static load-indentation curve and the first failure load
and deflection due to glass-epoxy tensile fracture applicable to GLARE plates. Additionally, we
further verify the validity of the analytical model for the solution of this problem which we have
derived using the Ritz method in our previous work.

A 3-D solid modeling procedure with ANSYS is implemented. We employ an isotropic
non-linear elastoplastic material model which obeys a true stress-strain relation for aluminum.
An orthotropic linear elastic material model is used for the glass-epoxy. The contact between
the indentor and the plate is simulated by contact elements. We use non-linear analysis with
geometric and material non-linearities. The indentor is forced to move and deform the plate
incrementally. Analysis stops when first failure due to glass-epoxy tensile fracture occurs. This
FEM procedure and our analytical model are applied to GLARE 2-2/1-0.3 and to GLARE 3-
3/2-0.4 plates with various diameters.

We compare FEM results with analytical results and their good agreement is demonstrated.
Furthermore, FEM and analytical results are compared with published experimental data for the
case of a GLARE 2-2/1-0.3 plate with a radius of 40 mm. Both numerical and analytical load-
indentation curves and first failures agree well with the experimental values (failure load within
2% and 7%, failure deflection within 5% and 3% respectively).

It is shown that our analytical results converge satisfactorily. Also, the expected governing
role of the membrane in comparison with the bending stiffness is demonstrated. Finally, FEM
plots of lateral GLARE plate deflections justify the axisymmetrical deflection shape considered
by the authors.
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1. Introduction

This paper focuses on the response of thin circular clamped GLARE fiber-metal laminated
plates which are subjected to lateral indentation. Among other applications, GLARE is mainly
used in aerospace structures and has higher impact resistance in comparison with conventional
composites or aluminum alloys (Vogelesang and Vlot 2000, Vermeeren 2003).

Impact properties are very important in aerospace structures, since impact damage is
caused by various sources, such as maintenance damage from dropped tools, collision between
service cars or cargo and the structure, bird strikes and hail (Vogelesang and Vlot 2000,
Vermeeren 2003, Vlot 1996, Vlot 1993, Laliberte et al. 2002). A large amount of the energy
absorbed by GLARE plates during low velocity, high velocity or even ballistic impacts is due to
the static deformation of the plate (Vlot 1996, Hoo Fat et al. 2003, Lin and Hoo Fat 2006). In
this regard, the response of GLARE plates subjected to lateral indentation is very important as
far as their overall impact behavior is concerned.

In this work we deal with the static response of thin circular clamped GLARE fiber-metal
laminated plates under the action of a lateral hemispherical indentor located at the center of the
plate. Vlot (1996) used an elastic-plastic impact model to solve this problem numerically
assuming a deformation profile based on experimental data. Hoo Fatt et al. (2003) used the
principle of minimum potential energy to model analytically the response of fully clamped
square GLARE panels assuming a deformation profile which resembles that of a stretched
membrane. They also calculated the first failure load due to glass-epoxy tensile fracture. In our
previous work (2008), we employed the Ritz method and derived formulas corresponding
to one, two and three-parameter approximation functions for the calculation of lateral
indentation response applicable to thin circular GLARE plates.

The first objective of this paper is to develop a finite element modeling procedure for the
calculation of static load-indentation curve and the first failure load and deflection due to glass-
epoxy tensile fracture of thin circular clamped GLARE fiber-metal laminated plates under the
action of a lateral hemispherical indentor located at their center. The ANSYS finite element
program is used for this purpose. The second objective is to verify the validity of our analytical
model (2008) by application to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates with
various diameters and by comparison of analytical results with the corresponding FEM results.

We compare numerical results with analytical results and their good agreement is
demonstrated. Furthermore, FEM and analytical results agree well with published experimental
data for the case of a GLARE 2-2/1-0.3 plate with a radius of 40 mm (Vlot 1996). No FEM or
other analytical solution of this problem is known to the authors.

In the following sections the definition of the problem is first given, then details of the
FEM modeling and analytical simulation are presented followed by the obtained results and the
final conclusions.

2. Problem definition

We consider a thin clamped circular GLARE plate with radius o and thickness ¢ as shown in
Fig. 1. The plate is loaded statically by an indentor with a hemispherical tip of radius R acting at
the center. The plate consists of alternating layers of aluminum and glass-epoxy. The aspect
ratio o/t is assumed very high so that shear deformation and local indentation are negligible.

A polar coordinate system (7, 6, z) with the origin at the center of the plate is employed for
the analytical formulation as illustrated in Fig. 1 The plate is considered clamped along its
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boundary. As the indentor progresses the load P applied on the plate and the corresponding
central deflection w, increase. The (P, w,) curve and the first failure load and deflection due to
glass-epoxy tensile fracture will be calculated analytically and numerically using ANSY'S.

Fig. 1. Circular plate problem geometry and coordinate system

3. Finite element modeling

In this paper we implement a finite element modeling procedure to predict the static response
of thin circular clamped GLARE fiber-metal laminated plates under the action of a lateral
hemispherical indentor located at the center of the plate. ANSYS finite element program is used
for this purpose.

The GLARE plate is modeled with two solid elements of different type along its thickness.
The external aluminum layer, which is in contact with the indentor, is modeled with SOLID 185
elements. These hexahedral-shaped elements have eight nodes with three translational degrees
of freedom per node. In order to reduce the computational cost, the remaining layers of the
GLARE plate are modeled with SOLSH 190 elements. These are also hexahedral-shaped
layered elements with eight nodes and three translational degrees of freedom per node. The
accuracy of these elements is governed by the first order shear deformation theory.

The indentor is also modeled with SOLID 185 elements. In order to simulate the contact
between the indentor and the external surface of the GLARE plate, we use CONTA 174 and
TARGE 170 elements in way of the contact areas. The plate is clamped along its boundary. Due
to symmetry of the problem we further reduce the computational cost by modeling only one
quarter of the structure. Suitable symmetry boundary conditions are applied in this regard to all
nodes of the symmetry planes.

The material of the steel indentor, which is considered rigid, is modeled with an isotropic
linear elastic material model with increased stiffness. We idealize the material behavior of the
GLARE plate unidirectional glass-epoxy layers by employing an orthotropic linear elastic
material model. The material of the GLARE plate 2024-T3 aluminum layers is modeled with an



70 G. Tsamasphyros and G. Bikakis: Finite Element Modeling and Analytical Simulation of ...

isotropic non-linear elastoplastic material model which obeys the following true stress-strain
relation (Chandrakanth and Pandey 1998):

1
o =0, tkKkE" (D)

where g is the yield stress of 2024-T3 aluminum, x = 650 and n = 1.62.

A static non-linear analysis is employed with geometric and material non-linearities. The
indentor is forced to move and deform the GLARE plate incrementally. Our analysis stops
when the first failure due to glass-epoxy tensile fracture occurs. The maximum tensile strain
criterion is used in order to verify when first failure occurs. The corresponding indentor’s
position and load are then recorded as the first failure deflection and load.

In order to verify the convergence of FEM results, (P, w,) curve and the first failure load
and deflection due to glass-epoxy tensile fracture, we built three models with increasing plate
mesh density for each specific case of circular GLARE plate we analyze. A fine mesh is used
for the indentor in order to represent its geometry accurately. The indentor’s mesh density
remains the same for all models. A typical fine mesh of a GLARE plate along with the indentor
is depicted in Fig. 2.

Fig. 2. Finite element mesh of a GLARE 2 plate with the indentor

We apply this finite element modeling procedure to GLARE 2-2/1-0.3 circular plates with
35 mm, 40 mm and 45 mm radius and to GLARE 3-3/2-0.4 circular plates with 65 mm, 70 mm
and 75 mm radius. A total of eighteen finite element models have been implemented. The
numerical results are compared with the corresponding analytical results and  published
experimental data for the case of a GLARE 2-2/1-0.3 plate with a radius of 40 mm (Vlot 1996).
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4. Analytical simulation

We previously derived (2008) analytical formulas corresponding to one, two and three-
parameter Ritz approximations of the deformation profile for the calculation of static load-
indentation curve and first failure load and deflection due to glass-epoxy tensile fracture
applicable to thin circular clamped GLARE fiber-metal laminated plates under the action of a
lateral hemispherical indentor located at their center. Two cases of plate stiffness were
considered. Firstly, due to very large deflections, the bending resistance is neglected and only
the membrane resistance of the plate is taken into account. In the second case, both bending and
membrane resistance are taken into account. The derived formulas were applied to a GLARE 2-
2/1-0.3 plate with 40 mm radius. In this work, in order to verify the validity of our analytical
solution, we apply the derived formulas to GLARE 2-2/1-0.3 circular plates with 35 mm and 45
mm radius and to GLARE 3-3/2-0.4 circular plates with 65 mm, 70 mm and 75 mm radius. The
analytical results are compared with the corresponding FEM results and available published
experimental data for the case of a GLARE 2-2/1-0.3 plate with a radius of 40 mm (Vlot 1996).
In the following paragraph a short presentation of the analytical equations for the solution of the
circular GLARE plate indentation problem is given from Tsamasphyros and Bikakis (2008).

4.1 Analytical equations
For one Ritz parameter, considering both bending and membrane plate resistance, the
indentation load is directly calculated by the following equation:

3

P=[0576(N, + N, )+0.734N I, +[0.62(4, + 4,,)+ 0.412(4,, + 24, |2 +4M , +
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+[(3.318+2.906Ina D, + Dy, )+(~8.124+1.938Ina)D,, +(14.758+3.876Inar)Dy, |2 2
[24

N,, N, and N,, are the in-plane forces of the aluminum layers calculated as follows:
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where m is the number of aluminum layers and #,, is the thickness of each aluminum layer.

4; and Dj; are the extensional and bending stiffnesses of the laminate. M,, is the twisting
moment acting on the aluminum layers calculated as follows (for m=1 or m=24,.. or

m =3,5,... respectively in equation 4):
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where Z; is the geometric distance of each aluminum layer from the neutral surface of the plate.

For one Ritz parameter, considering only the membrane plate resistance, P is calculated
from equation (2) where M,, and all D;; terms are now equal to zero.
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For two Ritz parameters, considering both bending and membrane plate resistance, the
solution of the following (2x2) non-linear system of algebraic equations yields the unknown
Ritz coefficients 1; and 4, for specific values of load P (w, is obtained by adding 4; and 4, ):

P =2NJ, = Ny +4M\ X = M 25 + 2M A 25 =3M i 4y + 4M | +2C 4, + C34, (5)
P==NJy+2N, 2, =M 5 +4M, 2 =3M A 25 +2M K2, + 4M | +2C, 0, +C, A, (6)
where:

N, =0.288(N, + N,)+0.367N,,
N, =11.916(N, + N,) +15.17IN | (7

N, =0218(N, +N,)+0278N, ,

M, =[0.155(4,, + Ay,) +0.103(4,, + 2/1«,)]% )
M, =[205.585(4,, + Ay,) +137.056(4,, + 2A66)]% 9)
M, =[19.449(4,, + A,,) +12.966(4,, + 24, )]é (10)
M, =[1.211(4,, + A,,) +0.807(4,, + 2A66)]% ;
My =[8.033(A4,, + 4y,) +5.356(4,, + 2A66)]é (11)
C, =[(1.659+1.453Ina)(D,, + Dy, )+ (~4.062+0.969In &x) D,, +(7.379 +1.9381n a)D“]i (12)

C, =[(1114758+36.335Ina}(D,, + D)+ (613.985+ 24.224Inc))D,, +(1615.549+ 48447y D, | (13)
[04

C, =[-5.826(D,, + Dp,)—55.56D,, +43.908D,, | = (14)
o

For two Ritz parameters, considering only the membrane plate resistance, the unknown Ritz
coefficients are calculated from equations (5) and (6) where M,, and all C; terms are now equal
to zero.

For three Ritz parameters, considering both bending and membrane plate resistance, the
solution of the following (3x3) non-linear system of algebraic equations yields the unknown
Ritz coefficients 4;, 4, and 1; for specific values of load P (w, is obtained by adding 4; , 4, and
A 3 )Z

P=2NA =N, A = NA, +4M 2 =M 3, — M A +2M A —3M B A, +
+2M7ﬂ'1j§ _3M12j12ﬂ3 _Mlsjzﬂé +A/[13/1§ﬂ3 _2]\/[14}1]2}3 +4Mxy +2C1ﬂ'1 +C3ﬂ‘z +C6ﬂ’5 (15)
P ==N,A +2N,A, — N, =M A +4M A, — M\ A, =3M A, A5 + 2M (22 A, —

=M A2 = M A5 Ay + 2M A, 05 = 3M 252 +2M s A, 2 +4M |, + C54, +2C, 4, + Csdy - (16)
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where:
N, =39.046(N, + N,)+49.715N, > N, =0.361(N, +N,)+0.459N (18)
Ng =0.141(N, +N,)+0.18N, > M, =[2191.104(4,, + 4,,) +1460.737(4,, + 24, )]i2 19)
(24

M, =[64.237(4,, + A,)) +42.825(A4,, + 24, )]i2 (20)

[24
M, =[2665.467(A,, + A,,) +1776.976(A4,, + 24, )]i2 21

o

M, =[35.223(A,, + Ay,) +23.482(4,, + 24, )]i2 (22)

o
M,, =[46.016(4,, + A4,,) +30.678(4,, + 2 4, )]i2 (23)

(04
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o
M,, =[0.378(4,, + A,,) +0.252(4,, +2 4, )]i2 (25)
(24
M, =[168.625(4,, + A,,) +112.416(4,, + 24, )]i2 (26)
(04

M,, =[28.253(4,, + A,,) +18.835(4,, + 24, )]i2 (27)

o
M, =[55.382(4,, + Ay,) +36.921(A4,, + 24, )]i2 (28)

o
C, =[(11744 949 +117.727 na \(D,, + D,, )+ (7411.381 + 78.485 In &) D, +
+ (16078 .518 +156 .97 In @ )D ]L2 (29)
[24
C, =[-29.824(D,, + D,,)-484.976D,, + 425.329D,, ]i2 (30)
o

C, =[-12.788(D,, + D,,)~101.545D,, +75.967D, | ! (31

aZ

For three Ritz parameters, considering only the membrane plate resistance, the unknown Ritz
coefficients are calculated from equations (15), (16) and (17) where M,, and all C; terms are

now equal to zero.

First failure due to glass-epoxy tensile fracture occurs when:
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i Al47-3 zz—a 26, s
Z j(] ) T crit

where ¢, is the tensile failure strain of the glass-epoxy.

i=1,23,.. (32)

Depending on the number of Ritz parameters, and considering the case of membrane only
resistance or the case of both bending and membrane resistance, we use the appropriate set of
the aforementioned equations. We start increasing the indentation load P, until the
corresponding values of 4; satisfy condition (32). When this happens, the indentation load P has
reached the critical value P, and the corresponding first failure displacement w,;; is then
calculated, for those 4; values, from the following equation:

W, = z} 2, i=123.. (33)
<

5. Results

We have applied the proposed finite element modeling procedure and the analytical formulas to
GLARE 2-2/1-0.3 plates and to GLARE 3-3/2-0.4 plates. GLARE 2-2/1-0.3 fiber-metal
laminate consists of two external 2024-T3 aluminum layers and two R-glass UD fiber prepregs
in the middle. Each aluminum layer has a thickness of 0.3mm and each prepreg has a thickness
of 0.1 mm. Prepregs have the same orientation. We have analyzed circular GLARE 2 plates
with 35 mm, 40 mm and 45 mm radius. The material properties considered for our calculations
are given in Table 1. All available properties of reference (Vlot 1996) have been used. For
2024-T3 aluminum we have considered a Poisson’s ratio equal to 0.33 (Alderliesten 2005).
Remaining material properties have been taken from Hoo Fat et al. (2003) or have been
calculated based on the reciprocal relations.

E;; =47.3 GPa (long. prepreg stiffness) v;; =0.25  (prepreg Poisson’s ratio)
Ey, = 17 GPa (trans. prepreg stiffness) v;; =0.25 (prepreg Poisson’s ratio)
E;; = 17 GPa (through thickness stiffness) vy; = 0.32  (prepreg Poisson’s ratio)

G, = 7 GPa (in-plane shear modulus)

e = 0.055 (prepreg tensile failure strain)

G;; = 7 GPa (out-of-plane shear modulus)

E 4 =72 GPa(aluminum Young modulus)

G,; = 7 GPa (out-of-plane shear modulus)

0, = 340 MPa (aluminum yield strength)

vy =033 (aluminum Poisson’s ratio)

Table 1. GLARE 2-2/1-0.3 material properties

GLARE 3-3/2-0.4 fiber-metal laminate consists of the following lay-up:
[2024-T3 / 0° glass / 90° glass / 2024-T3 / 90° glass / 0° glass / 2024-T3]

Each 2024-T3 aluminum layer has a thickness of 0.4 mm. Each prepreg ply has a thickness
of 0.125 mm and consists of S2-glass UD fiber prepregs. We have analyzed circular GLARE 3
plates with 65 mm, 70 mm and 75 mm radius. The material properties considered for our
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calculations are those given in Table 1, apart from €., which, according to our correspondence
with the manufacturer of GLARE 3, is equal to 0.047.

The finite element modeling results and analytical simulation results are presented and
compared in the following paragraphs.

5.1 Finite element modeling results

In Fig. 3 the lateral deflections of a GLARE 2-2/1-0.3 circular plate under the action of the
indentor are illustrated. This is a representative deflection plot for the two different GLARE
grades we examine. An axisymmetrical deflection shape can be observed. This observation
further enhances Vlot’s experimental results (1996) concerning the axisymmetrical deflection
shape of GLARE plates, which has been considered by Vlot for his elastic - plastic impact
model. It is noted that we have also considered an axisymmetrical deflection shape for our
analytical simulation (2008). In Fig. 4 a representative deformed shape of a GLARE plate is
depicted. For these plots we have used ANSYS symmetry expansion command in order to
obtain results corresponding to a full model, since we have modeled a quarter of the structure.
In Fig. 5 the static (P, w,) curves of a circular GLARE 2-2/1-0.3 plate with a radius of 40 mm
are depicted.

ANSTS 10.0
-4.137
-3.677
-3.217
-2.758
-2.298
-1.838
-1.379
-.91913
-.459474
.181E-0%

 [NNNRIAIN |

Fig. 3. Lateral deflections in mm of a GLARE 2 plate with 40 mm radius and 4.137 mm
indentation
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Fig. 4. Deformed shape of GLARE 2 plate with 40 mm radius
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Fig. 5. Load-indentation curves for GLARE 2 plate with 40 mm radius

Apart from the (P, w,) curve which corresponds to the coarse mesh, all other depicted
curves stop at the point of the predicted first failure. It can be seen that the results converge
satisfactorily. Similar behavior has been found in the cases of GLARE 2-2/1-0.3 plates with 35
mm, 45 mm radius and GLARE 3-3/2-0.4 plates with 65 mm, 70 mm, 75 mm radius.

5.2 Analytical simulation results

In Fig. 6 the static (P, w,) curves corresponding to the membrane strain energy of circular
GLARE 2-2/1-0.3 plate with a radius of 40 mm are depicted. In Fig. 7 the static (P, w,) curves
corresponding to both bending and membrane strain energy of the same GLARE 2 plate are
depicted.

Each analytical depicted curve stops at the point of the predicted first failure. It can be seen
that the results converge satisfactorily in both examined cases.
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Fig. 6. Membrane Load-indentation curves for GLARE 2 plate with 40 mm radius
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Fig. 7. Membrane & Bending Load-indentation curves, GLARE 2 plate, 40 mm radius

It is noted that the rigid-perfectly plastic assumption for the aluminum yields the existence
of constant bending terms in (P, w,) expressions. Due to these terms the plate does not deflect
until the load reaches a finite value that causes plastic flow. This is clearly illustrated in Fig. 7.

Similar behavior has been found in the cases of GLARE 2-2/1-0.3 plates with 35 mm, 45
mm radius and GLARE 3-3/2-0.4 plates with 65 mm, 70 mm, 75 mm radius.

5.3 Comparison of FEM, analytical and experimental results

In Fig. 8 the static three - parameter (P, w,) curves corresponding to the membrane strain
only and to both bending and membrane strain energy are compared with the fine mesh
FEM (P , w,) curve. A good agreement between numerical and analytical results is
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demonstrated. The expected (Tsamasphyros and Bikakis 2008) small contribution of bending
stiffness in comparison with the membrane stiffness to the response of the GLARE plates can
be observed from the analytical curves. A good agreement between numerical and analytical
results and the small contribution of bending stiffness in comparison with the membrane
stiffness has also been found in the cases of GLARE 2-2/1-0.3 plates with 35 mm, 45 mm
radius and GLARE 3-3/2-0.4 plates with 65 mm, 70 mm, 75 mm radius.

Furthermore, both numerical and analytical results are compared with the experimental (P,
w,) curve published by Vlot (1996) for the case of a GLARE 2-2/1-0.3 circular plate with a
radius of 40 mm. A good agreement between calculations and experimental data is found. The
best numerical prediction, corresponding to the fine mesh FEM results, yields a first failure load
of 3.75 KN and a first failure deflection of 6.65 mm which are within 2% and within 5% of the
corresponding experimental values (3.8 KN and 7mm). The best analytical prediction,
corresponding to the three - parameter Ritz approximation that takes into account both bending
and membrane stiffness of the plate, yields a first failure load of 3.57 KN and a first failure
deflection of 6.85 mm which are within 7% and within 3% of the corresponding
experimental values.

Experiment
74 .
— — — 3 Ritz parameters
6 - membrane & bending
5| — - FEM fine mesh
Z 44 ------ 3 Ritz parameters
X, 3| membrane
o
2 4
1 4
O = T T T T T T T 1

Fig. 8. Experimental vs. calculated Load-indentation curves, GLARE 2 plate, 40 mm radius

6. Conclusions

In this work we have developed a finite element modeling procedure for the prediction of the
static load-indentation curve of thin circular clamped GLARE fiber-metal laminated plates that
deflect under the action of a lateral hemispherical indentor located at their center. ANSY'S finite
element program is used for this purpose. The modeling procedure also predicts the first failure
load and deflection due to glass-epoxy tensile fracture.

We have applied the finite element modeling procedure along with our analytical model
(2008) to predict the response of circular GLARE 2-2/1-0.3 plates with 35 mm, 40 mm and 45
mm radius and circular GLARE 3-3/2-0.4 plates with 65 mm, 70 mm and 75 mm radius. The
numerical results are compared with corresponding analytical results. Both numerical and
analytical results are compared with published experimental data from reference (Vlot 1996).
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It is found that both numerical and analytical results have converged satisfactorily. The
governing role of the membrane in comparison with the bending stiffness for this problem is
demonstrated by comparison between membrane only three-parameter Ritz approximation
results and both bending and membrane three-parameter Ritz approximation results. Both
numerically and analytically predicted load-indentation curves for a GLARE 2-2/1-0.3
circular plate with a radius of 40 mm agree well with the corresponding experimental curve
(Vlot 1996). Also, the numerically calculated first failure load and deflection are within 2% and
5% of their experimental values respectively, while the analytically calculated first failure load
and deflection are within 7% and 3% of their experimental values respectively. As expected, the
FEM load-indentation curve fits better with the experimental data than the analytical curves.

The analytical load-indentation curves are also in good agreement with the corresponding
numerical curves in all other examined cases. There is also a good agreement between
analytically and numerically predicted first failure load and deflection. In this regard, the
validity of our analytical model is verified.

Fine mesh plots of FEM results concerning the lateral deflections of all examined GLARE
plates under lateral indentation, for all intermediate positions of the indentor, justify the
axisymmetrical deflection shape considered by Vlot (1996) and for our analytical model.

By careful examination of all results we have obtained, it is concluded that the (P, w,)
curve of a GLARE plate under lateral indentation can be approximated up to the point of first
failure, considering only one Ritz parameter and only the membrane components of the strain
energy. This conclusion is very useful in cases where the prediction of first failure is not
mandatory, since it reduces the required calculations dramatically.

The proposed finite element modeling procedure and our analytical simulation model can
be used for the design of circular GLARE plates under lateral indentation and for the
evaluation of the impact properties of different GLARE grades. Furthermore, our analytical
simulation model is expected to predict satisfactorily the lateral indentation response of thin
circular plates consisting of other advanced hybrid material systems of alternating metal
layers bonded to fiber-reinforced polymer layers, provided that our assumptions remain valid.

Also, the proposed finite element modeling procedure is expected to predict satisfactorily
the lateral indentation response of thin GLARE plates with various geometries and boundary
conditions, under the action of hemispherical indentors with arbitrary position upon the plate.
Finally, this finite element modeling procedure is expected to predict satisfactorily the lateral
indentation response of thin plates consisting of other advanced hybrid material systems of
alternating metal layers bonded to fiber-reinforced polymer layers, provided that a suitable
material model is employed for the metal layers.
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