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Abstract: 

 This review paper describes the techniques, advances and problems associated with the static 
and dynamic analysis of inelastic solids and structures by the Boundary Element Method 
(BEM). Firstly, an historical overview is presented. Next, the various existing BEM 
formulations for static and dynamic analysis of two- and three-dimensional solids and structures 
as well as plates and shells are briefly described. Inelasticity refers to elastoplastic, damage or 
elastoplastic plus damage material behavior. Then, eight characteristic numerical examples are 
presented to illustrate the methods and demonstrate their capabilities as well as their accuracy. 
Finally, advantages and disadvantages of the various methods as well as future developments 
are presented in the conclusions. 
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1. Introduction  

During the last forty years or so, substantial advances have been made in the numerical analysis 
of basic structural elements as well as highly sophisticated structures exhibiting inelastic 
material behavior. These include, among others, many civil structures (e.g. buildings, bridges, 
tunnels, offshore platforms, tanks, chemical factories, power plants), or naval, aerospace and 
mechanical structures (e.g. trucks, vehicles, railways, ships, airplanes) involving inelastic 
behavior under extreme static or dynamic loads.  

It should be noted that for the aforementioned realistic engineering problems, static or 
dynamic inelastic analysis is carried out exclusively by numerical methods due to their high 
complexity. In the last four decades, with the drastic evolution of digital computers, the finite 
element method (FEM) has assumed an important role in the solution of these complex 
engineering problems. The boundary element method (BEM) is about one decade younger for 
static and two decades younger for dynamic inelastic problems. Finite elements are the most 
frequently used numerical method today [1]. Even though the BEM can also be adopted to solve 
these problems with the same or better convenience and accuracy, it plays a secondary role in 
practical applications [2]. Even today, scientists and engineers find difficult to understand and 
program boundary element methods, mainly due to its focused presentation on mathematics.  
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On the other hand, FEM takes precedence not only due to its former origin but also due to the 
continuous appearance of specialized books and the existence of many powerful commercial 
programs, related to static and dynamic inelastic analysis. 

The purpose of this review paper has to do with the critical presentation of the various 
existing BEM’s for static and dynamic inelastic problems and the demonstration that these 
methods can represent a powerful alternative to the FEM in applications. Firstly, an historical 
overview is presented. Then, the various BEM’s as applied to static and dynamic inelastic 
analysis of two- (2-D) and three-dimensional (3-D) solids and structures as well as plates and 
shells are briefly presented and discussed. Eight characteristic examples from the literature are 
presented to illustrate the applicability and accuracy of these boundary element methodologies. 
The paper is completed with conclusions pertaining to the advantages and disadvantages of the 
presented methods and to future developments. 

2. Historical overview 

2.1 BEM’s for static inelastic analysis  

In this section, the most significant points for the static and dynamic inelastic BEM history are 
presented. The presently available BEM’s for static inelastic analysis are divided into two major 
categories: two- and three-dimensional solids and structures, and structures consisting of 
various structural members, such as beams, plates and shells.  

2.1.1 Static inelastic analysis of 2-D and 3-D solids and structures 

Swedlow and Cruse [3] presented the first elastoplastic BEM formulation. Various difficulties, 
such as the strongly singular inelastic domain integrals and the stability of the system equations 
have hindered its development. Riccardella [4] implemented an algorithm for 2-D 
elastoplasticity using piecewise constant interpolation of plastic strain rates. In computing 
interior stresses, Riccardella [4] recognized the strongly singular nature of the volume integral 
involving plastic strains. Telles and Brebbia [5,6] and Telles [7] solved a variety of 2-D single 
region test problems involving strain hardening and perfect plasticity. Mukherjee and his co-
workers [8–12] used the initial strain approach to establish the boundary element formulation of 
the inelastic equations. Banerjee and his co-workers [13,14] presented an initial stress 
formulation and showed examples of 2-D, axisymmetric as well as 3-D problems. Later, 
advanced formulations of the boundary element method was developed by Banerjee et al. [15] 
and Banerjee and Raveendra [16,17] for inelastic analysis based on earlier the initial stress 
approach. These formulations were extended to axisymmetric and 3-D problems by Henry and 
Banerjee [18,19] and Banerjee et al. [20]. Based on these formulations, Chopra and Dargush 
[21] derived an advanced Newton–Raphson algorithm for elastoplasticity while a similar 
approach was also presented in Gao and Davies [22, 23], Poon et al. [24], Bonnet and 
Mukherjee [25], Cisilino and Aliabadi [26] and Wang et al. [27].  

BEM has also been effectively applied to elastoplastic contact analysis. One can mention 
here the works of Karami [28], Huesmann and Kuhn [29] and Aliabadi  and Martin [30, 31] for 
two-dimensional problems and the works of Gun [32, 33] and Liu and Shen [34] for three-
dimensional elastoplastic contact problems.  

BEM’s have also reached a rather mature level for the inelastic analysis of structures taking 
into account geometric nonlinearities , i.e. large displacements and large displacements/large 
strains. The reader can consult the works [35-45]. 
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In order to examine localization phenomena in elastoplastic solids and structures, Maier et. 
al [46], Benallal et al. [47] and Gun and Becker [48] proposed advanced non-local and gradient 
plasticity BEM formulations. 

There is a rather small number of structural applications analyzed using the promising 
theory of damage mechanics in the framework of the BEM. The first integral formulation using 
damage mechanics appears to be the one by Rajgelj et al. [49]. Herding and Kuhn [50] 
developed an elastoplastic-damage BEM formulation. Sellers and Napier [51] and Cerrolaza 
and Garcia [52] used damage models to solve by the BEM characteristic problems in 
geomechanics. Localization phenomena in damaged solids and structures were examined by 
Garcia et al. [53], Lin et al. [54], Sladek et al. [55] and Benallal et al. [56]. Finally, 
Hatzigeorgiou and Beskos [57] developed the first 3-D damage mechanics formulation in the 
framework of the BEM. 

2.1.2 Static inelastic analysis of beams and plates 

This category of BEM’s involves static inelastic analysis of structural elements, such as beams 
and plates. Moshaiov and Vorus [58] presented the first BEM formulation for elastoplastic plate 
bending analysis considering Kirchhoff's theory. One can also mention here the work of Chueiri 
and Venturini [59] which deals with Kirchhoff's theory applied to the analysis of concrete slabs. 
The first BEM approach to analyze elastoplastic thick plates considering Reissner’s theory was 
formulated by Karam and Telles [60]. Karam and Telles [61] and Ribeiro and Venturini [62] 
also worked on elastoplastic Reissner’s plates by the BEM. Auatt and Karam [63] examined 
elastoplastic Reissner’s plates by a multilayered approach. Finally, Supriyono and Aliabadi [64, 
65] formulated BEM’s for combined geometric and material nonlinearities for shear deformable 
plates where large deflection/small strain and elastic perfectly plastic material behavior are 
taken into account.  

2.2 BEM’s for dynamic inelastic analysis  

BEM is also popular for the solution of inelastic dynamic problems involving two- and three-
dimensional solids and structures, and structures consisting of other structural members, such as 
beams and plates, as it is evident in the review articles of Beskos [66,67] and Providakis and 
Beskos [68]. The presently available BEM’s for inelastic analysis under dynamic loads can be 
divided into three major categories: two-dimensional solids and structures, three-dimensional 
solids and structures and structures consisting of other structural members, such as beams and 
plates.  

2.2.1 Dynamic inelastic analysis of 2-D solids and structures 

This category is related to two-dimensional structures under plane strain or plane stress case. 
This category has reached a rather mature level and six methodologies have already been 
developed. In the first one, the BEM in its direct conventional form and in conjunction with the 
elastostatic fundamental solution of the problem has been successfully used for the analysis of 
these problems. One can mention here the works of Carrer and Telles [69,70], Coda and 
Venturini [71], Soares et al. [72-74] using the Domain/Boundary Element Method (D/BEM) 
and treating both plastic stresses and inertial forces by internal cells. Hatzigeorgiou and Beskos 
[75] applied this approach to compute the seismic inelastic response of masonry bridges using 
damage mechanics to model inelasticity. In all these cases, a volume discretization is required 
for the whole structure due to inertia terms. 



G. D. Hatzigeorgiou and D. E. Beskos : Static and dynamic analysis of inelastic solids and structures by ... 

 

4 

 The second approach has to do with the adoption of time-dependent fundamental solutions 
of the problem. One can mention here the work of Telles et al. [76]. This approach presents the 
advantage of eliminating the inertial volume integrals and thus the domain discretization is 
restricted to those parts of the domain where plastic stresses are expected to develop. However, 
the method appears to be particularly complicated and time consuming because of the complex 
kernels involved and the need to satisfy causality at every time step [76]. Moreover, problems 
of stability may appear during the time integration process [77].  

In the third one, the BEM in its direct conventional form and in conjunction with the 
elastostatic fundamental solution of the problem is formulated. However, the dual reciprocity 
technique (DR-BEM) is applied to transform the inertial volume integrals into surface integrals. 
Thus, the interior discretization with volume cells, due to inelasticity, is restricted only to 
regions expected to become inelastic. One can mention here the work of Kontoni and Beskos 
[78] and Czyz and Fedelinski [79]. 

The fourth methodology has to do with the BEM in its symmetric Galerkin form and in 
conjunction with the elastostatic fundamental solution of the problem. Generally, the symmetric 
Galerkin form is a non-traditional BEM formulation using the classical Betti's work reciprocity 
theorem with single-layer and double-layer sources, in such a way that the integral operator 
turns out to be symmetric with respect to a suitably defined bilinear form. The space 
discretization is achieved either on the basis of variational properties of the solution, or using a 
weighted-residual technique according to Galerkin's classical correlation between shape and 
weight functions. On can mention here the works of Frangi [80] and Frangi and Maier [81].  

The fifth one deals with the hybrid BEM/FEM schemes in the time domain, which 
appropriately combine the advantages of both the FEM and the BEM. The finite element 
method, for instance, is well suited for materials with inelastic behavior. For this reason, the 
finite element discretization is applied to regions expected to become inelastic. On the other 
hand, for systems with infinite extension, which are expected to remain elastic, the use of the 
BEM in conjunction with the elastodynamic fundamental solution of the problem is by far more 
beneficial. Thus, the FEM/BEM coupling in the time domain has been successfully used to 
solve 2-D nonlinear dynamic soil/structure interaction problems where the inelastic structure 
and the surrounding soil part expected to become inelastic are simulated by the FEM and the 
remaining soil assumed to behave linearly by means of the BEM. One can mention here the 
works related to general 2-D structures by Pavlatos and Beskos [82] and Soares et al. [83], 
structures with reinforced media by Coda [84] underground structures by Adam [85] and 
Takemiya and Adam [86], earth dams by Abouseeda and Dakoulas [87], concrete gravity dams 
by Yazdchi et al. [88] and wall structures by von Estorff and Firuziaan [89].  

Finally, the sixth methodology has to do with the combination of the aforementioned first 
and the second boundary element methods. More specifically, Soares et al. [90] appropriately 
divided the total domain into two sub-domains: one that behaves elastically and is modeled by 
the elastodynamic time-domain BEM formulation and the other that behaves inelastically and is 
modeled  by the D/BEM. 

2.2.2 Dynamic inelastic analysis of 3-D solids and structures 

This category has to do with the dynamic inelastic analysis of 3-D solids and structures. Three 
basic methodologies have already been developed for this purpose. The first approach has to do 
with BEM using the elastostatic fundamental solutions of the problem (D/BEM). The analysis 
involves the determination of inelastic stresses and inertia terms, which as internal quantities, 
require an internal discretization with 3-D volume cells. One can mention here the works of 
Hatzigeorgiou and Beskos [91,92] for the analysis of general 3-D elastoplastic structures and 
Hatzigeorgiou and Beskos [93,94] for general 3-D damaged structures. Furtermore, 
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Hatzigeorgiou [95], and Hatzigeorgiou and Beskos [96] developed appropriate D/BEM 
methodologies to solve dynamic inelastic three-dimensional soil/structure interaction problems 
for underground structures. It should be noted that the D/BEM presents the advantages of 
stability and low computational cost, which are essential for 3-D dynamic inelastic analyses.  

In the second approach, the BEM in its direct conventional form and in conjunction with 
the elastodynamic fundamental solution of the problem has been successfully applied by 
Ahmad and Banerjee [97]. In this case, the internal discretization is applied only in those 
regions of the interior domain where the inelasticity is expected. However, as in the 2-D case, 
the method appears to be quite complicated and time consuming because of the complex kernels 
involved and the need to satisfy causality at every time step, while problems of stability may 
appear during the time integration process. 

In the third one, the BEM in its direct conventional form and in conjunction with the 
elastodynamic fundamental solution of the problem has been successfully combined with the 
finite element method for the dynamic analysis of 3-D elastoplastic problems. This promising 
scheme seems to be immature in 3-D formulations and only the work of Firuziaan and von 
Estorff [98] can be mentioned here. 

2.2.3 Dynamic inelastic analysis of beams and plates 

This category is related to BEM dynamic inelastic analysis of structural elements. Two 
major subcategories exist. The first one is related to dynamic inelastic analysis of plates. Fotiu 
et al. [99] employed the elastodynamic fundamental solution of the problem in conjunction with 
modal synthesis to determine the dynamic response of viscoplastic damaging plates. This 
method is very efficient but is restricted to very simple geometries. Providakis and Beskos and 
their co-workers [100-116] developed general D/BEM techniques for Kirchhoff plates, taking 
into account uniform or mixed boundary conditions, the effect of corners and elastic 
foundations and the influence of internal support conditions. These techniques have been also 
extended by Providakis [107,108] and Providakis and Beskos [109] to thick (Reissner–Mindlin) 
plates where shear deformations are taken into account.  

The second subcategory is related to dynamic elastoplastic analysis of beam structures. One 
can mention here the works of Adam [110] and Adam and Ziegler [111,112]. In these works 
Green’s functions in conjunction with modal analysis are adopted to create special BEMs for 
dynamic elastoplastic analysis of beams. 

2.3 Treatment of volume integrals  

Due to inelasticity, and sometimes due to inertia terms (e.g. in D/BEM formulation), the 
analysis requires the determination of internal quantities as inelastic stresses. Many techniques 
have been developed to replacing or transforming domain integrals into boundary integrals. One 
can mention here the works of Partridge et al. [113], Nowak and Neves [114], Wen et al. [115], 
Ma et al. [116], Nicholson and Kassab [117] and Gao [118]. Recently, Ribeiro et al. [119] have 
analyzed static elasto-plastic problems without a domain discretization prior to the analysis. 
Plasticity is assumed to start from the boundary and the cells are generated from the boundary 
data automatically during the analysis.  
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3. BEM’s formulations for inelastic problems 

This section briefly presents selected BEM’s formulations for the analysis of inelastic problems. 
Since static analysis can be considered as a special case of the general dynamic analysis, the 
presented formulations are restricted to the latter case.  Two major categories are examined: 
two-dimensional solids and structures and three-dimensional solids and structures. For the 
dynamic inelastic behavior of plates, the reader can consult the review paper of Providakis and 
Beskos [68].  

 

3.1 BEM’s for dynamic inelastic analysis of 2-D solids and structures 

Firstly, the Domain/Boundary Element Method (D/BEM) is presented. For a 2-D body with 
volume Ω and surface Γ, the Somigliana identity for the dynamic inelastic case is defined as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
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where 
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for formulation associated to the initial stress approach, and 

 ( ) ( ) ( )∫ ∗=
Ω

Ωεξσ Xdt,XX,C p
jkjkii  (3) 

associated to the initial strain approach. In the above, t is the time, ρ the constant mass density 
of the body and ( )X,uij ξ

∗ , ( )X,pij ξ
∗ , ( )X,jki ξε ∗ , and ( )X,jki ξσ ∗  are the fundamental solution 

components of the elastostatic problem representing the displacement, traction, strain and stress, 
respectively. Besides, uj, üj, pj, σ p

jk and ε p
jk represent the displacements, accelerations, 

tractions, inelastic stresses and inelastic strains, respectively. Furthermore, cij is the usual free 
coefficient of elastostatic analysis where cij=δij for any interior point and cij=δij/2 for any point 
on the smooth boundary with δij being the Kronecker constant.  

Equation (1) represents the equation of motion of the body in integral form, and is reduced 
to the static case for ρ=0. The elastostatic (Kelvin) 2-D fundamental solution is adopted with 
expressions for displacement, traction, strain and stress of the form 
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In the above, n is the surface (boundary) normal vector and r and r,i is the distance and its 
derivative along the i-axis, respectively, between field point X and collocation point ξ.   

The boundary of the 2-D body is discretized into NB boundary elements and the domain 
into NV volume cells. Adopting the initial stress formulation, Eq. (1) becomes 
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where Φ is the matrix of the shape functions. The boundary element implementation transforms 
the system of integral equations to an equivalent algebraic system, which in matrix notation 
reads 

 [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } { }0=+−− tQtuMtuHtpG pσ  (9) 

In the above, matrices [G] and [H] correspond to the boundary integrals and [M] and [Q] to 
the inertial and initial stress domain integrals, respectively. In this case, the volume 
discretization is required for the whole structure.  

The second approach has to do with the adoption of time-dependent fundamental solutions 
of the problem. As it is expected, the analysis involves the determination of inelastic stresses, 
which as internal quantities, require an internal discretization. However, the internal 
discretization is applied only in those regions of the interior domain where inelasticity is 
expected. Equation (1) can also be used to express the integral equation of motion using initial 
stress or initial strain approach and the elastodynamic fundamental solution, under zero initial 
conditions and zero body forces. In this case, ξ and X correspond to field and source point, 
respectively. Furthermore, the independent variables ξ,X of ∗

iju , ∗
ijp , ∗

ikjε  and ∗
ikjσ  in Eq. (1) are 

replaced by ξ,τ ; X,T  and multiplications by time convolutions (*) as shown below:  
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Stresses at interior points are derived from displacements or from integral equations. 
According to the former approach, displacements lead to strains and strains to stresses through 
appropriate constitutive relations. This procedure is more computationally efficient. On the 
other hand, using the second approach, the integral equations for the stress state can be derived 
in the form  
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The knowledge of the response at time TN requires the discretization of the time axis into N 
equal time intervals, i.e., 

 ∑
=
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Δ  (15) 

Application of Eqs (10)-(13) and (15) into Eq. (1) gives the equation of motion of the 
structure in the form 
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One must assume a variation of the field variables (i.e. displacements, tractions and 
stresses) during a time step. The simplest one is a constant variation during a time step. A linear 
variation gives 
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In the above, MI and MF are temporal interpolation functions of the form 
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 where 
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with H being the Heaviside function. After the usual time and spatial discretization and 
integrations, the integral equation of motion (Eq. (16)) is transformed into an equivalent system 
of matrix equations of the form 
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Similarly, the integral equation for stresses can be written as 
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This approach presents the advantage of eliminating the inertial volume integrals and thus 
the domain discretization is restricted to those parts of the domain where plastic stresses are 
expected to develop. Nevertheless, the method appears to be particularly complicated and time 
consuming because of the complex kernels involved and the need to satisfy causality at every 
time step. Moreover, problems of stability may appear during the time integration process.  

In the third approach, the BEM in its direct conventional form and in conjunction with the 
elastostatic fundamental solution of the problem is again formulated. However, the dual 
reciprocity technique (DR-BEM) is applied to transform the inertial volume integrals into 
surface integrals. More specifically, the inertial domain integral of Eq. 1 can be transformed 
into boundary integrals by approximating the accelerations ju  within the domain. Thus, 

accelerations ( )t,Xui  can be expressed by a sum of m coordinate functions ( )Xf k  multiplied 

by the unknown time dependent functions ( )tak
i , i.e., 

 ( ) ( ) ( )Xftat,Xu kk
ii =  (26) 

with summation on k = 1 to m implied. Thus, the internal integral of Eq. (1) becomes 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[

( ) ( ) ( )] ( )taXdXX,u                                         

XdXX,pcXdt,XuX,u

k
l

k
ilij

k
ilij

k
ilijiij

∫
∫∫

∗

∗∗

−

+=

Γ

ΓΩ

Γηξ

ΓψξξψξΩξ
 (27) 

where k
ilψ  and k

ilη  denote the displacements and tractions solutions, respectively, of the 
‘pseudo-state’ static problem  
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 0=+ k
il

k
nln,i fδσ  (28) 

with k
nln,iσ  being the stress tensor corresponding to the above displacements, k

ilψ , and tractions, 
k
ilη . 

3.2 BEM’s for dynamic inelastic analysis of 3-D solids and structures 

This category has to do with the dynamic inelastic analysis of 3-D solids and structures. 
The integral equation of motion using initial stress or strain approaches is also given by Eq. (1). 
The first 3-D formulation adopted time-dependent fundamental solutions of the problem [97]. 
However, the method suffers from the shortcomings already mentioned in Section 3.1 in 
connection with the 2-D case. Recently, considerable progress has been realized in connection 
with  the dynamic inelastic analysis of 3-D structures using the D/BEM approach. The 
advantages of this approach have been clearly stated in Section 3.1 in connection with the 2-D 
case. The elastostatic 3-D fundamental solutions are given by 

 ( ) ( )
( )Grπ

rr
X,u j,i,ij

ij ν
δν

ξ
−

+−
=∗

116
43

 (29) 

 ( )
( )[ ] ( )( )

( ) 218

21321

rπ

nrnr
n
rrr

X,p
ji,ij,j,i,ij

ij
−

−−+
∂
∂

+−
=∗

ν

νδν
ξ  (30) 

 ( ) ( )( )
( ) 2116

321

Grπ

rrrrrr
X, k,j,i,jki,ikj,ijk,

jki
−

+−+−
=∗

ν

δδδν
ξε  (31) 

Equation (9) is used again to determine the unknown quantities of the problem. 

4. Numerical examples 

This section presents four static and four dynamic representative numerical examples to 
illustrate the various BEM’s described in this paper and demonstrate their capabilities and 
accuracy.  

4.1 Shallow tunnels under static surface loading 

Davies and Gao [23] examined the elastoplastic behavior of two parallel arch tunnels subjected 
to surface foundation loading. Figure 1 shows the geometry of the problem and the 
corresponding BEM discretization. 
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Internal cells 

Boundary elements 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry and BEM discretization of the Example 4.1. 

The physical properties of the examined model are: Poisson’s ratio ν=0.22 and modulus of 
elasticity E=22⋅109 N/m2 (competent rock). A perfectly plastic material obeying the Mohr–
Coulomb yield criterion is assumed with cohesion c=1.3⋅106 N/m2 and internal friction angle 
φ=31o. Neither the in situ stress state nor the excavation process is taken into account. Figure 2 
shows the deformed mesh under the influence of a foundation pressure of 4.2 MPa, with 
displacements magnified by factor of 50, and the yield nodes marked by small circles.  

 
Fig. 2.. Deformed mesh and yielded nodes. 
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Finally, iso-stress contours of the second principal stress, σII (i.e., compressive stress) are 
shown in Fig. 3. 

 
Fig. 3. Compressive stress contours. 

4.2 A shear deformable plate with combined geometric and material nonlinearities 

Supriyono and Aliabadi [65] examined a simply supported square plate, which is subjected to a 
uniform lateral distributed load q. The physical properties of the examined model are: Poisson’s 
ratio ν=0.3, modulus of elasticity E=200⋅109 N/m2 and yield stress σ= 300 MPa where the 
material is assumed to be an elastic perfectly plastic. The thickness to side ratio, h/a is equal to 
0.05. Various meshes are used to study the influence of the discretization on the results. Figure 
4 shows a typical mesh and the contour of plastic zone after plasticity takes place.  

 

  
Fig. 4. Typical BEM mesh and iso-stress contours of plastic zones. 
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Figure 5 shows the normalized deflection W (deflection to plate thickness ratio, w/h) at the 
center point for various normalized load values Q(=qa4/Eh4). The central deflection of the same 
square plate is also obtained by using of a commercial finite element method program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Center point deflection computed by BEM and FEM. 

4.3 Compression of a ceramic femoral head 

Gun [32] examined the elastoplastic behavior of a ceramic femoral head, a 3-D structure with 
two contact regions involving three dissimilar materials. Figure 6 shows the details of the 
schematic diagram of the structural arrangement, the axisymmetric profile and the boundary 
element discretization of the titanium spigot, femoral head and brass ring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Physical problem and BE mesh for femoral head assembly. 

 

W 

Q 

 

ao 
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The titanium spigot is assumed to have the material properties: Young modulus 
E=1.14⋅105MPa, Poisson’s ratio ν=0.33 and yield stress, σ=800 MPa. The femoral head is made 
of an alumina ceramic with E = 2⋅105 MPa, ν=0.3 and σ=200 MPa. A uniform displacement of 
0.1 mm in vertical direction is applied to the brass ring, compressing the femoral head. The 
spigot is restrained in all directions between key points K10 and K11 and in the vertical 
direction between key points K11 and K12. The femoral head is restrained in the radial 
direction between key points K8 and K9. There are two distinct contact regions between the 
three parts; the contact region between the inside of the femoral head and the titanium spigot, 
which is assumed to be glued and the contact region between the outside of the femoral head 
and the ring, which is assumed to have slip–stick contact conditions. In the latter, three different 
values of coefficients of friction, μ = 0.0, 0.1 and 0.2 are employed in the analysis. Plastic 
deformations occur only in the femoral head. The von Mises stresses around the inside and the 
outside of the femoral head are shown in Fig.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Elasto-plastic stress distribution around the inside and outside of the femoral head. 

4.4 Modeling of a cylinder-splitting test 

In this example, a cylinder-splitting test is analyzed by Hatzigeorgiou and Beskos [57]. 
Cylinder splitting tests are frequently used to determine the tensile strength of concrete, rock 
and other quasi-brittle materials. The geometrical data appear in Fig. 8. This figure also 
contains the 3-D BEM discretization, where, due the symmetry, only one-eighth of the cylinder 
is discretized.  

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 8. Geometry and discretization of a cylinder-splitting test 

 

 

(inside) (outside) 
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The material parameters are: modulus of elasticity E=21.3 GPa, tensile strength of concrete 
ft=1.7 MPa and Poisson's ratio ν=0.15. The compressive strength is fc=fc(2-D)/1.15=21.3 MPa and 
the fracture energy Gf=50.0 N/m. It is worth noticing that the tensile strength results from the 
analytic relation ft = 2Pmax/πLD, where Pmax is the maximum applied load and L and D are the 
length and diameter of the specimen, respectively. However, this tensile strength is 
considerably influenced by the boundary conditions, leading to scattered data. Upper and lower 
bounds for the ultimate load can be obtained by a limit analysis and variations of 25% from the 
mean value may be found. The above analytical relation for the given data provides an 
estimation of the maximum load, Pmax=120.1 kN. The upper and lower bounds of the maximum 
load are found to be, Plower=0.75 Pmax=90.1 kN and Pupper=1.25 Pmax=150.1 kN. The same 
problem has been worked out by Gomez and Awruch [120] using the FEM in conjunction with 
an elastoplastic model for concrete. The BEM and FEM results and the analytical maximum 
load Pmax appear in the diagram of load–vertical displacement at point A of Fig. 9. It should be 
noted that BEM computes the maximum load as Pmax(BEM)=1.034Pmax(anal.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Load-vertical displacement of point A diagram. 

4.5 Dynamic analysis of an elastoplastic half-space  

Soares et al. [83] examine an elastoplastic half-plane under a continuous, suddenly applied, 
stress distribution Py=68.96 MPa along its surface, using a hybrid BEM/FEM scheme. The 
system is shown in Fig. 10a, where the geometry is defined by the distances a = 152.4m and b = 
304.8m. Figure 10b shows the coupled BEM/FEM mesh where 90 linear boundary elements of 
equal length and 300 quadrilateral finite elements are used. The dimensions of the finite 
element subregion are c = 762m and d = 571.5m in horizontal and vertical direction, 
respectively. 
 
 
 
 
 
 
 
 
 
 

 

BEM 
 

Gomez and Awruch [119] 
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Fig. 10. Geometry and boundary conditions 

In the FE sub-domain, a perfectly plastic material obeying the Mohr–Coulomb yield criterion is 
assumed. The material properties are: Poisson’s ratio ν=0.25, Young modulus E=17.7 GPa, 
mass density ρ=31.5 kN⋅s2/m4, cohesion c=12.5 MPa and internal friction angle φ=10o. The 
time evolution of the plastic zone is shown in Fig. 11, which is obtained by the BEM/FEM 
scheme. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 11. Displacement and inelasticity region on the FEM mesh. 

 

t=0.375 sec 
 
 
 
 
 
 
 
t=0.75 sec 
 
 
 
 
 
 
 
t=1.125 sec 
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4.6 Dynamic analysis of an elastoplastic 3-D beam  

In this example, a cantilever steel beam subjected to an impact loading P = 10 kN at its free end 
is analyzed numerically by Hatzigeorgiou and Beskos [92] using the three-dimensional D/BEM 
approach. The steel beam is simulated by the von Mises model of material behavior. Figure 12a 
contains the geometry and the 3-D BEM discretization of the structure, while Figs. 12b and 12c 
show the loading history and the stress–strain curve, which defines the material behavior. The 
material parameters are: Young modulus E=210.0 GPa, inelastic modulus ET = 0.0 (i.e., elastic–
perfectly plastic material behavior), Poisson’s ratio ν=0.30, mass density ρ=7850 kg/m3 and 
yield stress σy=400.0 MPa.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. (a) Geometry (in mm) and discretization,  

                      (b) loading history and (c) material description. 

Figure 13 depicts the elastic and inelastic time history of the vertical displacement at the 
load point, as computed by the D/BEM and the ANSYS finite element program. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Vertical displacement history at load point. 
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4.7 Dynamic analysis of a 3-D mortar beam  

In this example, a simply supported mortar beam subjected to a central impact loading is 
analyzed numerically by Hatzigeorgiou and Beskos [94] using the three-dimensional D/BEM 
approach. The material is simulated by the FOM damage model, which has been proposed for 
concrete and other materials with quasi-brittle behavior. The assumed material parameters for 
the mortar beam are: Young modulus E=22⋅103 N/mm2, Poisson’s ratio ν=0.15, tensile strength 
ft=3.91 N/mm2, mass density ρ=2410 kg/m3 and specific fracture energy Gf=103.7N/m. Figure 
14a contains the geometry and the 3-D BEM discretization of the problem. Due to the 
symmetry, only half of the beam is discretized. Furthermore, Fig. 14b depicts the time history 
of the vertical concentrated load, which is applied at the upper face of the beam.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig. 14. a) Geometry (in mm) and boundary element discretization, b) Loading history. 

The inelastic response of the beam has also been determined experimentally and numerically 
(using the finite element method) by Suaris and Shah [121]. Figure 15 shows the time history of 
the vertical displacement (deflection) at the load point, determined by the aforementioned 
numerical (FEM and D/BEM) and experimental approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Time history of deflection of load point. 

 

(a) (b) 
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4.8 Dynamic elastoplastic analysis of a thick elliptical plate 

Providakis [107] examined a simply supported thick plate with elliptical boundary geometry 
under dynamic inelastic conditions. The two semi-axes of the elliptical shape are equal to 0.5 m 
and 0.6 m while the plate thickness is h = 0.15 m. This plate is subjected to a suddenly applied 
load uniformly distributed over its whole area with intensity 100 N/m2 and rests on a Winkler-
type foundation. Two different foundation rigidities are examined: k=0 and k=50·108 N/m. The 
material parameters for this example are: Young modulus E=200.0 GPa, inelastic (hardening) 
modulus E’=0.6E, Poisson’s ratio ν= 0.3, yield stress σy=488.0MPa and mass density 
ρ=76900kg/m3. The von Mises material model is adopted for the plate behavior. Figure 16 
depicts the central deflection history of the elliptical plate as obtained by the D/BEM approach 
[107] in conjunction with 16 boundary and 64 interior elements per quadrant. The analysis time 
step is equal to Δt=10−6 sec. The central deflection of the same elliptical thick plate is also 
obtained by using NASTRAN finite element program and for the first foundation rigidity value 
(k = 0) and a mesh consisting of 40 solid finite elements in two layers. Figure 16 also shows the 
finite element analysis results, which are not as good as the ones by the D/BEM. 

 
Fig. 16. Time history of vertical deflection of central point. 

FEM 
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5. Conclusions and future research needs  

This study leads to the following conclusions for static and dynamic inelastic analysis with 
BEM: 
  

1) Numerous BEM’s have been developed to solve static inelastic problems. Sections 2, 3 and 
4.1-4.4 present the formulations and their capabilities. The use of the elastostatic fundamental 
solution requires a domain discretization, which, however, can be restricted to those parts of 
the domain expected to become inelastic. The current development for this topic seems to be 
mature. 

  

2) Several BEM’s have been developed to solve dynamic inelastic problems. Sections 2, 3 and 
4.5-4.8 present the formulations and their potential. Among the existing BEM’s for dynamic 
inelastic problems, the two most important approaches are those employing the elastodynamic 
and those employing the elastostatic fundamental solution. The first one has the advantage of 
restricting the interior discretization to those parts of the structure expected to become 
inelastic. The latter approach, eventhough requires a complete domain discretization, is 
considerably simpler and computationally more effective. 

  

3) The BEM/D-BEM approach and the hybrid BEM/FEM approach seem to be very promising 
schemes for dynamic inelastic problems. These techniques combine the advantages of the 
concerned methods and are ideal for systems with limited inelastic regions as soil-structure 
interaction and fracture mechanics problems. 

  

4) One major advantage of BEM for static and dynamic inelastic analysis has to do with the 
determination at once and for all times or loading steps of the concerned matrices. On the 
contrary, when using the FEM, the stiffness matrix is continuously varied and should be 
computed at every time or loading step. On the other hand, BEM matrices are full populated 
and non-symmetric (except for the symmetric Galerkin approach), while FEM matrices are 
symmetric and sparse and this affects efficiency considerably. However, the size of the BEM 
matrices is smaller than that of the FEM matrices.  

  

5) Due to inelasticity, and sometimes due to inertia terms (e.g. in D/BEM formulation), the 
analysis requires the determination of internal quantities as inelastic stresses and hence an 
internal discretization. Thus, the main advantage of the BEM over the FEM of surface 
discretization is lost. However, as it is presented in Section 2.3, many techniques have been 
developed to avoid this drawback by replacing or transforming domain integrals into 
boundary integrals.  

  

6) None commercial boundary element code has been developed for these problems. To the best 
of the authors’ knowledge, the two existing general-purpose boundary element programs 
BEASY [128] and GPBEST [129] are not capable of treating inelastic behavior, both for 
static and dynamic problems. 

  

Eventhough BEM’s have reached a remarkable stage of development, there are still many areas 
where additional research is needed to be done in the future to further improve them and make 
them more competitive in practical applications. Among those, one can mention the following: 
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1) The basic two- and three-dimensional D/BEM formulations with damage should be extended 
to beams, plates and shells.  

  

2) The promising hybrid BEM/FEM and BEM/D-BEM schemes should be extended to three-
dimensions. 

  

3) Appropriate extensions of the present 2-D and 3-D BEM’s to the cases of non-local plasticity 
and non-local damage are required. 

  

4) Much work is needed towards the development of BEM’s for inelastic fracture mechanics 
problems. The corresponding boundary element formulations are limited either to linear 
dynamic or to nonlinear static analysis. 

  

5) BEM’s should be further extended to take into account large deformations or large 
strains/deformations in dynamic formulations. 
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