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Abstract

Common modeling in continuum mechanics takes exclusively the bulk into account,
nevertheless, neglecting possible contributions from the boundary. However, surface effects
sometimes play a dominant role in the material behavior, the most prominent example being
surface tension. Within this contribution surface potentials at the boundary are allowed, in
general, to depend not only on the boundary deformation but also on the boundary deformation
gradient. Motivated by this idea, a suitable finite element framework based on rank deficient
deformation gradients is established. In essence, the total potential energy functional that we
seek to minimize with respect to all admissible spatial variations at fixed material placement is
consisting of both contributions from the bulk and the boundary.
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1. Introduction

Surfaces of bodies and interfaces between pairs of bodies, in general, exhibit properties
different from those associated with the bulk. This fact has been studied in the literature since
the milestone work by (Gibbs, 1906) and elaborated by others, e.g. (Adam, 1941; Gurtin, 1974;
Gurtin and Murdoch, 1975; Leo and Sekerka, 1989; Adamson and Gast, 1997; Simha and
Bhattacharya, 2000; Steinmann and Hésner, 2005; Fischer et al., 2008). Moreover, in material
processing, the boundary of material is frequently exposed to e.g., oxidation, ageing, grit
blasting, plasma jet treatment, etc., thus obviously resulting in distinctively different properties
in comparatively thin boundary layers. Likewise coating materials with thin films results clearly
in different properties at the boundary. These effects could phenomenologically be modelled in
terms of boundaries equipped with their own potential energy.

The numerical simulation of the surface of the body has been studied extensively when the
bulk behaves like a fluid, e.g. (Navti et al., 1997; Bellet, 2001; Dettmer at al., 2003; Dettmer
and Peric’, 2006) and also, based on a variational formulation in (Olson and Kock, 1994;
Saksono and Peric’, 2006a; Saksono and Peric’, 2006b). In (Steinmann, 2008) a systematic
treatment of the boundary surface and its coupling with the bulk based on potentials was
proposed. In this respect different behaviors for the surface of the continuum body can be
considered by defining the respective surface potential energy. In this contribution the
computational implementation of such boundary potentials is studied and in order to determine
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the behavior of the surface and the efficiency of the numerical framework, different boundary
material models, together with their corresponding numerical examples, are proposed.

2. Theory and FE-Formulation

To introduce our notations we briefly outline the basic equations of the geometry of boundaries,
i.e. surfaces in 3D. Furthermore, the weak form and the discretized form of the balance
equations are formulated in this section.

2.1 Geometry and kinematics of boundaries

A two-dimensional (smooth) surface S in the three-dimensional, embedding Euclidean space

with coordinates X is parameterized by two surface coordinates &" with o =1,2 . Therefore,
X=X (é‘;“ ) €))

The corresponding tangent vectors a_e TS to the surface coordinate lines &", i.e. the covariant
(natural) surface basis vectors are given by

8, =0,x. @)

The associated contravariant (dual) surface basis vectors a“ can be defined by the Kronecker
property &} =a“-a,. More details on the geometry of the surfaces can be found in (Ciarlet,

2006) and (Steinmann, 2008). The contra- and covariant base vectors a’ and a,, normal to

39

TS, are defined respectively so that a'-a, =1. Accordingly, the surface normal N is
computed as

n=a xa,/|a xa,|. 3)

A

Moreover, the mixed-variant surface unit tensor i is defined as
i=a, ®a"=i-n®n, 4

in which 1 represents the ordinary mixed-variant unit tensor of the three-dimensional
embedding Euclidean space. Finally, the surface gradient and surface divergence operators for
vector fields are defined by:

grad {o} := 0, (®a" and div{e} := o, fo}-a". )

Consider next a continuum body that takes the material configuration 5, at time 7 =0 with the
surface S, attached to the body and respectively, takes the spatial configuration B, at time
t>0 with the surface S. The placement x and X in the spatial and the material
configurations are related by the invertible (nonlinear) deformation map

x=0¢(X). Q)

The associated deformation gradient or rather (invertible) linear tangent map between material
and spatial line elements dx e 7B and dX e 7B, is defined as
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F :=Grad (p( X) with Jacobian J = % =detF > 0. 7

The surface deformation gradient F or rather (non-invertible) linear surface tangent map
between line elements dX e 7S, and dx e TS is defined as

F = Grad ¢(X)=a, ® A, (6)

2.2 Dirichlet principle of minimum potential energy

The bulk potential energy density U, per material unit volume in B, is composed of internal

and external contributions W, and ¥, , respectively, as

Uy =Wy+V, with W,=W,(F;X) ad  V,=V,(g;X). (8)
Likewise, the surface potential energy density u, per material unit length in S, may consist of
internal and external contributions w, and v, , respectively, as

Uy =w,+v, with w,= wo(l’:\;X) and vy =v, (@ X). )

In summary, the total potential energy functional 7/ =1(¢) that we seek to minimize with
respect to all admissible variations d¢ ( spatial variations at fixed material placement) reads

1(9) = [, Uy(@,F; X) dV + [ uy(@, F; X) dd. (10)

Then the minimization of the total potential energy functional, 8/(e)=0, renders the weak
form of the (local) balance equations including contributions from the boundary terms

jP:GradS(pdV + I ﬁ:@&pd/l
Bn Sn (11)

= [,b,-80 4V + [ bo-5p d4 V50.

The stress in two-point description and the distributed (volume) force related to the bulk B, are
defined, as usual, as

P:=0.U, and b, = —0,U,- (12)
Likewise, the stress in two-point description and the distributed force (the surface load or rather

tractions) related to the surfaces in S, are defined as

P=0.u, and  bo=-0,u, (13)

¢

Moreover, by applying the divergence theorem in the bulk and at the boundary, after some
manipulations, equation (11) is cast into
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—jgo&p DivP dV - on&p-bo av + LOS(p- P-N d4 .

- js&p-BEﬁ d4 - [ 8¢-bo d4=0 vde.

Since the above expression holds for all spatial variations, it renders the equivalent local
expressions, i.e. the (localized) force balance in the bulk B, and the (localized) force balance or

Neumann-type boundary condition on the boundary surfaces in S, = d53,. More details on this is
given in (Steinmann, 2008).

2.3 Finite element formulation

In order to have an efficient finite element framework, the surface elements are chosen to be
consistent with the bulk. For instance, if the bulk is discretized by means of quadratic
tetrahedra, the surface elements are quadratic triangles.

The principle of virtual work achieved in (14) is discretized into a set of bulk elements and
a set of surface elements with

Mp_el Ms_el
=B s = Us. (15)
B=1 =1
where n, , stands for the number of bulk elements and 7_, stands for the number of surface

elements. In the current manuscript the discretization procedure for the bulk is skipped, for the
sake of space. Nevertheless, a similar strategy can be used as has been introduced in the
literature, e.g., (Zienkiewicz and Taylor, 2005).

The geometry for each surface element can be written as a function of natural coordinate & by
using standard interpolations and Galerkin approximations.

Nuode N

oB)* XN ()9 mi  X(&)= > N ()X (1)

i=1

Here &=(§,,&,) are the natural coordinates in two dimensions and N is the standard shape

function of the surface element at node i . Furthermore, the surface deformation gradient results
in

Nnode

F=Gradp~ Y ¢'®Grad N . (17)

i=1
Equipped with all the above formulae, the weak form of the balance equation associated with
bulk element [3 with attached surface elements y for the node i is eventually discretized into

ngP-GradN' dV+ngP- Grad N dA=ngb0Nf dV+ngboN dA. (18)

In order to solve (18), the Newton-Raphson scheme can be employed. For that, first the
residual vector for each local node i associated with the bulk element 3 with attached surface

elements vy, is defined as
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R;‘:jBPP-GradN" dV+ISOVP~ Grad N dA—jBDBbON" dV—jSDYboN dd. (19)

The global residual at the global node J is defined by

el )
R’ =AR/ (20)
e=1
where the corresponding local node number in an element or surface element e to the global
node number J is denoted by j=1,n, and n, is the number of nodes per element or surface
Tel

element. Herein the operator A denotes the assembly of all element and surface elements

e=1

contributions at the global node J =1,n, where n  is the total number of nodes.

The consistent linearization of of the resulting system of equations, would be

R(d)+g—§ ,Ad=0 and d, =d +Ad, 21

in which 7 stands for the iteration step and R and d are the global vectors of residual and
spatial coordinates. Solving (21) results in the spatial coordinate increment, Ad and

consequently d .

The local tangent stiffness would be

} oR! / '
] = | = fytoman) ), faman), o

o] fGman| (3] (GraR| aa

d

(22)

in which A is the fourth-order elasticity two-point tensor as has been introduced in (Marsden
and Hughes, 1994). Ais defined, in analogy, as follows:

L L (23)
oF oF

Finally in analogy to (20), the global tangent stiffness of the whole system has to be assembled

el
KY = A K. (24)

e=1

It is noteworthy that the assembly operator introduced here is slightly different from that
introduced in the literature, e.g. (Zienkiewicz and Taylor, 2005), in the sense that here the
contributions from both the bulk and the boundary surface have to be taken into account.

3. Examples of surface potentials

In order to model a specific material behavior of the boundary, first the internal potential energy

of the boundary material, WO(E; X)), is defined. Next, the corresponding derivations are carried
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out so as to achieve the boundary Piola stress and elasticity tensor P and A , respectively. In
this contribution two elementary options are proposed for isotropic surface potentials in sections
§ 3.1 and § 3.2, respectively. The first option models boundaries which behave like a neo-

Hookean material and the second one models the typical surface tension.

3.1 Neo-Hookean type boundary potential

For a boundary material which behaves analogously to a neo-Hookean material, however in two
dimensions, so that it mimics the format e.g. advocated in (Kuhl et al., 2004), the internal
potential energy can be expressed as

wo(/lf):%ilogzj-i-%ﬁ[/l:\:I,:\—Z—Zlogj]. 25)

The corresponding boundary Piola stress tensor takes the following explicit expression

ﬁ=—A=x10g3ﬁ*+a[ﬁ_ﬁ*] (26)

A=22 i P oF " +pl+[ilogT 0B, @7
oF
in which
oF oF
[=—=181 win {A®B| =4,B, md D="x. (28)
P ijkl oF

3.1.1 Numerical example

In order to illustrate the effect of the neo-Hookean type surface potential, a model as shown in
the Figure 1 resembling the Cook's membrane, however in three dimensions, is considered.

L4

» i

1Grmm

Mmm

ldmm

Figure 1. A model to illustrate the surface potential effects

The structure is fixed in all the degrees of freedom on the left wall and a distributed force

of 0.75kN / mm” is applied on the right wall in the upward direction as depicted in the Figure.
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The material parameters for the bulk are p=8 GPa and A =12 GPa . On the lateral walls of
the structure the neo-Hookean boundary potential is applied with the surface material
parameters ;L and }::1.5;1. The results are shown in the Figure 2 for different ratios of

;L/ u= e 0,0.1,1,10m . The increase of the energy contribution from the boundary results in
more stiffness of the material and thus, for the same applied load, less displacement.

Figure 2. Illustration of the neo-Hookean type surface resistance

3.2 Surface tension boundary potential

The second material model for the boundary captures the surface effects in fluids, i.e. surface
tension; more details can be found in (Lifshitz and Landau, 1987). For this model the potential
energy per unit deformed area has to be constant due to constant surface tension on the whole
boundary, see e.g. (Gurtin, 1975). Therefore

w, =const.= }A/ 29)
and correspondingly
w,(F)=1vJ. (30)

The associated boundary Piola stress tensor takes the following explicit expression
p="C0—yJF . 31)
Moreover, the explicit representations for the fourth order elasticity tensor A will be

A=2__J0F T ®F  +D. (32)

D |
™

Remark. For the surface tension model one has to notice that the energy of the surface, in
general, will not be minimum in the reference configuration which may lead to computational
instabilities, see (Javili and Steinmann, 2009) for more details.

3.2.1 Numerical example

As an example, due to the surface tension effect, the surface of a body tends to obtain constant
mean curvature, i.e. a cube tends to transform to a sphere. In order to illustrate this fact, a cube
as shown in Figure 3 (top-left corner) is considered which is fixed in the center in the
translational as well as the rotational degrees of freedom. For the bulk the neo-Hookean
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material model is assumed. By increasing the material parameters \A( the cube gradually
transforms to a sphere.

Figure 3. Transformation of a cube to sphere due to surface tension

3.2.2 Numerical example

This example is carried out in order to investigate deeper the isotropic surface tension effects
and also to study the efficiency of the finite elements. The model is a hollow cylinder with the
dimensions shown in the Figure 4 and fixed at both ends. The surface tension boundary
potentials are assigned to the model. By increasing the surface tension, {(, the model resembles
the well-known liquid bridge (or soap film) example.
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Figure 4. A model (hollow) cylinder

Figure 5. Deformation due to surface tension effect

In the limiting case this example amounts to that of finding the minimum surface of
revolution. The analytical solution of this problem can be attained with recourse to variational
calculus, for the given dimension, as f(x)=1.8627cosh(x/1.8627). The process of such
deformation is depicted in the figure 5. Furthermore, figure 6 illustrates a comparison between
the numerical and analytical result which proves the excellent efficiency of the proposed
numerical scheme.
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Figure 6. Numerical vs. Analytical solution

4. Conclusions

A finite element framework for continua with surface potentials has been presented. Based on
geometry and kinematics of surfaces, the corresponding weak form of the balance equations
accounting for contributions from the boundary is derived from the Dirichlet principle of
minimum potential energy. A suitable framework for finite element implementation is given.
Two models for boundary potentials are introduced and corresponding numerical examples
have been provided, so as to confirm the efficiency of the proposed scheme. The solution
procedure is robust and shows the asymptotically quadratic rate of convergence for Newton-
Raphson scheme.
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