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Abstract 

Finite element model for urinary bladder mechanical response during passive filling and muscle 
activation is presented in the paper. The nonlinear elastic model for the tissue is used according 
to the Fung potential for the strain energy. Filling of the bladder is simulated by the pressure 
increase with the passive state of muscles. When the filling phase is completed, muscles are 
activated with the tripled pressure increase. This modeling is in accordance with the real 
physiological processes. Data are used from experiments on the rabbit urinary bladder. 

The computed distribution of stresses reveals non-uniform increase of stresses within 
muscle fibers during activation. 

Key-words: urinary bladder, FE modeling, Fung’s tissue model, muscle activation 

1. Introduction 

Urinary bladder is an organ which functions by increasing its volume and shape during filling 
phase, followed by empting process when it returns to approximately initial shape. Between the 
filling and empting phases, a jump of the internal pressure occurs due to activation of muscles 
within the bladder wall tissue. The proper functioning of the urinary bladder depends on the 
activation which is related to the pressure increase and to the stress jump within the muscle 
fibers. 

It is of interest from the physiological (medical) point of view to investigate the mechanical 
stress/strain states generated during urinary bladder filling, activation and empting phases. The 
aim of this report is to elucidate stress generation within the tissue by using one of the common 
biological models for the passive response and a nonlinear model for generation of active 
stresses within muscle fibers.  

We have investigated behavior and mechanical characteristics of the urinary bladder tissue 
of a rabbit (Laboratory for Physiology of Faculty of Medicine, University of Kragujevac [1]). 
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The measured data about the constitutive behavior of the urinary bladder tissue are used to 
determine material constants of the Fung 2D model by a fitting procedure. 

2. Finite element model 

The urinary bladder is modeled by shell finite elements (Dvorkin and Bathe [2], Kojic et al. [3], 
[4]). The bladder is approximated by a body with axial symmetry and one quarter of the shell 
model is discretized, as shown in Fig. 1. The wall profile and thickness given in the figure 
corresponds to measurements in vitro of a rabbit urinary bladder. The muscle fibers are 
modeled by line elements in the axial and circumferential directions. 

 
Fig. 1. Finite element model of a rabbit urinary bladder.  a) Coordinates of the wall profile; b) 

Finite element model. The wall is discretized by 4-node finite elements and muscles are 
represented by line elements in the axial and circumferential directions. One quarter of the 

bladder is modeled due to symmetry conditions. The stresses within the tissue are axial stress 
aaσ  in the direction of the tangent to the wall profile, and circular (circumferential) stress ccσ . 

It is assumed that the wall tissue behaves as nonlinear elastic material with hardening 
typical for biological materials [3]. We use here a Fung’s potential for the strain energy function 
of the form (Fung et al. [5], Fung [6]) 
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The principal stresses Cauchy stresses 1σ  and 2σ  follow from the relation 2/i i iS σ λ=  as 
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where 1 2,λ λ  are the stretches. The constitutive matrix /ij i jC eσ= ∂ ∂  is obtained by the proper 
differentiations of the above expressions for stress, where je  are small strains with the 
configuration at start of load step (or at last equilibrium iteration) as the reference configuration. 
In these differentiations we have to use the relations: /i i idE λ λ∂ =  and /i i ie λ λ∂ ∂ = .  

The muscle fibers are modeled by line finite elements.  During passive state it is assumed 
that the fibers have the same characteristics as tissue, i.e. there is no additional stiffness of the 
wall. When the muscle net is activated, the active stresses are generated. The active stress 
within a muscle fiber is expressed as 

 ( ) ( )0
a a
i i if tσ σ λ=  (4) 

where a
iσ  acts in the fiber direction in , ( )a

if t  is the activation function (function of time), and 

( )0 iσ λ  is the reference stress which depends on the fiber stretch iλ . We used here the 
reference stress dependence on stretch to correspond to a hardening stress-stretch relationship 
shown in Fig. 2. 

 

Fig. 2. Active reference stress within muscle fiber in terms of the fiber stretch ( )0σ λ . 

3. Results 

The finite element model described above is used in the analysis. It is taken that the bottom 
nodes are restrained, with translational and rotational degrees of freedom set to zero. Besides 
the Fung material model described above, we also used a linear elastic model. The elastic 
modulus is estimated from the stress-strain relationship obtained assuming biaxial stretching by 
the same strains in both membrane directions and Fung’s model; also, it is taken that material is 
almost incompressible. Note that the Fung model provides orthotropic mechanical response 
which is observed experimentally, while the pressure-volume relationship calculated by using 
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elastic model differs from that obtained from Fung’s model and has the character which does 
not agree with experiments. Also, the principal strains are in the axial and circumferential 
directions due to axial symmetry and the Fung’s model with the only normal strains is 
applicable. 

 
Fig. 3. Urinary bladder deformation. a) Initial and deformed configuration before activation; b) 

Field of effective strain, 2
3 ij ije e e= ,  at the end of filling (activation); c) Pressure-volume 

relationship obtained using Fung’s nonlinear elastic 2D model. Data: linear elastic material 
model ( 0.05 , 0.49E MPa ν= = ) and Fung’s model (equation (1): 

1 2 40.003372, 0.6, 0.43, 0.49C a a a= = = = ). 

Material constants for the models are given in the figure caption of Fig. 3. 

It can be seen that the urinary bladder increases significantly during the filling phase and 
then additionally during activation (Fig. 3a). The field of the effective strain (Fig. 3b) reveals 
that maximum strains are in the lower part of the bladder. The pressure-volume relationship is 
shown in Fig. 3c. It can be noticed that the calculated relationships for the elastic and Fung’s 
model are different and have different curvatures. The p-V curve corresponding to Fung’s 
model has the character observed experimentally. Distribution of the stress within the muscle 
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axial and circumferential fibers at end of filling and after activation is shown in Fig. 4. Before 
activation axial and circular stresses are relatively small and close to each other in the entire 
domain. The pressure is increased during activation for 300%, as observed experimentally for 
human urinary bladder. It can be seen that very large increase of stresses within fibers occurs 
due to the activation. The increase of circular stress is very high in the lower region because the 
radius of the bladder changes significantly in that region. On the other hand the axial stress 
increases gradually from the bottom to the top and reaches a plateau in the middle upper part. 

 
Fig. 4. Distribution of axial ( aaσ ) and circumferential ( ccσ ) stresses along the line A-B shown 

in Fig. 1, before and after activation (Fung’s model). 

4. Conclusions 

From the presented results of the analysis it can be seen that useful information can be obtained 
about the stress-strain state within the urinary bladder wall during the filling phase and during 
activation. Stresses and strains during the filling phase are small and almost uniform. However, 
the stresses reach very high values when activation of muscle fibers occurs and the distribution 
is non-uniform, what can be important insight with respect to the bladder functioning. 
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