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Abstract 

Calibration of model parameters is a process used to set the parameters values with which the 
model produces the lowest deviation relative to relevant observed values. Calibration procedure 
includes identification of acceptable parameter ranges, sensitivity analysis related to parameter 
change (i.e. identification of the method and intensity of a parameter change impact on certain 
model results) and, finally, a simultaneous variation of parameters incorporating their mutual 
impact. The final step of the calibration procedure is performed automatically by the means of a 
computer. Calibration quality is defined by virtue of objective functions used to make the 
calibration process converge to the optimum solution, i.e. to the minimum deviation from the 
observed hydrograph. Graphical comparison of computed and real elements of the hydrological 
system is also useful during the calibration process. In this paper the sensitivity analysis and 
reliability analysis of the SWAT model input data have been used to select the groups of the 
most important parameters being calibrated, as well as parameters within the groups with their 
possible ranges of values. The procedure and algorithm of model parameters calibration by the 
parallel genetic algorithm (PGA) have been also described. Calibration of the SWAT model 
parameters was performed for many sub-catchments of the River Drina catchment. The results 
of the calibration of SWAT model parameters have been presented for the relevant sub-
catchment. 

Keywords: Parameter calibration, SWAT model, sensitivity analysis, parallel genetic 
algorithm, river basin. 

1. Introduction  

As the electricity generation of hydropower plants is directly related to the transformation of 
rainfall into runoff in the catchment area, and the rainfall is the main unmanageable inlet into 
the system, while weather forecast is reliable only to certain extent, special attention must be 
paid to rainfall-runoff transformation model. Depending on its purpose the model can be 
operational or forecast-type and it is used for the estimation of the values that describe the 
hydrological processes (runoff, snow, evaporation etc.) and treat certain phenomena suitable to 
the conditions of model application. Calibration procedure – setting of the mathematical model 
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parameters resulting in a behavior closest to physical model - is invaluable when the rainfall-
runoff transformation model is used to support decision-making in planning and operations. 
Selection of the calibration procedure is directly related to the type and purpose of the 
mathematical model, as well as to available data used to calibrate the model.  

The model presented in this paper Simić et al. (2009) is highly complex, physically based 
model; hence, parameter estimation is a difficult task. This paper will analyze and present the 
results obtained for model parameters, based on daily step calculation (long-term simulation). 
Since SWAT model was broadly applied previously, there were many heterogeneous analyses 
related to parameter estimation and estimation of model modification parameters, as well as the 
necessary analyses of model sensitivity to parameter changes.  

2. SWAT model calibration – previous experiences  

Model has to be scientifically-based, robust and well-grounded in theory in order to have model 
results applicable in practice, starting from the operational use in decision-making support 
systems, to research activities and preparation of respective studies. Therefore, one of necessary 
phases in model calibration and preparation for use is the sensitivity analysis. Sensitivity 
analysis is a process used to determine the way the results are changing depending on the 
change of model parameters, while inputs and simulation conditions are kept unchanged. 
Sensitivity analysis is the only reliable way to determine key parameters and the required 
accuracy of the calibration procedure. Model calibration is a process of parameter estimation 
performed through continuous comparison of mathematical model results and results of 
monitoring exercised on the physical model. Finally, model validation is the process of 
comparison of mathematical model results and monitoring results for a period not used in model 
calibration. According to Refsgaard (1997), model validation is a process demonstrating the 
capacity of the subject mathematical model to produce “accurate enough” results relative to the 
real system. Notion of “accurate enough result” is, of course, closely related to the planned use 
of the model. Although several attempts were made to determine objectively the required level 
of model accuracy that is, to define the relevant evaluation criterion for the calibration process 
(ASCE, 1993), a similar document has not been formulated yet. Meanwhile, many authors have 
defined their own specific criteria which are directly influenced by the characteristics of the 
subject basin, as well as the purpose of the models themselves (Saleh et al., 2000; Santhi et al., 
2001; Singh et al., 2004; Bracmort et al., 2006; Van Liew et al., 2007). However, establishing 
general statistical quality indicators of hydrological model calibration process would 
substantially help their future development and use in practical problem solving. A number of 
publications treat certain accepted indicators (Willmott, 1981; ASCE, 1993; Legates and 
McCabe, 1999), as well as certain new researches in this field (Wang and Melesse, 2005; Parker 
et al., 2006). Although these papers treat certain possible general statistical indicators, there are 
no analyses of the recommended values. The majority of published basin modeling projects in 
comparison of calculation and observed values treats monitoring data as absolutely accurate, 
while neglecting the fact that monitoring, collection and archiving also introduce certain errors 
in data. Even though this fact was well known in the past, there were no reliable ways for 
determination of the degree of inaccuracy of the observed data. Due to the inevitable need for 
the definition of the model calibration procedure (CEAP-WAS, 2005) the goals to be attained 
have been set: it is necessary to determine the appropriate evaluation technique (statistical, 
graphic etc.), to determine the search boundaries for the optimal parameter values in line with 
the selected evaluation technique and to define the guidelines for model validation, according to 
the specific features of the subject basin. 
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Since the SWAT-based models have been widely applied, many practical calibration and 
validation studies were performed. Being that these  models are used for monitoring of many 
phenomena, among which the principal one is the rainfall-runoff transformation, many studies 
deal with the validation of pollution spreading, sediment deposition etc.; hence, these studies 
are not of interest for management of hydropower objects. Only the studies that treat runoff 
calibrations in basins of different sizes and spatial-climate features can be considered important 
in this case. For example, (Arnold and Allen, 1996) used monitoring results from three basins, 
sizes of which were between 122 and 246 km2, and they have managed to perform a successful 
calibration of the surface runoff, base runoff, evapotranspiration and other relevant parameters. 
Detailed calibrations and successful runoff validations on two basins with sizes exceeding 4000 
km2 were performed by (Santhi et al. 2001, 2006). Calibration on several basins with sizes 
between 2000 and 305000 km2 were performed by Arnold et al. (1999). For calibration and 
validation the data from 1000 hydrological stations was used, covering the period between years 
1960 and 1989. 

3. Hydrological model calibration in general  

Modeling of hydrological phenomena in a basin includes complex interactions between the 
spatially distributed and closely related water flow processes, energy exchange and vegetation 
growth. All models try to describe these processes by a set of relatively simple mathematical 
expressions, the parameters of which have to be determined for each specific problem. 
Regardless of the model type, it is to a certain extent concentrated on a particular point in space 
and time. The consequence of this fact is that the majority of parameters cannot be determined 
by measurements, but they have to be evaluated by indirect methods. Calibration of model 
parameters is a process of determination of the parameter values with which the model produces 
lowest deviation relative to relevant observed values. In order to perform the calibration it is 
necessary to have the measured values of system inputs (rainfall, temperature etc.) and the 
respective system outputs (for example, the discharge on the outlet profile). As the dependence 
of the output upon model parameters is usually highly non-linear, direct regression methods 
cannot be applied and the calibration procedure has to be an iterative process. The model must 
meet certain requirements for the calibration to be feasible. Firstly, the interconnection between 
inputs, state variables and outputs must be consistent with measurements performed in the 
basin. Next, model results must be accurate and precise, i.e. they have to demonstrate minor 
value scattering and without unreliability of results. Finally, model structure and behavior must 
be in line with the applicable hydrological theory. The last condition is very important when the 
model should be used for testing of different scenarios regarding model state, for example, of 
the impact of various land uses on model behavior. 

First rainfall-runoff model calibration methods were based on manual approach of “trial 
and error”. Manual calibration can be divided into three levels. At the first level, the physically 
acceptable interval of parameters variation is determined. Although most often it is not possible 
to determine the parameters values on the basis of their physical meaning, determining their 
boundary values is still feasible. At the next one, the analysis of sensitivity to parameter change, 
i.e. the identification of the way and intensity of the impact of the parameter change upon model 
results, is performed. Finally, at the last level, the measured and calculated hydrographs are 
treated integrally and a simultaneous variation of parameters, while taking into account their 
mutual influence, is performed. This level is the most difficult part of the calibration, because it 
becomes apparent that parameters are highly interdependent and that the model is highly 
nonlinear, what makes the parameter estimation very difficult. 
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Fig. 1. Rainfall-runoff model calibration process 

Since manual calibration is based on subjective estimations, an experienced hydrologist can 
perform very successful parameter estimation on the basis of his/her previous experience. 
However, the process can be time consuming and since it is based on expert evaluation, it 
requires time for training and acquisition of experience. Besides that, the experience of one 
expert is often difficult to transfer to other experts in a simple way. These limitations have 
raised an increased interest in automated calibration methods.  

The goal of automatic calibration is the use of computers in the implementation of the last 
level of manual calibration. The first-level calibration is still performed manually because this is 
an expert-type problem that is not very demanding physically and which is performed only once 
in the initial calibration phase. Level two is usually neglected. Finally, last level is automated by 
the means of various algorithms that can be efficiently applied under the conditions of the high 
interdependency between the parameters and the nonlinearity of the model. Regardless of the 
selected algorithm, the issue of solution quality is an important one. The quality is defined by 
one or more mathematical expressions called the objective functions that are used for 
“navigation” of the calibration process to the optimum solution, i.e. the minimum deviation 
from the observed hydrograph (Prohaska et al., 2004). 

The objective function is usually some form of error sum in the instance of time when the 
hydrographs are compared and the error is defined as the deviation of the calculated value from 
the observed one: 

    obs
t te y y    (1) 

where  e  is error, obs
ty the value observed at time t ,  ty  the calculated value at time t and

   a vector of the proposed model parameters. 

The most common objective function is the weighted sum of the squares of errors: 
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where tw  is the weight, or weighted coefficient at the time t , and n  denotes the number of 
points to be compared. If the values of all weights are equal to 1.0. the formula turns into the 
simple sum of square of errors. 

Another commonly used form of objective function is the Nash-Sutcliffe coefficient 
defined as: 
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wherein obsy is mean value of all observed data used for comparison with simulation results.  

Nash-Sutcliffe coefficient can have values between -∞ and 1. Coefficient value of 1 
corresponds to the perfect congruence between the model and the observed data. If the value of 
the coefficient is 0. that means that the model is equally efficient as the average value of the 
measured data. If the coefficient value is negative, the model is less efficient than the simple 
mean value. Therefore, the closer the coefficient is to 1, the closer the model is to the behavior 
of the real system. 

As an addition to the numerical evaluation of the congruence it is possible to perform a 
graphical comparison, which provides for the visual comparison of the correspondence between 
calculated and real elements of the hydrological system. An elementary comparison can be 
performed by the analysis of the comparative representation of the measured and simulated 
hydrographs.  

 
Fig. 2. Deviation of model parameters from the real values 

The second model is presented in Figure 2. The diagram presents the calculated values for 
every time step, together with the real value of discharge for the same time-step. The analysis of 
this diagram can help in determination of the model deviation from reality, as a consequence of 
the selected parameters. A flat line in the diagram represents the equality between the calculated 
and the real discharge: if the points are on the line, the model with the selected parameters has 
accurately forecasted the real ordinates. Points above the line represent the “over-shoot” of the 
model, and those under the line represent the “under-shoot” of the model. If all displayed values 
are above the line of equality, the model deviates and constantly overestimates the parameter 
values. Similarly, if all points are under the line, the model is constantly underestimating 
parameter values. If the points are equally distributed above and under the line that is an 
indication that the model is overestimating and underestimating the values in a balanced 
manner. The spreading of points around the line indicates the model fitness. If the spread is 
huge, the model does not fit the reality – accidental errors in forecasting are highly correlated 
with the value of discharge. If the spread is minor, the model and real system fit together better.  



Journal of the Serbian Society for Computational Mechanics / Vol. 3 / No. 1, 2009  91 

 
Fig. 3. Presentation of errors in the calibrated model 

The third method consists of the calculation and plotting of the time-series of errors – the 
differences between the calculated and real discharges. An example of this method is shown in 
Figure 3. Present diagram shows how the forecasting errors are distributed during the 
simulation time. The analysis of this diagram can help in identification of the parameters that 
may require additional attention in the calibration procedure. 

 
Fig. 4. Comparative representation of measured and simulated values on a hydro-profile  

4. Proposed calibration and validation procedure for the rainfall-runoff model based upon 
the SWAT algorithm  

4.1. Basic principles of the proposed procedure 

The rainfall-runoff model is a parameter-based model, as the majority of known models are. 
The value of each parameter must be accurately determined before the model application. If can 
also be noted that certain parameters whose values can be determined on the basis of data 
related to the type of vegetation or land use in the basin area etc., while the values of some 
parameters cannot be determined by observation or measurement of the flow and basin 
characteristics. The basic calibration is based upon optimum values for the most relevant 
parameters of the rainfall-runoff model, as well as of the open-channel flow model. Since not 
all of the parameters of the rainfall-runoff model are of the same importance for calibration, it is 
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necessary to determine which parameters are to be calibrated and that should be performed in 
line with the quality of the applied data used and the performances of the algorithm itself. 

A systematic search of the best (optimum) parameter value is performed by the procedure 
shown in Figure 5. Calibration is performed in several steps, as follows: 

 Systematization of the required data, 
 Selection of calibration parameters, ranges of values and initial values, 
 Simulation, 
 Estimation and comparison of solutions and 
 Parameter correction and, eventually, a new simulation. 

 

 
 

Fig. 5. Calibration algorithm 

The first step of the procedure is the systematization of available data and an analysis 
according to the requirements already mentioned in the context of the selection of the 
calibration and validation period. 

The next step is the determination the parameters to be estimated, of the range of their 
acceptable values and of their initial values. Same as in the case of any other search, the better 
the estimation of the initial values is, the faster should the desired solution  be identified. Some 
of the initial parameter values and the ranges of their values can lie outside the expected 
boundaries, for the purpose of compensation for the initial data deficiencies.  

The following three steps are iteratively repeated until the satisfactory solution is reached. 
The simulation is always performed with a new set of parameters. Simulation result is a 
hydrograph on a certain hydro-profile with the representative hydrological station and reliable 
measurements of discharge.  

Then the calculated and observed hydrographs are compared. For example, the calculated 
hydrograph is compared to the real. This comparison is aimed at identifying the level of 
“fitting” between the model and the real hydrological system. The comparison itself is an 
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evaluation of model calibration quality that can be performed by many models and some of 
them will be presented below. 

4.2. Selection of the parameters to be calibrated 

The selection of the parameters to be calibrated is problem that must be solved in line with the 
indicators of input data quality (GIS data, hydro-meteorological data etc.). For example, if GIS 
data is of high quality, usually it is not necessary to significantly change the values of the 
parameters, such as CN (the parameter that reflects the land type and use). However, if the data 
is of a poor quality, or low accuracy, the deficiencies will have to be substituted for by the 
“artificial” parameter values. Also, due to the lack of accuracy in measurements of temperature 
and precipitation, and due to the fact that the major portions of time-series  were filled up with a 
certain degree of reliability,  it will be necessary to look for parameters concerning the snow 
pack formation and melting temperature in, seemingly, inappropriate ranges of values. 

Bearing in mind the above, the model needs to be subjected to an additional analysis of its 
sensitivity to parameter changes. The change in model results is a reaction to a change in the 
value of a model parameter. The change in the result due to a unit change in the value of the 
certain parameter is defined as model sensitivity to parameter value change. Model sensitivity 
can be also presented as a derivative of model result over the observed parameter. 

Sensitivity analysis of model parameters gave the main guidelines for the selection of the 
parameters to be estimated. Of course, there are several parameters that are, undoubtedly, very 
important for the results, and the sensitivity analysis has only confirmed their importance. 

The groups of the most important parameters, as well as the most important parameters 
within the groups, have been selected on the basis of sensitivity analysis and the analysis of 
input data reliability. 

The parameters for calculation of the referent input values are as follows: 

 lapsp (mm/km) – rainfall gradient, 

 lapst (oC/km) – gradient of temperature drop with an increase in altitude, 

 0SW (mm) – the initial state of soil humidity, 

 0sno (mm) – the initial value of water content in the snow pack, 

 
0wtblH (m) – height of underground water layer, 

 s rT  (oC) – base temperature for the start of formation of the snow pack, 

 
6meltb (mm/(day oC)) – snow melting factor for June, 21st, 

 
12meltb (mm/(day oC)) – snow melting factor for December 21st, 

 meltT (oC) – snow melting base (referent) temperature (close or equal to zero), 

 covsno (%) – percentage of snow coverage on the hydrological unit,  

 100sno (mm) – the minimum snow height measure for  snow coverage of 100%, 

 50sno (mm) – percentage of sno100 for surface snow coverage of 50%, 
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 daycan (mm) – the maximum water volume to remain on plants in a given day, 

 maxcan (mm) – the maximum water volume to remain on fully grown plants, 

 LAI (%) – total area of green leaves per surface area in a given day, 

 n (m-1/3s) – Manning coefficient for the particular vegetation type, 

 b (kg/m3) – soil specific weight, 

 cm (%) – percentage of clay content in the soil, 

 AWC (mm) – required water capacity of soil as a function of the vegetation blanket 
that represents the necessary amount of  water in the soil, required for the normal 
growth and development of the particular vegetation cover, 

 SAT (mm) – water content in the completely saturated soil, 

 surlag (-) – lag coefficient  of the surface runoff, 

 k and x (-) – parameters defining the  open-channel flow in the sub-catchment within a 
complex basin, 

 ksurf  (%) –  weighting factor for the surface runoff distribution and 

 kgw (%) –  weight for the subsurface runoff distribution. 

For each of the calibrated parameters, the interval of the possible values, as well as the 
initial values for the calibration must be defined. 

The parameters to be calibrated can be divided into the four groups: the parameters related 
to vegetation, the parameters related to pedology, the parameters related to hydrogeology and 
other parameters (that describe data correction, snow pack formation and snowmelt and flow in 
open channels).  

Parameters related to vegetation 

One of the most important parameters is the CN (Curve Number) parameter, defined as the 
family of curves, specific value of which is related to the combination of dominant vegetation 
on a hydrological unit and the dominant pedology class.  

 
 1 2 3 4 
Bare mountain terrain/uncultivated 10-15 25-30 30-40 34-41 
Meadows/Pastures 30-48 48-67 65-77 73-83 
Orchards/Vineyards 58-65 69-76 77-84 80-88 
Arable land 61-72 70-81 77-88 80-91 
Deciduous forests 40-50 61-71 72-82 78-88 
Coniferous forests 20-30 50-60 65-75 68-82 
Mixed forests 25-45 55-66 70-77 77-83 
Transition area 39-74 62-80 74-87 85-93 
Complex of cultivated lots  61-72 70-81 77-88 80-91 
Water surface 68-100 80-100 87-100 89-100 

Table 1. Ranges of possible values of the CN parameter depending on vegetation type  
and soil class 
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Table 1 shows the ranges of possible values of this parameter. 

Parameters related to pedology 

The most important parameter to be calibrated that is, directly related to the soil type or soil 
class, is Ksat.  

 
 CLASS Ksat (mm/h) 
Mould/dark soil 2 11-110 
Brown forest soil 3 1.1-11 
Podzolic and parapodzolic soil 2 11-110 
Recent alluvial sediments 1 110-400 
Rendzina on solid limestone 3 1.1-11 
Gravel and conglomerate 1 110-400 
Grey soil on limestone 2 11-110 
Grey soil on slate 2 11-110 
Clay soil 4 0.001-1.1 

Table 2. Ranges of the possible values of the soil parameter Ksat  

Table 2 represents the ranges of the values of this parameter for one soil class. 

Parameters related to hydrogeology 

Parameters related to hydrogeology to be calibrated are shown in Table 3. The most important 
parameter is the lag coefficient of the subsurface runoff gwlag.  

 

 K horiz. 
(m/day) 

Thickness 
(m) 

Eff. porosity 
(-) 

Practically impermeable terrains   0.0864 – 
0.864 2-5 0.002-0.01 

Terrains with extremely low water-abundance  0.432 – 8.64 5-10 0.005-0.05 
Inter-granular environments with low volume 
yield 

0.0432 – 
0.864 30-50 0.005-0.02 

Inter-granular environments with medium 
volume yield 0.432 – 8.64 10-20 0.01-0.08 

Table 3. Ranges of the possible values of hydrogeological parameters  

Other parameters 

This group includes the parameters related to the correction of precipitation and temperature 
relative to the change in elevation above the sea level plaps, tlaps, then the parameters related to 
snow storage and melting bmelt6, bmelt12, lsno, tsr, tmelt, snocov100. snocov50. as well as the parameter of 
surface runoff lag, surlag, initial soil humidity, SW0. initial height of the water table, hwtbl0 and 
two parameters related to open-channel flow within the basin, swatk and swatx.  
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plaps 3-13 
tlaps 2-12 
bmelt16/20 0-100 
lsno 50-150 
Ts-r -3 - +3 
Tmelt -3 - +3 
snocov 50/100 50-150 
surlag 0.04 – 0.5 

Table 4. Approximate ranges of possible values of other model parameters 

 4.3. Base values for parameter calibration 

Before the start of the iterative procedure of calibration it is necessary to determine the initial 
values of the selected parameters. The success in the selection of an initial value can have a 
substantial impact on the duration of the calibration. The closer are the initial values to the 
optimum parameter values, the faster will the calibration process go.  

Parameters related to vegetation 

The initial values of the CN parameter, based upon the ranges shown in Table 1, are the result 
of the process of parameter calibration, performed on the selected River Drina basin and they 
are shown in Table 5. 

 
 1 2 3 4 
Bare mountain terrain/uncultivated 12 27 35 39 
Meadows/Pastures 35 55 70 77 
Orchards/Vineyards 60 72 80 84 
Arable land 65 75 82 85 
Deciduous forests 45 65 77 82 
Coniferous forests 25 55 70 70 
Mixed forests 30 60 73 80 
Transition areas 50 70 80 90 
Complex of cultivated lots  65 75 80 85 
Water surfaces 80 90 90 95 

Table 5. Initial (calibrated) values of the CN parameter depending on vegetation type  
and soil class 

Parameters related to pedology 

The initial values of the parameters b, mc, SAT and Ksat have been determined according to the 
physical characteristics of the soil (the first three) and they are the result of the process of 
parameter calibration performed on the selected River Drina basin (Ksat) – Table 6. 
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b 

(kg/m3)
mc 
(%) 

SAT    
(mm)

Ksat 
(mm/h) 

Mould/dark soil 2500 10 250 100 
Brown forest soil 2610 35 100 5 
Podzolic and parapodzolic soil 2300 10 250 55 
Recent alluvial sediments 2200 45 400 200 
Rendzina on solid limestone 2350 35 100 5 
Gravel and conglomerate 2400 3 400 250 
Grey soil on limestone 2640 10 250 80 
Grey soil on slate 2680 10 250 80 
Clay soil 2800 90 50 0.01 

Table 6. Initial (calibrated) values of the parameters depending on the soil type 

Parameters related to hydrogeology 

The initial values of the parameters of hydrogeological classes, based upon the ranges shown in 
Table 3, are the result of the process of parameter calibration performed on the selected River 
Drina basin – Table 7. 

 

 K horiz. 
(m/day) 

Thickness 
(m) 

Eff. porosity 
(-) 

Practically impermeable terrains   0.01 3 0.01 
Terrains with extremely low water-abundance  2,3 8 0.05 
Inter-granular environment with a low volume yield 0.4 40 0.02 
Inter-granular environment with a medium volume yield 4,2 15 0.08 

Table 7. Initial (calibrated) values of the parameter of hydrogeological classes 

Parameters related to the sub-catchment 

The initial values of the parameters related to the sub-catchment, based upon the ranges shown 
in Table 4, are the result of the process of parameter calibration performed on the selected River 
Drina basin – Table 8. 

plaps 4 
tlaps 5 
bmelt16/20 55 
lsno 0.5 
Tstor 1 
Tmelt 0 
snocov 50/100 80 
surlag 0.2 

Table 8. Initial (calibrated) values of the parameters related to the sub-catchment 
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4.4. Selection of the Calibration and Validation Period  

Calibration, as mentioned above, is a process of model testing with known input and output 
values, aimed at the adjustment or evaluation of certain parameters. In contrast to calibration, 
validation is the comparison of model results with an independent data set (without further 
adjustment). This is the way to confirm the correctness of the calibrated model.  

Conditions to be met by these two periods are as follows: 
 The two periods must be different that is, they have to be two separate and independent 

time periods, 
 Both intervals must have a similar range of rainfall and runoff, 
 Selected time periods must be appropriate for simulation of all possible conditions and  
 Impact of inaccuracy of filling missing input data must be mitigated. 

 

  
Fig. 6. Selection of the parameter calibration and validation period 

In order to verify the model during the period which was not used for its calibration, the 
calibration period and the validation period must be two separate and independent time periods. 
This is the way to come to realistic conclusions on model’s response under the conditions not 
covered by the calibration. Selected periods have to include as many phenomena as possible, 
such as heavy and intensive rainfall, dry seasons, extreme and medium winters etc. Should 
some of these phenomena be neglected, then it might happen that the parameters related to the 
given conditions might be under- or over-estimated. 

It is extremely important to pay attention to the importance of the relative accuracy in 
filling-in of the time-series for rainfall, temperature and discharge. A bad impact that the filled-
in data can have on model behavior is illustrated in Figure 7. 

Figure 7 shows a hypothetical case of an calibrated model, with small number of errors 
relative to the measured data in 80% of the validation period. However, it generates the 
outstanding runoffs in the short period, even though the base runoff is dominant in the measured 
data.  

One of the main reasons for such model behavior is related to the fact that during the 
filling-in of the rainfall series a certain localized rain occurrence has been transferred to a 
distant location and, thus, declared as the rainfall on the entire basin. Therefore, it is necessary 
to identify periods without the filled-in data, and if that is not possible, reduce the filled-in 
intervals to the lowest possible degree. 
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Fig. 7. Impact of filled-in series on parameter calibration 

4.5. Selection of the optimization algorithm 

The pronounced high nonlinearity and numerous parameters make the identification of the 
optimum parameter set difficult, because it is not possible to forecast model behavior in all 
cases of their change. The problem of calibration in this type of models may be treated as a 
complex optimization problem. As the calibration is performed for a long time interval, the 
cause and the occurrence of a certain phenomenon is often difficult to forecast, because they are 
dependent upon numerous other parameters of the system. This may be interpreted as a mixed 
problem that is based upon the generation and evaluation of numerous solutions that require 
observance of a broad set of equations and inequalities, as well as logical limitations. Solving 
this type of problem by classical methods (gradient methods, dynamic programming methods, 
scenario selection methods etc.) is very difficult. That is the reason why the use of parallel 
genetic algorithms is proposed. The selection of evaluation methods provides extendibility and 
ability to adapt and improve without violation of the basic algorithm. 

Genetic algorithms (GA) were proposed by John H. Holland in early 70's of the last century 
(Holland, 1975). For more than two decades and particularly in the last several years, they 
proved to be very powerful and able to serve as a general tool for solving a series of problems 
arising from the engineering practice. This can be explained by their simplicity – the simplicity 
of the idea they are based on itself, of their application, as well as by the contribution made by 
many scientists and engineers who worked on their adaptation to many problems and the 
improvement in their efficiency. Simultaneously with the expansion of their application, the 
research related to the operation and features of the genetic algorithms has also expanded, and 
efforts are made to reduce their elements to theoretical foundations. Unfortunately, the results 
of the theoretical research are not unambiguous and genetic algorithms remain to this day 
basically heuristic methods (Goldberg, 1989). 

Judging by their performance, genetic algorithms are considered as the methods of directed 
random search in the space of acceptable solutions, with the aim of identifying the global 
optimum. Some other methods founded on the similar principles can be also considered as the 
part of the same group: evolutionary strategies, simulated annealing and genetic programming. 
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Evolution strategies, which were developed in Germany in the 60's of the last century, 
share many common features with genetic algorithms and very often it is difficult to determine 
the boundaries between them when different variants of both approaches are considered. Both 
methods operate on a population of solutions upon which defined operations are iteratively 
applied. That is why the phases of such a process are called generations, after the model of 
natural evolution. 

The strength of genetic algorithms comes from the fact that they can determine the position 
of the global optimum in the space with multiple local extremes, i.e. in the so-called multimodal 
space. The classic deterministic methods are always heading towards a local minimum or 
maximum, which can be also global, but this cannot be determined from the results. Stochastic 
methods, and, consequently, genetic algorithms, are not dependent upon the initial solution and 
they can be used to locate the global optimum of an objective function with a certain probability 
by its search procedure.  

The main difference in application between the classical and stochastic methods lies in the 
fact that for the results of the, for example, gradient method, one can safely claim that a local 
extreme has been reached with a desired accuracy. However, in the case of application of 
genetic algorithms one cannot claim with absolute reliability that the obtained result represents 
a global or just a local optimum, and whether it has been determined with the desired accuracy. 
No matter how much the performance of stochastic methods should be improved, they will 
never yield results with absolute reliability. The reliability of results is significantly improved 
with the repetitions of the solution process, which does not make sense for classic methods. 
Ever since the genetic algorithms have been invented, great attention was paid to research 
aimed at the improvement of their efficiency.  

5. Calibration of SWAT based model by parallel genetic algorithms 

5.1. Parallel genetic algorithms in general  

Parallel genetic algorithms are used for the solution of difficult optimization problems. Difficult 
problems require big populations and long chromosomes, what leads to the long duration of the 
process. The main reason for the parallelization of genetic algorithms is a need for the 
acceleration of their execution on multiprocessor computers or several computers operating in a 
network. In the early days of development of genetic algorithms, the attempts were made to 
assess parallelization impact on algorithm performance, such as the speed of convergence. 
Namely, beside the speed, some models of parallel GAs have showed better performance in 
comparison to the same sequential (serial) algorithm: they are able to yield better solutions with 
less iteration than the corresponding sequential GA (Cantú-Paz, 1995). However, this is a 
special case when the parameters of the sequential GA are not set well. In reality, the goal is to 
have PGA with the same features as the corresponding sequential GA with well set parameters. 

The goal of parallelization is to cut the execution time of complex GAs and, at the same 
time, to preserve their features. The main idea is to break down the sequential program into 
independent subtasks that can be executed in parallel. In application of genetic algorithms it is 
necessary to determine which operations should be performed in parallel, because GA repeats 
the same operation in cycles. The values of the objective function are computed iteration after 
iteration and genetic operators act on the population of individuals. Two approaches to GA 
parallelization stick out: the standard approach and the decomposition approach. The standard 
approach includes parallelization of genetic operators and calculation of the objective function 
values. On the other hand, the decomposition approach divides the population into narrower 
parts (subpopulations) and the complete genetic algorithm is performed on the subpopulations. 
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In the first case, only the process of evaluation is parallelized. Same as for the sequential 
genetic algorithm, the operators act on just one, common, population. This type of model is 
called the single-population model. In the second case, the population is divided into several 
subpopulations; hence, such a model is called the multi-population model, i.e. the GA is called 
the multi-population parallel genetic algorithm (Cantú-Paz 1998, 1999; Talbi 1991). A 
reduction of the multi-population PGA execution time is to be expected, because the 
subpopulations contain fewer individuals than the initial populations in the single-population 
model. 

There are several possible levels of GA parallelization: at the level of a population, at the 
level of an individual and at the level of the evaluation. According to the level of parallelization, 
there are three basic ways to divide a sequential GA into subtasks: coarse-grained GA, fine-
grained GA and master-slave GA. 

A coarse-grained division is the division of big populations into smaller parts – 
subpopulations. In this case a decomposition approach, or the above mentioned multi-
population parallel GA is present, and it is decomposed in such a manner that several GAs can 
be executed in parallel on smaller populations. 

A fine-grained division is an extreme form of division of a big population into 
subpopulations with a size of one individual. Each processor executes the genetic operators on 
individuals assigned to it and the neighboring individuals. This division is also a representative 
of a multi-population model. 

It is also possible to perform in parallel an evaluation while genetic operators are executed 
sequentially. This division is called “master” and “slave”. The master performs GA on the 
common population; hence that is a single-population model. In each iteration the slaves 
perform a parallel computation of the objective function values, after the master has performed 
its sequential part of the work. 

5.2. Application of parallel genetic algorithms in calibration of the SWAT-based models  

As several approaches to GA parallelization are applicable, it is important to note that only the 
master-slave model and the similar global parallel GA have the same features as the sequential 
GA; hence, all theoretical considerations of sequential GA are applicable to them, as well. The 
other models significantly change the way the execution of the algorithm, thus, the theoretical 
analysis of the operation of those algorithms is still in a development stage (Cantú-Paz, 1995). 

One of the criteria for the selection of GA parallelization method is the hardware the 
algorithm is to be executed on. Considering the fact that the computers are LAN networked 
(one of the commonly available resources for parallelization), a logical choice would be the 
master-slave model. In order to implement a parallel GA, it would be necessary to define 
several steps: presentation (coding) of the solutions, determination of fitness (calculation of the 
objective function), crossover, mutation and selection. All steps are analyzed in detail below. 

Presentation of the solution 

The procedure of conversion of the real solution to the problem into the coded form is one of 
the most important procedures in the implementation of genetic algorithms, because the proper 
selection of coding largely impacts the algorithm efficiency. This procedure is closely related to 
the nature of the optimization problem. The binary coding of the solution is applied in 
calibration of the SWAT-based model. The solution to the problem is a set of parameter values 
to be estimated. When this solution is presented in the binary form it is actually a set of binary 
codes of integer values which define the ordinal number of the segment within the preset 
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boundaries for each individual parameter. If min

i
P  and max

i
P  denote the minimum and maximum 

values of parameter i, than the number of segments is defined as  

 
max min

i iP Pn



  (4) 

where   is the required accuracy, while n is the total number of segments within the interval. 

In order to perform a simulation based on a binary-coded solution, the specific values of 
each parameter should be determined in the decimal form. If  1, n   is the integer value of the 
segment for the parameter i, than its specific value,

i
P , which is used for setting of the SWAT-

based model  before simulation, can be defined as  

  
max min

min 1 i i
i i

P PP P
n




    (5) 

Determination of solution fitness 

The determination of solution fitness is directly related to the nature of the optimization 
problem. Therefore, for the purpose of model calibration it is necessary to define the normalized 
error index. Its integral evaluation is based on the square root of the sum of squared errors, 
weighted by observed peaks, which represents the balanced implicit measure of the comparison 
of the intensity of peaks, volumes and times of occurrence of peaks of the two hydrographs, 
where neither base nor surface runoffs are favored. This function compares all ordinates by 
squaring the differences and weighting the squared differences. Weighting coefficient assigned 
to each ordinate is proportional to the value of the ordinate. Ordinates with values higher than 
the mean value of the observed hydrograph are assigned with weighting coefficients higher than 
1, and those with lower are assigned with coefficients less than 1. Ordinate of the observed 
maximum (peak) is assigned with the maximum value of the weighting coefficient. Then, the 
sum of these weighted squares of differences is divided by the number of ordinates of the 
computed hydrograph; the aim of this procedure is to identify the mean squared error. The 
calculation of the square root of that value leads to the square root of the mean squared error:  

 
( )1 2( ( ) ( ))
21

NQ Q i QM MJ Q i Q iM SN QiQ M

          

 (6) 

where : 
 J  – error norm, 
 QN – number of calculated hydrograph ordinates, 

 ( )MQ i - real discharge, 
 ( )SQ i - calculated discharge, determined upon the selected set of model 

parameters and 
 MQ - mean value of the real discharge. 

The determination of solution fitness consists of performing of the simulation for a 
proposed set of model parameters and calculation of the error norm relative to the observed 
hydrograph. Solution fitness is determined as the inverse value of error norm.  
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Crossover  

In the process of crossing participate the two individuals – “parents”, and crossing generates 
one or two new individuals – “offspring”. The most important characteristic of crossover is that 
the offspring inherits the characteristics of the parents. If the parents are good (i.e. if they have 
passed the selection process) most probably the offspring will be of good quality too, if not 
better than the parents. 

It is assumed that exactly this crossover operator is what makes the genetic algorithm 
different from other optimization methods. This does not apply to the mutation operator which 
is also found in simulated annealing and evolutionary strategies. In the subject case of 
calibration, the crossover in a single point is applied. 

Mutation  

After the recombination, offspring passes through the mutation process. Offspring variables are 
varied for small random values (mutation step), with low probability. The probability of 
variable mutation is in inverse proportion to the dimension of the individual (the number of 
variables). The more variables are contained in an individual, the lower is the mutation 
probability. The mutation searches through the solution space, and the mutation itself is the 
mechanism used in order to avoid local minima. Namely, if the entire population ends up in a 
local minimum, the only way to find a better solution is to perform a random search through the 
space of acceptable solutions. It suffices to find a single individual (created by mutation) which 
is better than the other ones, to have all the individuals moved to the space with better solutions 
during the next several generations. The role of the mutation is also to renew the lost genetic 
material. 

Selection  

The purpose of selection is the preservation and transfer of good characteristics upon the next 
generation of members. The selection is used for the choice of the good individuals that will 
participate in the next step – the reproduction. This is the way to preserve and transfer the good 
genes or the good genetic material upon the next population, while the bad ones disappear. 
Selection procedure could be performed by simple sorting and selection of the best individuals. 
However, such a procedure leads to a premature convergence of the genetic algorithm, i.e. the 
optimization process is practically finished in just a few initial iterations. The problem 
encountered here is the fact that this procedure leads to the loss of good genetic material that is 
possibly contained in the bad individuals. For that reason it is necessary to ensure that even the 
bad individuals have a certain (low) probability of survival. On the other hand, the good 
members should have a higher probability of survival, i.e. they should have a higher probability 
in the reproduction process. The roulette wheel selection was used in the present example. This 
type of selection resembles the eponymous game of chance, since the selection of an individual 
is based on a random number (as when the roulette ball falls into one of the 36 holes by 
chance). The only difference as compared to the real game is that the size of the “hole” is 
proportional to the fitness of the individual that is, the individual with a better fitness has a 
greater chance to be selected. 

5.3. Utilization of PGA for calibration of a SWAT model in the HIS application library 

In order to parallelize the optimization problem, each computer in LAN is assigned with a 
certain number of members, as to determine their fitness. The division of the population and its 
forwarding to the individual computers is performed by the GA server after each evaluation 
step. Based on the proposed solution, the server is taking the necessary input series and model 
performances from the database and assigns the parameters for estimation on the basis of the 



104  N. Milivojević at al: Parameter Estimation and Validation of the Proposed SWAT Based Rainfall-Runoff Model.. 

genes. The input files prepared in this manner are then forwarded to the individual workstations 
on the network, where the simulation and determination of fitness of each individual solution 
are performed. Crossover, mutation and selection take place on the server after the evaluation of 
all population individuals. The result of these operations is a new population which is again 
divided to the workstations for evaluation. 

The Alchemi. NET platform was used for the implementation of the algorithm for 
estimation of model parameters according to the master-slave approach. The Alchemi platform 
is a library based on the .NET platform. It provides the infrastructure necessary for software 
solution development and implementation of software solutions in a distributed environment, 
the so-called “grid” (Setiawan et al., 2004; Nadiminti et al., 2004; Luther et al., 2005). The 
basic structure of the platform is shown in Figure 9. The main elements of the system are the 
manager, the users and the agents. The manager is the computer serving as the server for agent 
management on the basis of the assignments delivered by the system users. The manager has an 
updated list of active agents and their states and it performs their engagement, as well as the 
collection of the feedback messages and data. The communication infrastructure itself can be 
created in the range of connections within the dedicated network up to a combination of 
computers with Internet connections no matter how remote they may be. 

 
Fig. 8. Parallelization scheme for GA calibration of SWAT model 

This architecture is practically identical to the farmer/worker model; hence, the 
implementation is reduced to a division of the population on the available agents and 
forwarding of the individuals to evaluation of the fitness. After the completion of all processes, 
the computer used for the execution of the main algorithm is supplied with all calculated values 
of fitness, and then it promptly performs global operations, as to form a new population. During 
the transition to the next step the new generation is again divided to the available agents and the 
process is performed in iterations until one of the stop criteria is satisfied. 
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The architecture of parallel system relies on the presence of dedicated high-performance 
computers in the local network. This is the way to establish an extremely fast communication 
(usually the bottleneck of all parallel systems) and avoid operational bugs that could occur 
should the network be accessed from the surrounding environment. On the other hand, grid 
architecture relies on a large number of individual computers connected to a slower network, 
which are not intended only for the grid operation. Of course, if a separate isolated network 
with good performances is used and the computers are optimized for the operation in the grid 
the better results can be achieved. The actual network used for the estimation of model 
parameters presented in this paper comprised of over 20 worker agents, with various hardware 
configuration. 

6. Presentation of the model to be calibrated  

An example of estimation of the parameters of the SWAT model is presented below. The 
selected example represents the basin of the selected river up to the dam with storage, where 
parameters are evaluated according to the observed discharges (before the dam was 
constructed).  

 
Fig. 10.  The River Drina basin between the hydro-profiles “Bajina Bašta” and “Višegrad” 

The total area of the basin that encompasses the “Bajina Bašta” storage is 14232 km2, or 
73.98 % of the River Drina basin. Simulation period is from September 1st, 1997 to September 
1st, 1999. Hydro-profile “Višegrad” is shown as the source with the assigned discharge, which 
equals the total discharge out of the “Višegrad” object. Input data are meteorological data 
collected on the relevant stations, while the hydrograph on the hydro-profile “Bajina Bašta” 
(dam) is a result of the rainfall-runoff calculation. The comparison is based on the recorded 
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discharges on the hydro-profile “Bajina Bašta” (dam). The resulting hydrograph is the result of 
the calculation using the SWAT-based rainfall-runoff model. 

7. Results 

Below are shown the results of calibration of model parameter according to a predefined 
criterion for the whole River Drina basin (Figure 11) and, particularly, the result of the chosen 
example of parameter estimation using the SWAT-based model presented in Chapter 6. 

7.1. “Bajina Bašta” – dam 

Comparative illustration of measured and simulated values shows satisfactory correspondence 
between the observed and simulated hydrographs (error estimation according to the predefined 
criterion (6) is 3.111). This was to be expected, as the impact of the rainfall-runoff model is 
decreasing due to the operation of the upstream object “Višegrad” and several apparent 
deviations are the result either of the fact that the parameters were taken from other basins or of 
the unreliability of measured data. 

 
Fig. 12. Comparative illustration of measured and simulated values on hydro-profile  

"Bajina Bašta"- dam 
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Fig. 13. Deviations of simulation results on hydro-profile “Bajina Bašta” – dam  

from the real values  

Diagram of deviations of model parameters from the real values shows that the grouping 
around the middle line is satisfactory and that there are not many major deviations (except for a 
certain percentage of points), with a weak tendency towards a deficiency of the simulated 
inflows relative to historical data. 

The error diagram for the calibrated model in time shows a balanced error distribution 
during the entire period, i.e. it shows that the balance has been reached, but that the peak values 
were translated in time by one or two steps.  

 

Fig. 14.  Model error on hydro-profile “Bajina Bašta” in time 

One can conclude that the quality of the basin calibration upstream from the hydro-profile 
“Bajina Bašta” is satisfactory, both in terms of balance and discharge dynamics. 

7.2. The River Drina Basin – whole basin 

The calibration of model parameters was performed for the whole River Drina basin. The 
following figure shows the spatial illustration of the quality of rainfall-runoff model and of 
open-channel water flow according to the predefined criterion. 



108  N. Milivojević at al: Parameter Estimation and Validation of the Proposed SWAT Based Rainfall-Runoff Model.. 

 

Fig. 11.  Results of parameters calibration for the whole River Drina basin 
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8. Conclusions  

Automatic calibration of the rainfall-runoff hydrological model is more and more often based 
on the use of genetic algorithms. This trend is not surprising, being that the number of 
parameters for these models, as well as the search space, is huge. However, sequential GA are 
in these cases  often time-consuming, so the calibration may last for several days, weeks, or 
even months. In order to make the duration of the calibration process acceptable, it is necessary 
to divide major sequential problems into the sub-problems and to parallelize their solutions. 
This paper presents the platform for the calibration of a SWAT-based model, founded on 
parallel GA, implemented on a LAN of computers, which is changeable both in structure and 
the number of computers taking part in the calibration process. Additionally, the paper presents 
the procedure of preparation of calibration data, as well as the procedure of selection of 
calibration and validation periods.  

Further researches will be focused on the introduction of additional mechanisms for 
parallel GA improvement, such as the adaptive parameters of mutation, selection and crossover. 
This is the way to strive for a better solution convergence, resulting in additional acceleration of 
the calibration process. 
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