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Abstract 

This paper presents an original time efficient primal-mixed finite element approach in the 
geometrically multiscale solid thermo-mechanics. It will be shown that present finite element 
HC8/27 passes second stability condition (inf-sup test) for highly distorted finite elements with 
aspect ratio up to 7 orders of magnitude, for both, compressible and nearly incompressible 
materials. The semi-coupling between thermal and mechanical physical fields is achieved 
straightforwardly via essential boundary condition per stress, and without consistency error. The 
direct sparse solver and matrix scaling routine are used for the solution of resulting large scale 
indefinite systems of linear equations. A number of pathological benchmark model problems, 
with material interfaces or coating, with geometrical scale resolutions up to 8 orders of 
magnitude and aspect ratio of finite elements up to 7 orders of magnitude, are examined to test 
the reliability. A new definition of multiscale reliability is given. It will be shown how 
dimensional reduction theories can drastically deteriorate the place and intensity of maximal 
stress results, which can lead to a premature structure failure. In addition, bridging of 
continuum (finite element) and atomistic (molecular dynamics) mechanics is more accurate if 
continuum approach is based on a reliable fully three-dimensional numerical approach, mainly 
because it prevails spurious results and enables extension of the continuum region deep toward 
the atomistic scale. 

Keywords: solid mechanics, dimensional reduction, finite element, multiscale, geometric 
invariance, incompressible limit, residual stresses1.  

1. Introduction 

It is widely recognized that there is a need for a straightforward, consistent, reliable and time-
efficient numerical simulation procedure for multiscale multimaterial model problems in order 
to provide accurate data about the state of stress and defect structure of materials under thermo-
mechanical loading. 

Although the standard, primal finite-element (FE) method has been heavily used by the 
engineering community for more than five decades, it does not have its full application in a 
geometrically multiscale analysis. This is primarily due to numerous problems regarding 
stability (see Bathe 1996, Arnold 1990, Robey 1992) of finite elements when they are extremely 
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distorted, thin or become incompressible. For example, when a primal finite element approach 
is based on the dimensional reduction, see Babuska (1981), it can suffer from hourglass locking 
(see Bathe 1996, Chavan et al. 2007). In addition, for nearly incompressible materials there are 
spurious oscillations of stresses due to the volumetric locking. These problems may be divided 
in three main groups. The first group of problems is related to shear locking when low order 
elements are used. The second group of problems displays the presence of spurious or 
kinematic modes, i.e. extra zeroes eigenvalues of system matrix, when a selectively reduced 
integration is used. The third group of problems represents the occurring of nearly singular 
system matrix when the limit of incompressibility is approached. The popular standard 
displacement-based finite element approach, as the representative of the class of primal 
approaches, in its raw form is not applicable in these situations. In spite of a large number of 
techniques to remedy these bad characteristics, they are all on the account of violation of the 
consistency and stability issues. For example, a very popular general shell element QUAD is 
not stable in the analysis of banding dominated problems, see Piltner (2001), regardless of 
number of local nodes per element. 

When it comes to numerical simulation, i.e. approximation of the mathematical model 
given by differential equations by a chosen numerical method, the accuracy of the numerical 
results strongly depends on the reliability of the numerical scheme, quality of the material’s 
characterization and model idealization (dimensional reduction and detail suppression 
technique). The finite element (FE) method is certainly the first numerical method of choice in 
the thermo-mechanical analysis of solid bodies for several decades. Although, theoretical 
settings of different approaches, as primal, mixed and hybrid, were simultaneously developed, 
only the primal approach, were there is only one solution variable, gained notable attention of 
the industry and commercial software developers. In addition, the finite elements based on the 
dimensional reduction theories (beam and plane) are still the most used elements. It is primarily 
due to the limitation of the speed of the available computer recourses and the opinion that is not 
possible to develop reliable mixed approaches in which displacement and stresses are 
simultaneous calculated.  

Nevertheless, new materials, as composite sandwiched plates with foam in its core, 
functionally graded materials, and analysis at higher temperatures (fire) when material 
properties drastically change, require the fully 3D reliable numerical procedure toward 
incompressibility, see Djoko (2006). Next, the use of mixed/hybrid FE approaches, see 
Rannacher (1997) and Arnol (1990), is favorable because of the possibility to introduce a priori 
known stresses, as residual, directly in calculation as the known initial conditions. It is opposite 
to primal approaches (e.g. displacement finite element method) in which initial stresses are 
introduced as a contribution to the force vector, while the residual stresses are simply added a 
posteriori to calculated stresses, which entails a lost accuracy and is applicable only in the 
elastic range.  

Further, when the state of initial stress is heterogeneous along the thickness, it is not 
possible to use plate theories, even if the implemented theory is mixed. The next reason against 
the use of plane theories are the so-called locking effects which slow the convergence, see 
Maksimyuk1 (2004). A similar effect, called volumetric or dilatational locking, is widely 
known in relation to weakly compressible bodies. Under certain conditions, even the classical 
model based on the Kirchoff–Love hypotheses may lead to the membrane locking. Although 
there are new approaches proposed to improve the convergence of numerical solution for new 
classes of problems as thin and non-thin shells with a curvilinear (circular, elliptical) hole, and 
different types of modern methods to overcome the locking, all of them rely on some artificial 
stabilization techniques which deteriorate reliability. Nevertheless, there is a growing need for 
the multiscale (see Ghoniem 2003) and micro-macro approaches (see Schmauder 2002), it is 
still difficult to inflate atomistic models to the size of specimens and components. 
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In the present paper it will be shown that by use of the multifield reliable primal-mixed 
finite approach (see Mijuca 1997, 2004 and 2007) in thermo-mechanics, which has all variable 
of interest: temperature, heat flux, displacement and stress as solution variables, all above 
shortcomings are prevailed, and the introduced approach is both time efficient and adequate for 
straightforward coupling with nanomechanics. It is shown that the presented multiscale 
numerical approach, based on one-to-one correspondence between molecular dynamics (see 
Holian 1995) on atomistic scale and primal-mixed finite element scheme on macroscale, is 
reliable and efficient. The seamless semi-coupling between length scales can be achieved 
(Mijuca 2005). The reliability of the present primal-mixed FE approach is proved in Mijuca 
(2004) and (2007) for models in macroscale, and will be proved here for the multiscale model 
problems, from 0.01 micrometers upwards. It should be noted that different laws of physics are 
required to describe properties and processes of solids at different scales, so the author is of 
opinion that minimal geometric scales which we can now analyze, using the current physical 
laws, is 0.01 micrometers, and that is only because the approximation is performed by the 
reliable finite element. 

We will use the following terminology in the present text. Geometrical scale resolution 
stands for the ratio between maximal axial dimension of the model problem and minimal axial 
dimension of finite elements, while aspect ratio stands for the ratio between maximal and 
minimal axial dimension of a finite element. In addition, the new definition should be stated: 
Some numerical approximation procedure is multiscale reliable if it is reliable throughout the 
entire geometrical scale in which underlying physical law is valid. 

2. Primal-mixed formulation 

We start from the special primal-mixed weak form in transient heat transfer, Mijuca (2007): 

Find }{ ( ) ( )1 1, nT q H H∈ Ω × Ω  such that |
T

T T∂Ω =  and:  
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For solving the behavior of the solid body under mechanical loading, Hellinger-Reissner's 
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In the above expressions Ω  is the domain of the solid body; T , q , u  and t  are the 
temperature, heat flux, displacement and stress trial variables, respectively; while, θ , Q , v  
and s  are their test variables, respectively. The quantity k  is a second order tensor of thermal 
conductivity, in general case, of an orthotropic material. If the material is homogeneous and 
isotropic, the tensor k  will degenerate to a simple scalar value k , i.e. thermal conductivity. 
Further, ρ  is the material density, and c  is the specific heat, while f  stands for the internal 
heat source generated per unit volume. Also, A  is the fourth order compliance matrix tensor, 
f  is the body force, and p  is the vector of prescribed boundary tractions. Further, ( )1 n n

symH ×Ω  

is the space of all symmetric tensorfields that are square integrable and have square integrable 
gradients, while ( )1 nH Ω  is the space of all vectors that are square integrable and have square 
integrable gradients. The displacements and stresses are chosen from continuous subspaces, 
which is correct in the case of the homogeneous materials under mechanical loads. 
Nevertheless, on the surfaces of material discontinuities, only transversal stress component is 
continuous. It will be shown later in the text that this error is much smaller than in approaches 
where stresses are chosen from discontinuous subspaces ( )2 n n

symL ×Ω , as in the original version of 

Hellinger-Reissner's principle and primal approaches, see Arnold (1990). 

It will be shown that the essential contribution of the present investigation is that the 
calculated temperatures are introduced directly in the field equation (3), i.e. without 
differentiation; this will be done through essential boundary conditions per stresses. We can see 
from (1) and (3) that temperatures and stresses are presently approximated by the functions of 
the same polynomial degree. This is because the constitutive equation between stress and 
thermal stress does not include the temperature derivative, hence there will be no consistency 
error between calculated thermal and stress deformation fields, see Prathap (1995).  

It should be noted that the consistency error is a big shortcoming of the primal finite 
element approaches. In primal approaches, when temperatures and displacements are 
approximated by functions of the same polynomial degree, we found that polynomial degree of 
thermal strains is lower than the polynomial degree of mechanical strains. Namely, temperature 
enters the mechanical field equations ( [ ]{ } { }=Κ u f ) through the force loading term f , by 
differentiation of thermal strains. So, the thermal strains will be in the polynomial function 
space that is one degree lower than mechanical space. It results in spurious oscillations of 
stresses, especially around singularities, as at corner nodes, reentrant nodes and material 
interfaces. In primal methods these oscillations can be avoided only if the polynomial degree of 
approximation function used for displacement is one order higher than for temperature. 

In the case of traditional materials where there is no heat production due to strain rate, 
thermal effects on a body are limited to strains due to the temperature gradient, which are 
autonomously determined and constitute only a datum for stress analysis, see Cannarozzi 
(2001). Therefore, the strains are mechanical ( M

pe ) or thermal ( T
pe ), and they are additive in the 

linear case. On the other hand, in the present approach thermal strain will enter the formulation 
(3) as essential boundary condition per stress, using the constitutive equation. Namely, the 
corresponding prescribed thermal strains p

Te  are calculated from prescribed temperatures pT  
using the following constitutive equation: 

 ( )p
p iT T T= −e α  (4) 
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where α  is the second order tensor of thermal expansion coefficients (scalar in the case of 
isotropic materials), while iT is the initial temperature. The prescribed thermal stresses p

Tt  are 
then simply calculated from strains T

pe via the constitutive relation: 

 p p
T T=t C : e  (5) 

where, C  is the elasticity matrix. 

We can see from (1) and (3) that presently thermal stresses and mechanical stresses are 
calculated in the subspaces of the interpolation functions of the same degree without any loss in 
accuracy as in primal approaches. Therefore, we can say that the presented semi-coupling of 
thermal and mechanical physical problems is performed in the consistent way.  

2.1 Finite element equations 

As it is show in Mijuca (2007), the transient thermoelastic problem  consists in determining the 
response of the body in terms of displacement u , temperature T , stress t  and heat flux q , 
according to the compatibility equations, equilibrium and thermal balance equations, 
constitutive equations, and boundary and initial conditions: 
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It is obvious from (1) and (3) that present primal-mixed finite element approaches represent 
a saddle point problem, where system matrix is indefinite with additional sparsity concerning 
zero-diagonal entries.  Solvers MA57 and MA47 from Harwell Subroutine Library, which are 
designed for the solution of this kind of systems, are chosen as suitable for testing. They are 
based on the multifrontal method which is a direct approach for solving linear systems of 
equations. Like most sparse direct solvers, algorithms are developed in three distinct 
computational phases: analyze, factorize and solve phase, Duff (1986). 

3. Dimensional reduction 

Dimensional reduction is one of the two generic techniques for model idealization, see 
Babuska. (1991). The solid bodies with one or two axial dimensions much smaller than other 
are traditionally examined by plate, shell or beam theories based on dimensional and solution 
variable reduction in the direction normal to middle surface, or beam's cross section, 
respectively. Obviously, these geometrical simplifications produce errors in the final solution, 
which are traditionally considered to be negligible. From the historical point of view, plate, 
shell and beam theories were needed to enable simplified engineering calculations. On the other 
hand, in order to capture stress concentrations at local details, it is often desirable to combine 
the reduced dimensional element types with higher dimensional elements, like hexahedral, in 
the entire global model. Consequently, it is necessary to have some scheme for coupling the 
element types that conforms to the governing equations of the problem, and which do not 
introduce any spurious results of dual variable (stress, heat flux) at the dimensional interface. 
However, regardless of the coupling technique, there will be some so-called transition error 
introduced.  

Theories based on the dimensional reduction suffer from the aspect-ratio restriction, which 
is highly inappropriate in multiscale analysis, where the atomistic region is bridged to a 



D. Mijuca : On a Reliable Finite Element Approach in Multiscale Multimaterial Solid Thermo-Mechanics 

 

50

continuum region and therefore very narrow finite elements are welcomed. In addition, the 
existing theories are inappropriate in analyses of coated bodies or thin films of micron sized and 
less. 

Nevertheless, idealization of geometry in order to reduce the complexity of the model is the 
major factor limiting the wider application of FEA in computational materials technology where 
the material is respected throughout the dimensional scales. In addition, in the case when finite 
element approach is primal, model problem is approximated by plates or shells, and the material 
undergoes plastic deformation or applied external loading produces excessive bending, so that 
the system matrix will become highly ill-conditioned. 

4. Multiscale robustness 

There is a growing need to develop systematic modeling and simulation approaches for 
multiscale multimaterials model problems to provide the accurate data about the state of stress, 
defect structure, thermal and mechanical performance of subregions with different geometric 
scales. These problems arise, for example, in the analysis of coated components, where 
materials scientist use soft, hard, biomimetic, wear resistant or corrosion protecting multiphase 
or multilayer coatings to gain significant performance advantages (e.g. thermal coating of metal 
based turbines with some ceramics). The other example is a multi-layered microelectronic 
packaging or wind turbine, where the interfacial stress induced by thermal loading or moisture 
during manufacturing or exploitation is responsible for delamination-related failures. Reliability 
of the present FE HC8/27 makes it a candidate of the first choice for the use in thermo-
mechanical multiscale analysis, such as aforementioned examples where high aspect ratio of the 
FEs is inevitable.  

5. The mathematical convergence requirements 

As the finite element mesh is refined, the solution of the discrete problem should approach to 
the analytical solution of the mathematical model, i.e. to converge. The convergence 
requirements for shape functions of isoparimetric elements are grouped into three categories, 
i.e: completeness, compatibility and stability, see Arnold (1990) and Rannacher (1997). In 
addition, the consistency and stability imply convergence. If the stability condition is satisfied, 
there will be no non-physical zero-energy modes (kinematic modes). 

The completeness criterion requires that elements must have enough approximation power 
to capture the analytical solution in the limit of a mesh refinement process. Therefore, the 
approximation functions must be of certain polynomial order that ensures that all integrals in 
the corresponding weak formulation are finite. Further, the compatibility requirement demands 
that shape functions provide displacement continuity between elements. Then, it will be ensured 
that no artificial material gaps will appear during the deformation of finite element mesh. As the 
mesh is refined, such gaps could multiply and may absorb or release spurious energy. 

Completeness and compatibility are the two aspects of the so-called consistency condition 
between the discrete and mathematical models. A finite element model that passes both 
completeness and continuity requirements is called consistent. 

Further, if the method is stable, the non-physical zero-energy modes (kinematic modes) in 
finite element model problem will be prevented. The kinematic modes are extra 
zero-eingenvalues of a finite element system matrix. The finite element is stable if it satisfies 
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two necessary conditions:  the first one is represented by the ellipticity on the kernel condition, 
and second is represented by the inf-sup condition (Bathe 19976). 

It should be noted that satisfaction of the completeness criterion is necessary for the 
convergence, while violating the other two criteria does not necessarily mean that the solution 
will not converge. However, if the method is not stable, at least what could happen is that 
approximate solution will not converge to the analytical solution at the same rate as the best 
approximation error. Hence, in the best scenario the approximate solution will slowly converge 
to the analytical solution of the mathematical model. In the worst scenario, the system matrix 
will be singular, thus without solution of the given model problem at all. 

5.1 Consistency condition  

In the presented formulation, the completeness requirement is satisfied as the local 
approximation finite element functions poses all polynomial terms of degree 3=k , needed for 
the present three-dimensional case. Further, both finite approximation subspaces of stress and 
displacements are from space 1H  over the domain of the model problem. Consequently, it is 
provided that these spaces are continuous over an interelement boundary, resulting that the 
compatibility requirement is also satisfied. 

5.2 Reliability of the finite elements 

The overall stability of the mixed formulations based on Hellinger-Reissner's principle is 
provided if two necessary conditions for stability are fulfilled i.e., the first stability condition 
represented by the ellipticity on the kernel condition, and second stability condition represented 
by the so-called inf-sup condition, Arnold (1990). The second stability condition is very hard to 
be satisfied. However, the satisfaction of the inf-sup condition ensures solvability and 
optimality of the finite element solution, and it is very important to be satisfied if the finite 
element approach is to be used for the complex model problems.  

5.3 First stability condition 

The ellipticity on the kernel condition is given by: 

 ( ) hh Za ∈α≤ zzzz  allfor   , , ( ){ }hhh VbSZ ∈=∈= vvzz   allfar   0,   (10) 

Spaces hS  and hV  are the finite dimensional subspaces of test stress spaces S  and 
displacement spaces v , respectively. 

In the presented formulation, the test and trial stress local functions are from spaces 
( ) nn

h HS
×

⊂ 1 . Therefore, the corresponding bilinear form a  in (3) is quadratic. In addition, in 
the physical sense it represents the deformation energy, which is positive definite for linear 
elasticity problems. Consequently, it is also symmetric and bounded. From all these properties 
of the given bilinear form a , we can conclude that the first stability condition is automatically 
satisfied. 

5.4 Second stability condition 

The second stability condition is satisfied if the value hγ , following from LBB 
(Ladyzhenskaya, Babuška, Brezzi) condition (see Brezzi 1991, p.76, Eq.(3.22)), remains 
bounded above zero for the meshes of increasing density:  
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Since the verification of the condition like (11) involves an infinite number of meshes, a 
numerical inf-sup test should be performed for a sequence of several meshes of increasing 
refinement. For the presented choice of approximation spaces hV  and hS , the above condition 
can be read as: 

 
( ) ( )

( )
1 1

,
inf sup

 
h h

h n n n h h

b

H H ×
γ ≤ γ =

∈ ∈

S v
S vv S

 (12) 

where, 

 ( ),
i

h h h h e
e

b d
Ω

= ∇ Ω∑ ∫S v S : v  (13) 

 2

i

h h h e
e

d
Ω

= Ω∑ ∫S S S:  (14) 

 2 T

i

h h h e
e

d
Ω

= ∇ ∇ Ω∑ ∫v v v:  (15) 

In addition, the condition (11) ensures solvability and optimality of the finite element solution 
(see Arnold 1990). It is interesting to note that any loading does not enter the test. It should be 
noted that the discrete LBB condition in the present formulation is equivalent to the statement 
that for each hV∈v  there is an i  such that: 

 ( )ihh S∈∇v  (16) 

There are only several finite elements which satisfy this condition in the known literature. 
Moreover, this condition is dependent on the number of finite elements in the mesh (mesh size). 
Consequently, numerical inf-sup test is represented by the generalized eigenvalue problem, in 
matrix notation given by: 

 
T -1
h h h= λx xD A D C  (17) 

where D  and A  are matrix entries in (6). And matrix C  is the stiffness matrix from the 
corresponding displacement based (primal) finite element method, given by:  

 ( ) ( )K g U C U g dm n
L a

m
b
L abcd

d
K

c
n

e
K

i

Λ Γ Λ Λ

Ω

Γ ΓΩ ΩΩ= ∫∑   (19) 

The square root of the smallest eigenvalue of the above problem minλ  is equal to the inf-sup 
value hγ  in equation (12). The test involves, following Bathe (1996), the determination of hγ  
for several meshes with increasing refinement with the mesh density indicator N/1 , via 
calculation of minλ . 

If the inf-sup values, for a chosen sequence of finite element meshes, do not show a 
decrease toward zero, meaning that the minγ = λ  values stabilize at some positive level, then 
it can be considered that the inf-sup test is passed. It should be noted that decreasing of the inf-
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sup values on log-log diagram would be seen as a curve with moderate or excessive slope. This 
approach is used in Mijuca (2004) and (2007) to test stability of the present finite element in the 
non multiscale analysis. It was shown that the present FE satisfies all these criteria in 
geometrically non-multiscale analysis, for both, regular and extremely distorted finite element 
meshes, and for compressible and nearly incompressible materials. The first stability condition 
is a priori satisfied for the present FE formulation, and it is also the mesh size undependable. 
Therefore, in order to prove the reliability of the present FE HC8/27 in geometrically multiscale 
analysis, we will have to prove only the second stability condition. The results of the inf-sup 
test for the present finite element configuration HC8/27 are given in the next section. 

6. Numerical examples 

Several model problems from thermo-mechanics with geometrical scale resolution up to 8 
orders of magnitude, and aspect ratio up to 7 orders of magnitude, are presently investigated 
(for terminology see Section 1). They are used to test reliability, time efficiency and accuracy of 
the present primal-mixed finite element approach HC8/27. The performance with respect to 
scaling is highlighted. Model problems with high aspect ratio, highly distorted hexahedral finite 
elements, multimaterial model problems, as bimetallic strip and thermally coated shaft, and 
inf-sup test on multiscale regular, highly distorted, compressible and incompressible unit brick, 
are performed in the next examples..  

The results are, where appropriate, compared with the primal hexahedral finite element H8 
and analytical solutions, as in Roark (1975). The finite element H8 is based on the primal finite 
element approach, namely, displacement finite element method with incompatible displacement 
modes (so-called bubble modes) introduced into the element (see Wilson 1990), which are 
eventually eliminated from the element stiffness matrix by the static condensation procedure. A 
special integration scheme is used to ensure that H8 passes the patch test, while the stress field 
is obtained a posteriori and smoothed by the local stress averaging. 

6.1 Inf-sup test in multiscale analysis of the unit brick 

The inf-sup test (second stability condition) of the present finite element HC8/27 in the 
geometrically multiscale analysis is checked on the model problem of the unit brick following 
Bathe (1996), with regular or extremely distorted finite element meshing, and for aspect ratio of 
finite elements up to 6 orders of magnitude, and scale resolution of model problem up to 7 
orders of magnitude. 

The Young modulus is 1 and Poisson’s coefficient is 0.3 for compressible, and 0.49 for 
nearly incompressible materials. The unit brick is discretized by sequence of the finite element 
meshes with pattern 2 2N × × , where 1, 2,3,4,6N = , along x , y  and z  axes. The first section 
per x  axis is 0.999999 thick, and the second section per x  axis is 0.000001 thick. Therefore, in 
undistorted mesh for the 6N = , the minimal axial dimension of FE is 7

min 1.66 10h −= ⋅ . The 
maximal axial dimension of the FE for all problems is max 0.5h = , so the aspect ratio is 

6
max min 3 10h h = ⋅ , that is, more than 6 order of magnitude. In that case the scale resolution is 

7
min1 1.66 10h = ⋅ , that is seven orders of magnitude. For extremely distorted meshes, the 

midside points are moved from ( ),0.5,0.5M x  positions, to ( ),0.7,0.7M x , and maximal 

aspect ratio is 6
max min 4.4 10h h = ⋅  (see Figure 1). The results are plotted in the form 
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( ) ( )minlog 1f Nγ = , where min minγ λ=  is the square root of minimal eigenvalue in (13). 
Results are plotted from right to left for meshes of increasing refinement in Figure 2. 

   
Fig. 1. Maximal aspect ratio and internal angle for the unit brick model problem. 
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Fig. 2. Inf-sup reliability test: Unit brick model problem. 

We can see from Figure 2, that regardless of the aspect ratio and mesh pattern N , the inf-
sup curves of finite element HC8/27 do not show decrease toward zero, but remains stabilized 
at some level. Therefore, we may conclude that the finite element HC8/27 passes the inf-sup 
test in compressible and nearly incompressible cases, for regular and extremely distorted finite 
elements in the mesh, where the aspect ratio of minimal and maximal axial dimensions of the 
finite elements is up to 63 10⋅ . The inf-sup test results of the other sub-configurations of present 
FE will be given in a separate paper. 

Keeping in mind that it is already proved in Mijuca (2007) that the present finite element 
passes the first stability condition (which is a priori satisfied), and that it satisfies the 
completeness criterion and compatibility criterion, we may say that the present finite element is 
reliable under definition set in Section 1. 
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6.2 Long steel coated shaft 

The simulation of coated materials is of particular interest to industry in order to control the 
level of the interfacial stresses on the surfaces of material discontinuities, see Lu (2003). 
Therefore, a hollow shaft covered with microsized coating layer for mechanical and thermal 
protection, shown in Figure 3, is presently examined.  

The material properties are given in Table 1. The inner and outer radii of the shaft are 
0.005m  and 0.1m , respectively. The coating consists of a bond and ceramic layers of the 
equal size. Thickness of the coating (bond and ceramic) is gradually decreased from 210h m−=  
to 610h m−= , in order to check robustness of present finite element to high distortion. The 
reference temperature is 1273RT K= . The shaft is loaded by prescribed temperatures on inner 
and outer surfaces, such that 773iT K=  and 1273oT K= , respectively. It is assumed that height 
off the shaft is 0.1m . Consequently, on material interfaces all stress tensor components, except 
radial, will be discontinuous and will differ significantly due to the large difference in physical 
properties of the bonded materials. The target solution of radial stress is obtained by a modified 
plate theory. We will investigate the convergence of the temperature and radial stress 
component on the interface L2 , between bond and ceramics, for the sequence of five model 
problems with decreasing coating thickness 10 Nh −= , where 2,3,4,5,6N = . 

 
Long steel coated shaft - material properties 

 Modulus Poisson’s ratio 

Thermal 
expansion 
coefficient Density 

Thermal 
conductivity 

 [ ]410E MPa⋅  ν  
5 010 Cα − ⎡ ⎤⋅ ⎣ ⎦  [ ]310 kgρ ⋅  2k W m C⎡ ⎤⎣ ⎦  

Ceramic 1.0 0.25 1.0 4.0 1 
Bond 13.7 0.27 1.51 4.0 25 
Steel 21.0 0.30 2.0 7.98 25 

Table 1. Long steel coated shaft - material properties. 

Only one-quarter of the model problem is analyzed due to the symmetry. Both bond and 
ceramic are discretized by 3 layers of finite elements along the radius. The model problem is 
plain strain, so only one finite-element layer along its height is presently used. Consequently, 
for the last model problem, where coating is thick 610h m−= , we will have the maximum finite 
element aspect ratio equal to 600000. The temperature distribution is calculated by present 
thermal approach (6), after which the thermal stresses are calculated by (8) without the 
consistency error.  

The results obtained by the present finite element HC8/9 and classical plane boundary 
element method (CBEM), see Lu (2003), for temperature and stress at the interface 1r , are 
shown in Figures 3 and 4, respectively. We may see that the approach CBEM exhibits spurious 
oscillation of results. On the other hand, the present approach results are invariant to the size 
coating thickness. In addition, the convergence is achieved. 
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Fig. 3. Coated shaft. Convergence of temperature results at boundary L2. 

 
Fig. 4. Coated shaft. Convergence of thermal stress results at boundary L2 

We now investigate the convergence of the stress in x -direction around the surfaces of 
material discontinuities on L1 and L2 , for model problem 610t m−= , are shown in Figure 5, 
where we can notice that there are no spurious oscillations of the stresses. 
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Fig. 5. Coated shaft. Model problem with coating thickness 1t mμ= . Stress along x  axis. 

The execution time for the three distinct phases in the solution process, the storage 
requirements, and backward error for the in-house direct Gaussian solver and MA57 solver with 
scaling routine MC64, are reported in Table 2. Numerical experiments were conducted on a PC 
Pentium(R) D CPU 2.8 GHz with 3.25GB of RAM with Physical Address Extension running 
under the operating system Microsoft Windows XP Professional Version 2002 Service Pack 2, 
double precision (64-bit) reals were used, and CPU times are given in seconds. 

 
Coated cylindrical shaft - execution time and storage requirements 

 Time 
 FE N NE Analyze Factorize Solve Total 

Backward 
error 

HC8/9 5776  14.31 .75 15.06  
in-house HC20/21 16500  1810.17 4.89 1815.06  

         
HC8/9 5776 280056 .03 .50 .01 .54 .8E-12 

HC20/21 16500 1829790 .17 12.28 .05 12.50 .1E-10 
HC8/27 18634 1961070 .19 4.05 .06 4.30 .2E-10 

MA57 
+ 

MC64 HC20/27 22122 2785700 .27 11.59 .08 11.94 .3E-10 

Table 2. Coated cylindrical shaft - execution time and storage requirements. 

We can see from results reported in Table 2 that scaling the system matrix prior to the 
factorization using MC64 routines considerably improves the execution time. In addition, the 
storage requirements and number of operations are far smaller. The MA57 without scaling was 
not able to solve some model problems, because the factorization fails due to insufficient 
storage. Therefore, the conclusion is that scaling generally decreases the storage requirements, 
decrease the solution time, and handles the solution of systems with much more degrees of 
freedom. As an interesting aside to this set of problems, the given matrix has many entries of 
very small size (around 2010− ). However, these are significant numbers inasmuch if they are 
treated as zero, and it is not possible to solve the resulting systems because the matrix is 
singular. 

6.3 Bimetallic strip 

Bimetallic strips are widely used in instruments to sense a control temperature. They are made 
up of two or more metallic layers having different coefficients of expansion, causing the 
material to change its curvature when subjected to a change in temperature (see Roark 1975). 
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The cantilever bimetallic strip of length 10l = , width 0.1w = , and thickness 0.1t = , is 
considered in the present example. The goal is to check if there is spurious stress beahaviour 
from singularity of stress on the clamped edge and material interface. Finite elements HC8/9, 
HC8/27 and HC20/21, are investigated. The results are compared with results obtained by 
primal finite element method based on displacement based approach, finite elements H8 and 
H20, with local stress averaging. It should be noted that we are aware that primal finite 
elements are not designed to be used in multiscale resolution model problems, due to the 
hourglass locking. Nevertheless, it will help us to emphasize the robustness of present finite 
elements. 

The beam is stress free at 70RT =  and subjected to a uniform temperature 0 170T = . Both 
materials have modulus of elasticity 73 10  E MPa= ⋅  and Poisson's ratio 0.3ν = . The only 
difference is in coefficients of thermal expansion, which are 5

1 1 10α −= ⋅ and 5
2 2 10α −= ⋅ , for 

the upper and lower material, respectively. Consequently, all components of stresses at the 
material interface, except transversal, will be singular. We assume that the beam longitudinal 
axe coincides with the x  direction. Nodes on the clamped edge have suppressed displacements. 
Analytical solutions, obtained by the modified simple beam theory (see Roark (1975), page 
114) is 7500xxt = − , for the top surface, and maximal deflection is 0.75zu = . Only one half of 
the model problem is analyzed due to the symmetry. 

Present model problem has one material surfaces of discontinuity on the interface between 
two materials, and one line of discontinuity on the clamped edge. In order to localize the stress 
singularity on the material interface, we place a very thin layer of finite elements on the both 
sides of the material interface, one layer on each side, with thickness 0.0001bh m= . Further, we 
localize the effect of stress singularity on the clamped edge by placing one or several 
microsized finite elements near the clamped edge with thickness 0.000001ch m N= . 
Therefore, we are expecting convergence of displacements at the clamped edge, but do not 
expect the convergence of the stress at midsection node of the beam, as maximal stress of the 
model problem is at the clamped edge and it is singular. The mesh pattern is given by 
( ) ( )10 1 2 1 1 2N N+ × × + + + , for 2, 4,8,16N = . Namely, in order to localize singularity of 
stress at the clamped edge, N  layers of finite elements with thicknesses 0.0001/h N=  just 
adjacent to the clamped edge, are generated. 

Consequently, the scale resolution, i.e. the ratio of maximal axial dimension of the model 
problem ( max 10l m= ) and minimal axial dimension of finite elements 
( 8

min 0.000001 16 6.25 10h −= = ⋅ ), is 8
max min 1.6 10l h = ⋅  (up to 8 orders of magnitude). Maximal 

aspect ratio of finite elements in the present model problem is 7
max min 1 10h h = ⋅ , i.e.  7 orders 

of magnitude. Convergences of the target values using finite elements HC8/9, HC8/27 and 
HC20/21, are given in Table 3. 
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Convergence of maximal displacement zu  

Mesh pattern (10 ) 1 4N N+ × × . Thickness of the bond layers 0.0001bh m= . 

Thickness of the layers near the clamped edge 0.000001ch m N= . 

Aspect ratio 6
max min 1 10h h = ⋅ , for 2, 4,8,16N =  

N  NEL 

Scale 
resolution 

max minl h  HC8/9 HC20/21 HC8/27 H8 H20 
2 88 2E+07 .6649954 .7500676 .5861077 0.7500546 0.7501663 
4 176 4E+07 .7311053 .7500674 .7131315 0.7500688 0.7499819 
8 352 8E+07 .7464689 .7500664 .7430614 0.7500615 0.7501227 
16 704 11.6E+08 .7495121 .7500637 .7490083 0.7500665 0.7505277 

target0.75; 7500xx
zu t= =  

Table 3.  Cantilever bimetallic strip. Convergence of maximal displacement zu .  

It can be seen from Table 7 that all three types of considered finite elements, uniformly 
converges to the analytical displacement, while the finite elements H8 and H20 oscillate around 
analytical solution. 

We now investigate variation of target stress xxt  along the upper line ( ),0.05,0.05x . The 
results for linear finite elements: primal H8 and primal-mixed HC8/27, are shown in Figure 6. 
We can see that the present configuration HC8/27 does not exhibit spurious oscillations. Note 
that this finite element passes inf-sup test (see Example 6.1). 

 

Fig. 6. Bimetallic strip. stress xxt . Primal H8 and primal-mixed HC8/27 finite element. 

6.4 Hollow sphere with two materials and convective BC's  

Sensitivity of the present approach to the presence of the material discontinuity is investigated 
in this example. A model problem is the steady state heat transfer through a hollow bimaterial 
sphere (see Societe Francais, 1989). Inner, interfacial and outer radius of the hollow sphere are 
0.3m , 0.35m , and 0.37m , respectively. The convection boundary conditions are prescribed on 
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its inner and outer surface, such that 2inner 200 /ch W m C=  and inner 070aT C= , and 
outer 2150 /ch W m C=  and outer 09aT C= − , respectively. Thermal conductivities of the inner and 

outer material are inner 2 040k W m C=  and outer 20 /k W m C= . The target values are 
temperatures on three characteristic radii: inner, interfacial and outer, which are 025.06T C=A , 

017.84T C=B  and 013.16T C=C , respectively.  

Only one-eighth of the hollow sphere is presently analyzed due to symmetry. The finite 
element configurations used were HC8/9, HC8/15, HC8/27, HC20/21 and HC20/27, and the 
raw primal one H8. The sequence of models with uniform meshes refinement in all directions 
were investigated. Relative errors of the calculated temperatures on characteristic radii at point 
B  vs. the number of finite elements in the mesh, are shown in Figure 7. The obtained results 
reveal that all considered finite element configurations have high accuracy. In addition, 
artificially enforced continuity of heat flux shape functions along discontinuity surface of the 
abrupt material change (Point B) does not deteriorate results. Nevertheless, the quadratic finite 
element configurations H20, H20/21 and H20/27 have relative error less than 0.01% 
immediately after the second discretization, which points out very high accuracy of these 
configurations. It can be seen that very good results are obtained even with small number of 
elements in radial direction.  
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Fig. 7. Hollow sphere - uniform refinement: relative errors.  

7. Conclusion 

The geometrical scale resolutions up to 8 orders of magnitude and aspect ratio of finite elements 
up to 7 orders of magnitude are considered, using reliable and time efficient three-dimensional 
multifield primal-mixed hexahedral finite element approach in thermoelastic geometrically 
multiscale analysis in multi material solid mechanics, based on Hellinger-Reissner's principle. It 
has several essential contributions in accordance to other finite element approaches. Firstly, 
stress and heat flux are the solution variables as displacement and temperature, respectively. 
Therefore, stress constraints can be introduced as essential boundary conditions and any stress 
components can be set free or suppressed. For example, if we want to simulate beam or plate 
theory we can suppress transversal normal and shear stress components. In order to avoid the 
geometrical invariance error and to enable the introduction of displacement and stress 
constraints in an adequate coordinate system, the underlying finite element scheme is 
coordinate independent. Secondly, the approach is invariant to distortion and aspect ratio of 
finite elements. Namely, aspect ratio of hexahedral finite elements in the mesh could be up to 6 
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orders of magnitude, while they are degenerated to tetrahedron and L  like shapes, without 
compromising the convergence.  

In multimaterial bodies microsized finite elements are placed adjacent to surfaces of the 
material discontinuities, in order to localize singularity. Furthermore, nearly incompressible 
materials are analyzed without volumetric locking, without spurious oscillations of results near 
singularity. In addition, as stress is the solution variable, initial stress and/or strain field is 
introduced directly. This last feature is presently used in an original consistent approach for 
calculation of thermal stresses. The new definition of multiscale reliability is given. It is proved 
that proposed finite element HC8/27 passes the inf-sup test in a multiscale analysis, for 
geometrically highly distorted multiscale mesh, where the aspect ratio of finite elements and 
scale resolution of model problems are 6 and 7 orders of magnitude, for compressible and 
nearly incompressible materials and for thin solid bodies, respectively. Therefore, the present 
procedure is ready to be bridged with simulation approaches on particle levels. 

From a number of benchmark tests performed, we can see that present approach provides 
accurate results, with an execution time which is at least three orders of magnitude shorter than 
the elsewhere reported results. Further, it is shown that the dimensional reduction or neglecting 
some stress components, usual in beam and plate theories, can lead to the substantial 
underestimation of thermal stresses, which is already noticed in experimental testing.  In 
addition, it is shown that the primal finite element approach under dimensional reduction 
theories underestimate maximal thermal stresses. Consequently, the satisfaction of the 
convergence requirements of the present finite element scheme makes it a promising field for 
future research undertakings, including developments in materially non-linear solid continua, or 
in coupling with other physical fields, as fluid or electro-magnetic. 
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