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Abstract 

The strategy currently followed to deliver nano-sized particulates to solid tumors is based on the 
well known enhanced permeability and retention effect where particles sufficiently small to 
spontaneously extravasate through the fenestrated tumor vessels can be transported from the 
vascular compartment to the inner region of the tumor mass and from there release their 
payload. An alternative active strategy is gaining consensus and is based on the targeting of the 
tumor vasculature through ligand-receptor specific interactions exploiting the biological and 
biophysical differences between normal and tumor vessel walls. Such an active strategy 
requires a detailed analysis of the transport and adhesive interaction of nano-sized particulate 
systems within the tumor vasculature which is characterized by permeable walls; high 
interstitial fluid pressure; and expression of specific receptor molecules. 

In this work, the analysis of the transport of solute molecules resembling nano-sized 
particles under laminar flow is presented solving the classical diffusion-advection equation in a 
straight capillary. The effect of vessel wall permeability as well as the complex rheological 
behavior of blood are considered explicitly keeping the formulation tractable. Possible future 
directions of research are then presented in the closing paragraph where a finite element 
approach is described to treat the transport of non- conventional particulate systems having a 
non spherical shape. 

Key words: transient diffusion, permeable vessels, nanovectors, drug delivery. 

1. Introduction 

Small-molecule agents and monoclonal antibodies (mAbs) as well as particulate formulations 
have been developed, subjected to clinical trials and some are already employed in the clinics to 
cure cancer. Despite this, the vast majority of malignancies have proven to be resistant to such 
interventions, partially due to the requisite dose limitations for preventing adverse effects on 
normal tissues but largely due to the barriers of different nature that these systemically 
administered agents should avoid before reaching their biological target (Minchinton and 
Tannock [1]; Ferrari [2]). 
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It is reported that small-molecules and therapeutic antibodies reach the desired biological 
target only in 1 part per 10,000-100,000 molecules (Li et al. [3]). Most of these molecules are 
lost within the body, in that for their small size (<1-5 nm) they can easily cross the endothelial 
barrier and diffuse through the extracellular matrix of almost any normal tissue. Others are 
eliminated from the blood pool through the action of the immune system. And those that reach 
the tumor vasculature are prevented from penetrating deep in the tumor mass by the adverse 
interstitial fluid pressure and by the composition and highly intricate structure of the 
extracellular matrix of tumors (Heldin et al. [4]). The transport of nano-sized molecules and 
particulate systems within capillaries with permeable walls, as is the case of tumors, and in the 
presence of blood cells altering significantly the rheological properties of the hosting fluid is of 
vital importance in the design and development of such particulate systems, and this is one of 
the most active field of research in Cancer NanoTechnology. 

General. Taylor (1953) first studied the effect of shear on axial dispersion in fully developed 
laminar flow of a Newtonian fluid in a circular tube. A similar solution is readily obtained for 
the flow between plates. To introduce the concept of shear-augmented dispersion, consider a 
bolus of a passive species in fully developed incompressible laminar Newtonian flow in a 
straight channel. The bolus is carried downstream by the Poiseuille flow. At the leading edge of 
the bolus, the solute diffuses from the high concentration region near the center of the tube 
toward the low concentration region at the wall. In doing so, the amount of material travelling at 
a speed greater than the average is reduced, thereby reducing the rate of axial spread of the 
bolus relative to its axial center, which moves with the cross-sectional average velocity. At the 
trailing edge, diffusion is inward, again reducing the variance of the velocity of the bolus. The 
non-uniform flow stretches the species concentration profile along the capillary generating 
transverse variations in concentration, which are destroyed by transverse molecular diffusion 
reshaping the concentration profile. This mechanisms results in an effective diffusion 
coefficient Deff  that for a laminar flow in a circular pipe of radius Re with non permeable walls 
has been derived as (Aris [6]): 

 eR
48eff m

m

VD D
D

= +  (1) 

Dispersion is maximized as the molecular diffusivity goes to zero since any radial diffusion 
reduces the axial spread of the material: equation (1) predicts that Deff goes to zero as Dm~0, but 
in this limit the assumption of small radial concentration gradients breaks down and the result is 
no longer valid. In contrast to the basis for the Taylor results, the transport becomes purely 
convective. 

Assumptions implicit in this analysis are: (i) the dispersion is quasi-steady, thereby 
eliminating the temporal term from the species transport equation; (ii) an assumption of 
unidirectional, usually fully developed, flow eliminates all convective terms except the axial 
one; (iii) axial convection is dominant over axial diffusion, and (iv) radial variations in 
concentration are small compared with those in the longitudinal direction. Considerable effort 
has been expended in attempts to relax Taylor's assumptions. The first assumption can be 
particularly troublesome, since in a problem involving the spread of a tracer introduced into the 
flow stream in some arbitrary configuration, the analysis is restricted to the limit of large time. 
Specifically, the Taylor and Aris (1956) analysis is valid for t�½ Re

2/Dm that, given particular 
values of diffusivity and outer diameter describing common physiological conditions, can be 
also significantly big (considering the dispersion of sub-micrometric particles, with a molecular 
diffusivity Dm typically ranging between 10-11 and 10−9 m2/s, it follows that the Taylor–Aris 
asymptotic solution is strictly valid in large vessels (arteries) with Re∼10−2 m at times larger 
than 105–107 s, whereas in small capillaries with Re∼10−6 m at times larger than 10−3 to 10−1 s. 
Observing that blood in large vessels has a mean velocity V of about 102 mm/s, the Taylor–Aris 
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regime would be fully developed in arteries only after 104 m. In small capillaries with V of 
about 1 mm/s, the asymptotic solution would hold true after 10−3 to 10−1 mm, which is smaller 
than the characteristic length of normal capillaries typically ranging between 100 μm and few 
millimeters. The analysis carried so far is incomplete to the extent that (i) the permeability of 
the vessels where dispersion takes place is not considered and (ii) the transient time of 
dispersion is disregarded, and the solution is given in terms of mean concentration (the radial 
distribution of concentration cannot be deducted from the mono dimensional analysis of 
Taylor/Aris). 

Ananthakrishnan et al. [5] solved numerically the complete convective-diffusion equation 
describing the dispersion of the solute within a cylindrical steady laminar flow and observed a 
perfect agreement with the approximate results of the Taylor & Aris theory in the limit of 
sufficiently large times t (t�½ Re

2/Dm, as widely reported above). Gill [16] extended Taylor's 
framework to obtain the local concentration distribution, by means of a series expansion about 
the mean concentration, while Gill and Sankarasubramanian [16] established that the above-
mentioned method of series solution (known as the Generalized Dispersion Model) could 
exactly reproduce the centroid and the width of the concentration for all time, by solving the 
following simplified convective-diffusive equation 

 ( )
i

m m
i i

i 1

C CK t
t z

∞

=

∂ ∂
=

∂ ∂∑  (2) 

provided that the coefficients of the models Ki(t) are chosen as suitable functions of time. 
Sankarasubramanian and Gill [22] elaborated the Generalized Dispersion Model (GDM) by 
including the effects of interphase mass transfer (i.e. by removing the hypothesis of 
impermeability of the walls to the solute; in such a circumstance, summation in (2) would start 
from i=0). 

Biomedical Applications. In biomedical applications, macromolecules and nanoparticles 
are systemically administered and transported within capillaries with different radii, lengths and 
properties. Depending on the organ, the capillary walls can be impermeable, as for the blood-
brain endothelium, or can be highly permeable, as for the capillary of the kidney or those of 
developing tumor masses. In addition to this, the velocity profile in capillaries can be 
significantly different from parabolic (Poiseuille flow), because of the presence of red blood 
cells, which tend to accumulate in a central 'core' region of the capillary leaving a marginal 'cell 
free layer'. In arterioles and venules, the blood velocity profile follows quite accurately the 
Casson law with a central plug region (zero radial velocity gradient) of radius rc (plug radius) 
and an outer region with a parabolic velocity profile. 

The velocity profile as well as the wall permeability have a significant effect on the 
convective transport of a solute. In 1993, Sharp derived explicit expressions for Deff considering 
non-Newtonian fluids with different rheological laws, namely for a Casson, Bingham plastic, 
and power-law fluid. In particular, for a Casson fluid, it was determined. 

Dash et al. [8] and Nagarani et al. [20] used the Sharp Model in conjunction with the 
Generalized Dispersion Model to investigate the effects of yield stress (or equivalently the plug 
radius) and of the irreversible solute-reaction mechanism at the flow boundaries on the 
dispersion in a Casson fluid through a conduit. In this scenario, the entire phenomenon of solute 
propagation was described in terms of three effective transport coefficients, that are exchange 
(K0, that arises due to adsorption mechanisms at the walls, that is null in Dash [8] in that no 
adsorption reactions are therein considered), convection (K1, due to the velocity of the solute) 
and dispersion (K2, which can be related to the Taylor's effective diffusivity as 
Deff=Re

2w0
2K2/Dm). While in Dash [8] a closed form solution was provided, in Nagarani [20], 
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due to the complexity of the equations involved, an exact solution was found for K0 solely, 
whereas for K1 and K2 the asymptotic values were derived. It was seen that the asymptotic 
dispersion coefficient decreases with increase in the wall solute-absorption parameter β, and 
yield stress of the fluid (the GDM is in details recalled in the following of the paper). 

The discussed methods and solutions strongly depend on the assumption that the transverse 
concentration distribution can be expanded in terms of eigenfunctions (Bessel functions for a 
circular pipe), that is properly verified only in the limit of complete transverse mixing. When 
the solute has not yet strongly interacted with the boundary, a free space expansion would be 
more suitable in describing the problem. Lighthill [19] first studied this transient and anomalous 
regime and found a solution for the concentration (that accounts for the transverse diffusion, but 
neglects longitudinal diffusion and interactions with the pipe's boundary) in terms of a Fourier 
transform, and showed that the tracer distribution, for small times, spreads longitudinally 
proportional to t (that is properly a superdiffusive behavior). Latini and Bernoff [18], more 
recently, have revisited the problem of dispersion of a point discharge of tracer in laminar pipe 
Poiseuille flow. Assuming a δ-function initial condition at the center of the pipe, and by means 
of a Fourier transform of the advection-diffusion equation, they fully modelled the three initial 
stages of dispersion, that is: (i) at small times, when diffusion dominates advection yielding a 
spherically symmetric Gaussian dispersion cloud; (ii) at large times, in correspondence of 
which the flow is in the classical Taylor regime and (iii) at an intermediate regime, where the 
longitudinal mean concentration profile is either asymmetric and anomalous. 
Most recently, Decuzzi et al. [9] have extended the Taylor & Aris theory including the 
permeability of the walls to the sole solvent and leading to a new and more general expression 
for Deff being 

 ( ) ( )( )
( )

2
2 122 2

0 e
eff m 2

m

1 e e 1 ev RD D e
192D 2 e 1 e

ζ ΠζΠ Π

Πζ
Π Π
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⎢ ⎥= +
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⎣ ⎦

 (3) 

with ζ the dimensionless longitudinal coordinate (=Dmz/(Re
2v0), where v0 is the initial center 

line velocity), Π the permeability parameter and Ω the pressure parameter recalled in the 
following of the paper. The model proposed from Sharp has been subsequently refined by 
Gentile et al. [15], to introduce the effect of permeability of the channel to the solvent, inducing 
a reduction of velocity along the longitudinal coordinate as broadly discussed in Decuzzi et al. 
[9]. 

In the following, the generalized dispersion model re-proposed by Dash et al. [8] and 
Nagarani et al. [20] is combined with the steady-state solution given in [9] to analyze the 
unsteady dispersion of nanoparticles in permeable capillaries. 

2. The mathematical model 

A straight circular capillary with radius Re and length l is considered (Fig. 1), the flow being 
described by a Newtonian fluid-law. The capillary walls may be permeable or impermeable to 
the fluid, but are impermeable and not adsorbent for the solute. 

In the following the Generalized Dispersion Model is recalled and revised to consider the 
effective perfusion of the solvent through the walls. The dimensionless coefficients constituting 
the model are deducted and given in terms of the time and spatial variables, and of the 
permeability and pressure parameters Π and Ω respectively. The relationship between the above 
cited coefficients and the effective diffusion coefficient Deff is shown. 



Journal of the Serbian Society for Computational Mechanics / Vol. 1 / No. 1, 2007 

 

5 

 
Fig. 1 The geometry of the channel where the nanoparticles are dislodged. 

2.1 The Governing Equations 

Following an approach firstly proposed by Sankarasubramanian and Gill [22], and more 
recently employed also by Dash et al. [8] and Nagarani et al. [20], the dispersion of a passive 
tracer or particles in a Poiseuille flow may be described in a dimensionless form by the 
advection-diffusion equation   

 
2

2 2

1 1ψ ψ ψ
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠e

v r
t z r r r P z

 (4) 

expressed in terms of non dimensional physical quantities defined as 

 
2 2

0 0 0

, , , ,ψ ρ ζ τ= = = = =m m

e e e

D z D tC v rv
C v R R v R

 (5) 

where C and Ψ are the dimensional and non-dimensional concentration of the passive species 
respectively, C0 is a concentration of reference, v0 is the initial center line velocity, and v is the 
velocity distribution within the pipe given explicitly in the following paragraph, Re is the radius 
of the capillary, Dm is the molecular diffusivity, r and z are the radial and longitudinal 
coordinates as from the frame of reference in Fig.1, and τ is the dimensional time variable. In 
(4) we used Pe (=Rev0/Dm) is the characteristic Peclet number. It is assumed that the particles are 
sufficiently small to have the same velocity of the dislodging fluid so that the 
diffusion/advection problem and the fluid-dynamic problem may be treated separately. 

The solution for Ψ may be derived as (Gill et al. [16]; Dash et al. [8]) 

 
0

( , ; )
i

m
i i

i

f ψψ ρ ζ τ
ζ

∞

=

∂
=

∂∑  (6) 

where the parameters fi are weight functions relating the local concentration Ψ to the derivative 
of order i of the mean concentration Ψm with respect to the spatial variable ζ (Notice that for 
i=0, (6) gives Ψm, with f0=1). The mean concentration Ψm is averaged over the cross section as 

 
1

0
2m dψ ψρ ρ= ∫  (7) 

and must obey the condition 

 
0

( , )
i

m m
i i

i

Kψ ψζ τ
τ ζ

∞

=

∂ ∂
=

∂ ∂∑  (8) 



F. Gentile et al.: Transient Diffusion 

 

6 

where the auxiliary functions Ki(ζ,, τ) are given by 
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Hereδij denotes the Kronecker delta symbol. 

Solving (8), with the appropriate initial and boundary conditions, the mean concentration 
Ψm(ζ, τ) is derived and the local concentration Ψ( ζ, ρ; τ) is eventually obtained using (6). 
Thus, the problem is basically reduced to estimating fi(ζ, ρ; τ ) and Ki(ζ, τ) for each i. For the 
weight functions fi(ζ, ρ; τ) a set of differential equations may be derived in a general form 

 1 22
0

1 2

1 1( , ) ,
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ρ ρ ζ
τ ρ ρ ρ − − −
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which relates Ki(ζ, τ) and fi(ζ, ρ; τ ). The equations (9) and (10) together with the initial and 
boundary conditions completely define the dispersion problem under analysis. It has also been 
shown by Sankarasubramanian and Gill that sufficiently accurate results are obtained by 
limiting the summation in (8) to the first three terms (i=2), that is 

 
2 3

0 1 2 2 3
m m m m

mK K K Oψ ψ ψ ψ
τ ζ ζ ζ

⎛ ⎞∂ ∂ ∂ ∂
= Ψ + + + ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (11) 

and in the sequel higher order terms are neglected. 

2.2 The Initial and Boundary Conditions 

It is assumed that a bolus of particles at the time τ=0 is introduced instantaneously and 
uniformly along the radius ρ, thus to satisfy the initial condition 

 ( ) ( )0; 0m mψ ζ ψ ζ=  (12) 

Note that no particular restrictions apply to the initial distribution profile of Ψm, i.e. the 
mean concentration at the initial time τ=0 may be the most general. On the other hand, since for 
τ=0 the solute is uniformly spread along every cross section of the channel, the local 
concentration has to satisfy the condition: 

 ( , ; 0) ( ; 0)mψ ρ ζ ψ ζ≡  (13) 

It is further assumed that the pipe walls are impermeable to the particles constituting the 
solute, 

 ( )1, ; 0ψ ζ τ
ρ

∂
=

∂
 (14) 

while, due to the conservation of mass of the species diffusing in the channel, infinitely far 
away from the inlet section, the concentration as well as the derivatives of concentrations up to 
a generic order i go to zero 

 ( ) ( ) ( ), ; , ; 0, ( ; ) ; 0
i i

mi i

ψ ψψ ρ τ ρ τ ψ τ τ
ρ ρ

∂ ∂
∞ = ∞ = ∞ = ∞ =
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and on the center line the symmetry condition imposes that 

 ( ) ( )0, ; finite and 0, ; 0ψψ ζ τ ζ τ
ρ

∂
= =

∂
 (16) 

Considering (8) and (12)-( 16), the initial and boundary conditions on Ψ and Ψm can be 
rephrased in terms of the weight functions fi , leading to a new set of conditions which may be 
effective within the governing equations to derive explicit relations for Ki and fi. In particular, 
from the definition of the average concentration (7), the solvability condition is straightforward 
derived as 

 ( )
1

0
0

, ; , 0
2

n
nf d nδρ ζ τ ρ ρ = ≥∫  (17) 

where 0nδ  is the Kronecker delta. 

The initial condition of uniformity on Ψ can be analytically expressed through 

 
0

0
τ

ψ
ρ =

∂
=

∂
 (18) 

and, substituting (6) into (18): 

 ( , ; 0) ( ; 0), 0n nf f nρ ζ ζ≡ ≥  (19) 

From (19), (17) and (13) the initial conditions on the fi are deducted as 

 ,)0;( 0nnf δζ =  (20) 

while the boundary conditions are derived from (7), (14) and (16) as 

 ( ) ,0,0;,1 ≥=
∂
∂ nfn τζ

ρ
 (21) 

and 

 ( ) ( ) .0,0;,0 andfinite;,0 ≥=
∂
∂

= nff n
n τζ

ρ
τζ  (22) 

2.3 Solution for K0 and f0 

The function f0 and the exchange coefficient K0 do not depend on the velocity field and can be 
solved directly. For n=0, eq. (9) reduces to 

 ),;,1(2),( 0
0 τζ

ρ
τζ

∂
∂

=
fK  (23) 

that, through (21) allows for the determination of the exchange coefficient K0 as 

 .0),(0 =τζK  (24) 

Note that the coefficient K0 is zero, therefore there are no absorption effects at the walls. 

The function f0 dictates the deviation of the local concentration Ψ from the mean 
concentration Ψm, due to solute absorption at the walls mechanisms. When there are no 
depletion effects of solute at the border, f0 is set to one 
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 0 1f =  (25) 

which is the sole solution of (110) that satisfies both the boundary conditions (21) and (22) and 
the initial condition (20). This may be proved as follows: from (10), imposing n=0, the 
expression 

 0 01f fρ
τ ρ ρ ρ

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (26) 

is obtained. Using the solvability condition (17) in (26), the expressions 
0
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0,  ,

0,  

f

f

τ
ρ

ρ
τ

∂
= ∀

∂
∂

= ∀
∂  

(27) 

 
(28) 

may be derived, which, together with (20), allow for the deconvolution of f0 as f0=1. 

2.4 Solution for K1 and f1 

For n=1, Eq. (10) becomes 

 1 1
1

1 ( , ) ,f f v Kρ ρ ζ
τ ρ ρ ρ

⎛ ⎞∂ ∂ ∂
= − −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (29) 

recalling that f-1=0. Multiplying (29) by ρ and integrating from 0 to 1 with respect to ρ, along 
with the solvability condition (17), it follows that 

 1

1 0
( ) 2 ( , ) ( ).ζ ρ ζ ρ ρ ζ= − ≡ −∫ mK v d v  (30) 

If the conduit is impermeable then the velocity profile depends on the radius solely and it 
may be described by the classical Poiseuille parabolic velocity distribution. It follows that 
K1(ζ)≡−0.5 (as obtained in Dash [8]). 

The distribution function f1 is a solution for the partial differential equation (29); that can 
be decomposed (Dash [8]; see also Gill and Sankarasabrumanian [17]; Nagarani et al. [20] as 

 ),;,(),();,( 111 τζρζρτζρ ts fff +=  (31) 

where f1s(ρ, ζ) is the steady state solution, whereas f1t(ρ, ζ; τ) is the transient, time-dependent 
solution. Following an approach as in Dash [8], the expressions for f1s and f1t may be derived as 

 2 4
1 0
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⎝ ⎠
 (32) 

where 0 ( )ζv  is the non-dimensional centerline velocity of the flow and 
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the eigen values λn as the roots of the equation J1(λn)=0. Note that for impermeable channels 
(where the non-dimensional center line velocity is constant ad given by 0 ( ) 1ζ ≡v  eqs. (32) and 
(33) are deducted as 

 ,
24
1

16
1

8
1)( 42

1 −−= ρρρsf  (34) 
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These results coincide with those derived by Dash [8], provided that the plug radius rp is 
null (meaning that the Casson Fluid degenerates into Newtonian). 

2.5 Solution for K2 

To derive the expression for K2, the same approach as for K0 and K1 is used. Imposing n=2 
within (10), multiplying by ρ ad integrating from 0 to 1, after some algebra the expression for 
K2 is obtained as 

 1

2 12 0

1( , ) 2 ( , ) ,ζ τ ρ ζ ρ ρ= − ∫
e

K f v d
P

 (36) 

which may be simplified in 

 10
2 12 0
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e
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Note that in the limit of τ→∞ the classical solution by Taylor and Aris can be recalled, where 
the effective longitudinal diffusion coefficient Deff is given as 

 
2 2

0
2

( )ζ
= e

eff
m

R vD K
D

 (38) 

whereas in general Deff would depend also on time τ. 

It is here important to note that, in the original formulation by Gill and 
Sankarasubramanian [17], where for the first time the idea of a time-dependent effective 
diffusion was introduced, the auxiliary functions Ki were only depending on time τ. Differently 
in the present formulation, the fluid velocity is no more constant along the capillary because of 
its lateral permeability which induces a continuous reduction in flow velocity with ζ. 
Consequently, the auxiliary functions Ki would in general depend on ζ too. And, in particular, 
the problem would be determined if the velocity field in the capillary is known. 

2.6 The velocity distribution (effect of boundary depletion of the solvent) 

Recalling the dimensionless variables (5) and introducing the non dimensional pressure 

 ( )2
0/ 4mp pD vμ=  (39) 

the classical governing equation for the laminar flow in a circular pipe of radius Re is given by 

 1
4

p vρ ρ
ζ ρ ρ

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

, (40) 
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with μ being the dynamic viscosity of the fluid and p the dimensional pressure within the 
capillary. Imposing the no-slip condition at the wall ( v (1, ζ)=0 and the symmetry condition at 
the center line (∂ v (0,ρ)/∂ρ=0), with the assumption that the gradient of pressure along the 
longitudinal direction is constant, the classical Poiseuille parabolic velocity distribution is 
readily recovered as 

 ( ) ( )2, 1 dpv
d

ρ ζ ρ
ζ

= − − , (41) 

from which the non-dimensional centerline velocity v0(ζ) is derived: 

 ( )0 ( ) 0, ;ζ ζ
ζ

= = −
dpv v
d

 (42) 

while the dimensional mean velocity vm is given by 
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π
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and the non dimensional mean velocity mv  
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12 , 2 1 .
2m
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ρ ζ ρ ρ ρ ρ ρ
ζ ζ

= = − − = −∫ ∫  (44) 

If the walls of the capillary are permeable to the solvent, there would be fluid leaking across the 
walls leading to a continuous reduction of the flow rate along the channel. Still assuming that 
the fluid lateral flux does not modify the velocity profile within the channel which still obeys to 
the Poiseuille parabolic distribution, i.e. the hypothesis of mono-dimensional flow still holds 
true. Mass continuity for an incompressible flow imposes that 

 0p p
Q v
z

λ∂
+ =

∂
, (45) 

where Q is the volume flow rate, defined as 

 eR 2

0
 2 eQ v rdr V Rπ π= =∫ , (46) 

that, in non-dimensional terms, has the form: 

 
1

0
 2

2
dpv d
d

ππρ ρ
ζ

Θ = = −∫ , (47) 

while λp=2πRe is the lateral profile of the wall, and vp the perfusing velocity derived from 
Darcy's law as 

 ( );p p i p
kv L p Lπ

μ δ
= − − =  (48) 

where Lp is the vascular hydraulic conductivity expressed as a function of the lateral thickness δ 
and the permeability k of the capillary wall; πi is the interstitial fluid pressure (IFP). The mass 
continuity can be then rephrased in non-dimensional terms as 

 ( ) 0p iL pπ
ζ

∂Θ
− − =

∂
 (49) 
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which, through (47), allows to obtain the partial differential equation that dictates the change in 
pressure along the channel (whose length is l) 

 
22

2 2
0

ˆ2
(1 ) 0; , , ;ζ ζ

ζ ζ π π
⎛ ⎞ ×∂ Π

+ − = = = Π =⎜ ⎟∂ ⎝ ⎠

pm
l l

l i e

p Ll Dp p p
R v

 (50) 

provided that the followings hold true 

 
2

0 R e

Q
v

Θ = , (51) 

 2 2
02

ˆ 8 p
p e

m

L
L R v

D
π μ= . (52) 

Solving with the boundary conditions 

 ( )
( )

0

1

0  inlet pressure

 outlet pressurel

p p

p pζ

=

=
 (53) 

the pressure distribution along the channel is finally derived as 

 
( ) ( ) ( )( )( )

( )( )( ) [ ]( )

/ /
1

2 / / 2
0

1 [ 1
2

1 1] coth 1 .

l l l l

l l l

p e e p

e e p e

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ − Π + Π

− Π Π Π

= − + − +

+ − − + − Π −
 (54) 

The effective velocity distribution may be finally obtained as 

 

( ) ( )

( )( )

2

0

/

( 2 ) / 2 /2
1 1 0 0

2
1 0

2

2 /2 /

/ 2
2

1
,

( 1) ( 1) ( 1) ( 1)

2 ( 1) ( 1)(1 )

(1 )

1 1
(1 ),

2 ( 1)

l

l l l

l ll

l

dp
i d

dp
i d

z

v

e

e p e p e p e p

e p p e

e e e
e

e e

ζ

ζ ζ

ζ

ζ ζ ζ ζ ζ

ζ ζ ζζ ζ

ζ ζ

π ρ
ρ ζ

π

ρ

ρ

=

− Π

+ Π ΠΠ Π

Π Π

− ΠΠ Π

− Π
Π − Π

− −
=

−

= ×

⎡ ⎤− + − − − − −⎣ ⎦×
− − − +

× −

⎡ ⎤+ − Ω +⎣ ⎦= −
− + Ω

 (55) 

WhereΩ=(p0-πi)/ (p1-πi) is the pressure parameter, while Π is the permeability parameter as 
defined in (50). From (55) it stems out that the permeability of the walls does not modify the 
Poiseuille characteristic velocity profile along the cross section of the capillary; nevertheless it 
induces a reduction in velocity along ζ. In consideration of these results, the variables of the 
model of diffusion can be determined, and shown in the following. 



F. Gentile et al.: Transient Diffusion 

 

12

3. Results 

3.1 The diffusive term 

As shown in (38), the diffusive term K2 is proportional to the effective diffusion coefficient. In 
an impermeable capillary, the diffusive term K2 grows with time along the capillary as shown 
by Gill and Sankarasubramanian [16]. This is shown in Fig.2, which gives the contour plot of 
K2 as a function of time τ (0, 0.5) and position along the capillary ζ (0, 1). Note that as time 
increases, the solution for K2 tends to a constant asymptotic value coinciding with that of Taylor 
& Aris.  

 
Fig. 2. K2 ContourPlot (ζ∈[0,1], τ∈[0,0.5], Π=0, Ω=-2). 

In Fig.3, the same contour plot is shown for a non zero capillary wall permeability (Π=2). 
As predicted in [9], the effective diffusion coefficient Deff, and thus K2, is not uniform along the 
capillary: it reduces from the inlet of the capillary, reaches a minimum value and then increases 
again as the outlet of the capillary is approached. And this same behavior is shown at each time 
interval. Again it is verified that the asymptotic solution, in this case coinciding with that 
derived in [9] is reached after a sufficiently large time τ>0.5. As Π increases, the variation of K2 
along the capillary becomes steeper and a central area of the capillary can be identified where 
the beneficial effect of the convection on the longitudinal dispersion of the solute particles is 
null. 
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Fig. 3. K2 ContourPlot (ζ∈[0,1], τ∈[0,0.5], Π=2, Ω=-2). 

3.2 The local dimensionless concentration Ψ 

The local concentration Ψ is derived according to (6) truncated at the first order and is shown in 
Fig.4 as a function of the dimensionless radius ρ and longitudinal coordinate ζ, at the time 
τ=0.4. The permeability parameter Π is null (Π=0) meaning that the results are herein shown 
for an impermeable capillary. 

To some extent the concentration resembles a wave with its front travelling faster 
downstream along the centerline of the capillary, and its tails following the peak of 
concentration with some delay. This is due to the non-uniform velocity profile along ρ showing 
a maximum at ρ=0 (center of the capillary) and being instead zero at ρ=1 (boundary of the 
capillary). As a consequence, the bolus of nanoparticles either (i) cluster around the centerline 
or (ii) aggregate near the borders of the channel, depending on the particular cross section under 
study (downstream with respect to the peak of concentration (Ψm,max) the first behavior is 
observed). Notice that this mechanism is mathematically described within (6) by the term f1 
times ∂Ψm/∂ζ: when the mean concentration attains a maximum, that is ∂Ψm/∂ζ=0, then Ψ≡Ψm 
regardless the transverse coordinate ρ, elsewhere the function f1 dominates, and Ψ would be in 
general different from Ψm. 
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Fig. 4. The local concentration Ψ (τ=0.4; Π=0). 

The function f1 depends, among others, on the centerline velocity v0 along ζ, that means 
that a change in Π or Ω would locally affect the local concentration as well. The effect of 
permeability is investigated in Figs. 5 and 6, where the local concentration Ψ is shown versus ζ 
and ρ at a fixed time (τ=0.4) and for different values of Π (=1, 5). As Π increases, the 
concentration gets more and more peaked, in that K2 reduces inducing a general delay in the 
redistribution of the nanovectors in the capillary (the dispersion that the solute experiences 
along ζ is due to the non uniform velocity profile of the flow, and described in non dimensional 
terms by K2). Also, at the limit of high Π any gradient of concentration along ρ would be 
canceled, meaning that the particles constituting the solute would be uniformly distributed over 
each cross section of the capillary. This is evidently due to permeability via the shape function 
f1 – the perfusion of the solvent through the walls modifies the velocity along ζ, contributing to 
redistribute the concentration and reshape the distribution of solute in the capillary, thus 
strongly reducing the gradients of concentration along the radius ρ. In Fig.6 (Π=5) the particles 
are prevalently clustered around the centroid of the distribution, and show no preferential 
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orientation along the radius; whereas in Fig.5 (Π=1) and Fig.4 (Π=0) these effects are far less 
pronounced. 

 
Fig. 5. The local concentration Ψ (τ=0.4; Π=1; Ω=−2). 
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Fig. 6. The local concentration Ψ (τ=0.4; Π=5; Ω=−2). 

Fig.7 illustrates the shape function f1 versus ρ at different values of permeability (Π=0, 1, 
5; Ω=−2), and different cross sections ζ ( ζ=0, 0.2, 0.5, 0.8), time parameter being hold constant 
as τ=0.5. The higher the values of permeability, the lower the modulus of f1 everywhere in the 
channel, and less sensible the differences between the local and average concentration. Notice 
that at the center of the channel (where the fluid is most likely stagnant) these effects are more 
dramatic, whereas in the close proximity of the inlet they are negligible, up to be null at the 
limit ζ→0 (at the entrance of the channel the function f1 is invariant whatever the value of 
permeability Π). 
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Fig. 7. The shape function f1 versus the radius ρ at different cross sections (τ=0.5; Ω=−2; solid 

lines: Π=0; dashed lines: Π=1; dashed-dotted lines: Π=5). 

4. Conclusions 

Stemming from the generalized dispersion model (Gill et al. [16], Dash et al. [8], Nagarani et al. 
[20]), the unsteady dispersion of a solute in a permeable channel was derived in terms of the 
dimensionless effective diffusion coefficient K2. It was found that for a given set of 
permeability parameters different from zero, K2 increases with time up to a value that depends 
on the position ζ within the channel, and that can never be higher than the theoretical limit 
K2,max=Deff0×Dm/Re

2v0
2 where Deff0 is the Taylor and Aris diffusion coefficient derived at the 

entrance of the channel. In general, K2 would be lower in the central regions of the capillary, 
where the velocity of the fluid dramatically reduces, and the higher the permeability, the smaller 
the dimensionless diffusion coefficient. Nevertheless, whatever the longitudinal coordinate ζ, or 
the permeability parameters Π and Ω, the time employed to reach the steady state regime is the 
same (τsteady=0.5×Re

2/Dm), meaning that an increased leakage would not modify the coefficients 
K1 and K2 in time (but through K1 and K2 the bolus of solute would experience different 
histories of dispersion). Most important, it was found that the perfusion of the solvent at the 
walls would uniformly redistribute the concentration along the radius of the channel. 

As discussed in Decuzzi et al. [9], and Gentile et al. [15], in a network of capillaries a 
solute would most likely follow the path presenting the largest effective diffusivity. Based on 
these theoretical findings it may be concluded that a bolus of nanovectors would preferentially 
move in larger vessels (where high Reynolds number flows occur, V=O(1 mm/s)) rather than in 
small, leaky capillaries of the tumor districts (with small blood velocities, V=O(100 μm/s) or 
less). Also, the quasi uniform radial distribution of the solute in permeable capillaries represents 
a novel biological barrier. Margination and extravasation of nanovectors is in fact hindered (or, 
at least, it is not favoured), and only a small amount of such nanocarriers (those in close 
proximity of the walls) would be candidate to sediment on the surface and extravasate. 

However, the analysis presented so far is approximate in that it relies on the strong 
assumption that the particles are sufficiently small to have the same velocity of water 
molecules: as it stands, this approach completely disregards the physical, chemical and 
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geometrical properties of the nanovectors constituting the solute. Considering the above 
mentioned properties is equivalent to introducing into the problem more degrees of freedom 
that may be suitably tailored to severally enhance the performance of these nanocarriers. For 
instance, in recent experiments [14] it was shown that in a flow chamber system and under the 
influence of a gravitational field, the number of marginating particles over time increases if 
discoidal or quasi-hemispherical particles are used in place of spheres. And that would 
demonstrate that non-spherical inertial particles would perform better than classical spherical, 
pertaining drug delivery and bio-imaging. 
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