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ommon modeling in continuum mechanics 
nevertheless, neglecting possible contributions from the boundary. However, surface effects 

 the m n
rface potentials at the boundary are allowed, in 

ral, to depend not only on the boundary deform
radient. Motivated by this idea, a suitable finite

deformation gradients is established. In essence, the total potential energy functional that we 
at

 of both co

Key ion 

. Introduction 

in general, exhibit properties 
different from those associated with the bulk. This fact has been studied in the literature since 

e milestone work by (Gibbs, 1906) and elaborated by 

a

t, etc., thus obviously resulting in distinctively different properties 
 comparatively thin boundary layers. Likewise coating materials wit
 different properties at the boundary. These effects could phenomen

av
and so io u

2008) a systematic 
eatment of the boundary surface and its coup
roposed. In this respect different behaviors for

n of boundar tudied and in order to determine 
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Abstract 

C takes exclusively the bulk into account, 

sometimes play a dominant role in aterial behavior, the most promi ent example being 
surface tension. Within this contribution su
gene ation but also on the boundary deformation 
g  element framework based on rank deficient 

seek to minimize with respect to all admissible spatial vari ions at fixed material placement is 
consisting ntributions from the bulk and the boundary. 

words: Surface potentials, Surface tens

1

Surfaces of bodies and interfaces between pairs of bodies, 

th others, e.g. (Adam, 1941; Gurtin, 1974; 
Gurtin and Murdoch, 1975; Leo and Sekerka, 1989; Adamson and Gast, 1997;  Simha and 
Bhattachary , 2000; Steinmann and Häsner, 2005; Fischer et al., 2008). Moreover, in material 
processing, the boundary of material is frequently exposed to e.g., oxidation, ageing, grit 
blasting, plasma jet treatmen
in h thin films results clearly 
in ologically be modelled in 
terms of boundaries equipped with their own potential energy. 

The numerical simulation of the surface of the body has been studied extensively when the 
bulk beh es like a fluid, e.g. (Navti et al., 1997; Bellet, 2001; Dettmer at al., 2003; Dettmer 

Peri c , 2006) and al , based on a variat nal form lation in (Olson and Kock, 1994; 

Saksono and Peri c , 2006a; Saksono and Peri c , 2006b). In (Steinmann, 
tr ling with the bulk based on potentials was 
p  the surface of the continuum body can be 
considered by defining the respective surface potential energy. In this contribution the 
computational implementatio  such y potentials is s
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the be fferent boundary 
m  are proposed. 

havior of the surface and the efficiency of the numerical framework, di
aterial models, together with their corresponding numerical examples,

o introduce our notations we briefly outline the basic equ
e. surfaces in 3D. Furthermore, the weak form and t

n

imensional, embedding Euclidean space 

ith coordinates x  is parameterized by two surface coordinates 

2. Theory and FE-Formulation 

T ations of the geometry of boundaries, 
i. he discretized form of the balance 
equations are formulated in this section. 

2.1  Geometry and kinematics of bou daries 

A two-dimensional (smooth) surface   in the three-d
  with = 1, 2 . Therefore,  w 

  = .x x  (1) 

The corresponding tangent vectors T

a   to the surface coordinate lines  , i.e. the covariant 

atural) surface basis vectors are given by  (n

 = . 
a x  (2) 

 The associated contravariant (dual) surface basis vectors a  can be defined by the Kronecker 

roperty = 
  a a . More details on the geometry of the surface

2006) and (Steinmann, 2008). The contra- and covariant base vectors a  and 3a , normal to 

 1 2 1 2= / | | . n a a a a  (3)  

oreover, the mixed-variant surface unit tensor i  is defined as  

 := = ,
   i a a i n n  (4) 

sional

ed by: 



p s can be found in (Ciarlet, 
3

T , are defined respectively so that 3

3 = 1a a . Accordingly, the surface normal n  is 

computed as  

M

in which i  represents the ordinary mixed-variant unit tensor of the three-dimen  
embedding Euclidean space. Finally, the surface gradient and surface divergence operators for 
vector fields are defin

 grad{ } := { } div{ } :=    and     { } . 
  

     a

at l configuration 0  at time = 0t  with the 

surface 0  attached to the body and respectively, takes the spatial configuration   at time 

> 0  with the surface t . The placement x  and 

 a  (5) 

Consider next a continuum body th  takes the materia

t

t  in the spatial and the material X

configurations are related by the invertible (nonlinear) deformation map  

  = .Xx   (6) 

 The associated deformation gradient or rather (invertible) linear tangent map between material 
and spatial line elements d

t
Tx   and 

0
d TX   is defined as  
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   with Jacobian
d

:=Grad := = det > 0.
d

v
J

V
F X F  (7) 

The surface deformation gradient F  or rather (non-invertible) linear surface tangent map 
between line elements 

0
d TX   and d

t
Tx   is defined as  

    := Grad = .
 F X a A  (6) 

2.2 Dirichlet principle of minimum potential energy  

The bulk potential energy density 0U  per material unit volume in 0  is composed of internal 

d 0V , resp , as  and external contributions 0W  an ectively

    0 0 0 0 0 0 0with and= = ; = ; .U W V W W V V F X X  (8) 

Likewise, the surface potential energy density 0u  per material unit length in 0  may consist of 

inte

 

rnal and external contributions 0w  and 0v , respectively, as  

 w  0 0 0 0 0 0 0with and; ; .u w v w v v   F X X  (9) 

he total potential energy functional  In summary, t =I I   that 

o all a 
we seek to minimize with 

respect t dmissible variations   ( spatial variations d material placement) reads   

 

at fixe


0 0

0 0( ) := ( , ; ) d ( , ; ) d .I U V u A   F X F X
 

 (10) 

Then the minimization of the total potential en  ergy functional, = 0 , r s th eak 

 
0 0

: Grad d : Grad d

.

V A  



 P P
 

 



ned, as usual, as  

I ender e w

form of the (local) balance equations including contributions from the boundary terms 

  (11) 

= d dV A    b b 
0 0

00 

The stress in two-point description and the distributed (volume) force related to the bulk 0  are 

defi

 0 .0 0and:= :=U U FP b 

description and the distributed force (the

 (12) 

Likewise, the stress in two-point  surface load or rather 

 00 0and:= := .u u P b  3) 

oreover, by applying the divergence theorem in the bulk and at the bound

tractions) related to the surfaces in 0  are defined as  

 
F

 (1

M ary, after some 
manipulations, equation (11) is cast into  
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 0 0 0

 
0d d = 0 .A A    P b

 
  

 (14) 

Since the above expressi renders the equivalent local 

 b ion on th nd

0Div d d dV V A           P b P N
  
  

0

Div 
0

on holds for all spatial variations, it 
expressions, i.e. the (localized) force balance in the bulk 0  and the (localized) force balance or 

Neumann-type oundary condit e bou ary surfaces in 0 0=   . More details on this is 

2.3  Finite element formulation 

given in (Steinmann, 2008). 

In order to ents are chosen to be 
ans of quadratic 

tetrahedra, the surface elements are qua

The principle of virtual work  4) is discretized into
a set of su

=1

 have an efficient finite element framework, the surface elem
consistent with the bulk. For instance, if the bulk is discretized by me

dratic triangles. 

(1 achieved in  a set of bulk elements and 
rface elements with  

 0 0 0 0= = ,
b el s eln n 

=1

       (15) 
 

 and  wh ementsere b eln   stands for the number of bulk el s eln   stands for the number of surface 

elements. In the cu e bulk is skipped, for the 
sake of space. Neve s been introduced in the 

terature, e.g., (Zienkiewicz and Taylor, 2005). 

The geometry for each surface element can be written as a tural coordinate   by 

using sta

i

rrent manuscript the discretization procedure for th
rtheless, a similar strategy can be used as ha

li

 function of na

ndard interpolations and Galerkin approximations.  

   
=1 =1

.
i i

N        and

N Nnode nodei
i iN X X

1 2= ( , )   are the natural coordinates in two dimensions and 

      (16) 

Here   i

N  is the standard shape 

in  

  (17) 

 into  

 
0 0

00Grad d = d d .
i i

N A N V N A  b b
 

 (18) 

function of the surface element at node i . Furthermore, the surface deformation gradient results 

 = Grad Grad .
Nnode

i N F    i

=1i

Equipped with all the above formulae, the weak form of the balance equation associated with 
bulk element   with attached surface elements   for the node i  is eventually discretized

 
0 0

Grad dN V  P P
 

 i i  

 In order to solve (18), the Newton-Raphson scheme can be employed. For that, first the 
residual vector for each local node i  associated with the bulk element   with attached surface 

elements  , is defined as  
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    
0 0 0 0

00Grad d Grad d d .
i i

i i i
e N V N A N V N A           R P P b b

   
 (19) 

The global residual at the global node 

d

J  is defined by  

nel

 :=
=1

j
eRA  (2J

e

0) R

where the corresponding local node number in an element or surface element e  to the global 
node number J  is denoted by = 1,j n  and n  is the number of nodes per element or surface ne ne

lement. Herein the operator 
=1

n el

e

A denotes the assembly of all ele ement and surface elements 

contributions at the global node = 1, npJ n  where npn  is the total number of nodes. 

The consistent linearization of of the resulting system of equations, would be  

 1and( ) = = ,|n n n


   

R

R d d 0 d d d
d

 (21) 

in which  stands for the iteratn ion step and R  and d  are the global 
g (21) results in the spatial coordi

vectors of residual and 
patial coordinates. Solvin

ntly 1nd . 

cal  stiffness would be  

 

s nate increment, d  and 
conseque

The lo  tangent

     

     
0

0

= = Grad Grad d

Grad Grad d ,

i
ij i je
e j abcdac b d

ac

i j

abcdb d

N N V

N N A





 
      







R
K

 






 (22) 

 in which   is the fourth-order elasticity two-point tensor as has been introduced in (Marsden 

and Hughes, 1994).   is defined, in analogy, as follows:  





 and= = .
 



P P

F F
   (23) 

Finally in an , the global tangent st ffness of the whole system  be assembled  

 
n

alogy to (20) i  has to

=1

= .
el

IJ ij
e

e

K KA

ly operator introduced here is slig

 (24) 

 It is noteworthy that the assemb htly different from that 
introduced in the literature, e.g. (Zienkiewicz and Taylor, 2005), in the sense that here the 
contributions from h the bulk and the boundary su  have to be en into account. 

3. Examples of sur

In or

he boundary m

 bot rface  tak

face potentials 

der to model a specific material behavior of the boundary, first the internal potential energy 

of t aterial, 
0 ( ; )w F X , is defined. Next, the corresponding derivations are carried 
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out so as to achieve the boundary Piola stress icity  and elast tensor P  and  , respectively. In 
this contribution two elementary options are proposed for isotropic surface potentials in sections 
§  3.1 and 3.2, re ly. The first option models boundaries which behave like a neo-

e second one models the typical surface tension. 

3.1 Neo-Hookean type boundary potential 

§  spective

Hookean material and th

For a boundary material which behaves analogously to a neo-Hookean material, however in two 
dimensions, so that it mimics the format e.g. advocated in (Kuhl et al., 2 ), the internal 
potential energy can be e   

 

004
xpressed as

     1 1
ˆ= [ : 2 2log ].lo

2 2
J  F F F 5) 

The c ponding bou  takes the following explicit exp on  

 

2gw J 

ress te

0 ( )

ndary

 (2

ressiorres  Piola st nsor




    0= = log .J
T Tw        

P F F F
F

 ( 6) 

r the fourth order elasticity tensor 

2

  will be  Moreover, the explicit representations fo

  


       = = log ,
T T

J
         

  P
F F

F
 (27) 

in which  

 



    
with= = = ik

ijkl
A

 
 


 F F

I I A B and = .

T

jlB



F F
 

.1.1 Numerical example 

as shown in 
dered.  

 (28) 

3

In order to illustrate the effect of the neo-Hookean type surface potential, a model 
the Figure 1 resembling the Cook's membrane, however in three dimensions, is consi

 

Figure  1. A model to illustrate the surface potential effects 

The structure is fixed in all the degrees of freedom on the left wall and a distributed force 

of 20.75 /kN mm  is applied on the right wall in the upward direction as depicted in the Figure.  
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The material parameters for the bulk are = 8 GPa  and = 12 GPa . n the lateral walls of 

the structure the neo-

O

Hookean boundary potential is applied with the surface material 

param   an = 1.5   . The results are shown in the Figure 2 f ffe nt ratios of 

/ = = 0, 0.1, 10m   . The increase of the energy contribution from th und esults in 
mo ess of aterial and thus, for the same applied load, less di men

eters 

/ 
re stiffn

d 

1,

 the m

or di

e bo
splace

re

ary r
t. 

 

2. Illust resi

3.2  Su ace tensi oundary potential 

The sec nd material m surface 
tension ore de  b ode otential 
energy unit def rmed are on he whole 
bound , see e.g. rtin, 1975). Therefore  

 

Figure  

on b

tails can
o

 (Gu

ration of the neo-Hookean type surface stance 

 in fluids
is m
 tensi

rf

o
; m
 per 
ary

odel for the boundary captures the surface effects
e found in (Lifshitz and Landau, 1987). For th

a has to be constant due to constant surface

, i.e. 
l the p
on t

=const.=tw   (29) 

and cor sponre dingly  

 ( ) = .w J 0
F  (30) 

The associated boundary Piola stress tensor takes the following explicit expression  

 


 0= = .
Tw

J





P F
F

 (31) 

Moreo r, the explicit representations for the fourth order elasticity tensor ve   will b

  


e  

   = = [ ].
T T

J
 

  


P
F F

F
  2) 

Rema  For the surface tension model one has to notice that the energy of the s rface, in 
gene will not b inimum in the reference configuration which may  to co utational 
instabilities, see (Javili and Steinmann, 2009) for more details. 

3.2.1  N merical mple 

As an example, due to the surface tension effect, the surfac
mean atur e tends to transform to a sphere. In order to fact, a cube 
as sh  in Fig  (top-left corner) is considered which is fixed ter in the 
tran e rotational degrees of freedom. For the bu e n Hookean 

 (3

 lead

e of a body tends to obtain constant 
 illustrate th

 in th
lk th

rk.
ral, 

u

 curv
own

slatio

u
mp

is 
e cen

eo-

e m

 exa

e, i.e. a cub
ure 3

nal as well as th
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material model is assumed. By increasing the material parameters   the cube gradually 
transforms to a sphere. 

 

Figure  3. Transformation of a cube to sphere due to surface tension 

3.2.2  Numerical exam

This example is carried out in order to investigate deeper the isotropic surface tension effects 
and

surface tensio

ple 

 also to study the efficiency of the finite elements. The model is a hollow cylinder with the 
dimensions shown in the Figure 4 and fixed at both ends. The surface tension boundary 

potentials are assigned to the model. By incr n, easing the  , the model resembles 
the well-known liquid bridge (or soap film) example.  
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Figure  4. A model (hollow) cylinder 

 

Figure 5. Deformation due to surface tension effect 

In the limiting case this example amounts to that of finding the minimum surface of 
he analytical solution of this problem can be attained with recourse to variational 
r the given dimension, as ( ) 1.8627 cosh ( / 1.8627)f x x . The s of such 

n 

revolution. T
calculus, fo proces

deformation is depicted in the figure 5. Furthermore,  figure 6 illustrates a comparison betwee
the proposed the numerical and analytical result which proves the excellent efficiency of 

numerical scheme. 
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Figure 6. Numerical vs. Analytical solution 

4.  Conclusions 

A finite element framework for continua with surface potentials has been presented. Based on 
metry and kinematics of surfaces, the corresponding weak form of the balance equations 
unting for contribution

geo
acco s from the boundary is derived from the Dirichlet principle of 

 e
Two
hav to confirm the efficiency of the proposed scheme. The solution 

Rap

ree-
ds 

y.  

minimum potential nergy. A suitable framework for finite element implementation is given. 
 models for boundary potentials are introduced and corresponding numerical examples 

e been provided, so as 
procedure is robust and shows the asymptotically quadratic rate of convergence for Newton-

hson scheme. 
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