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Abstract 

A biphasic model of cell is presented in the paper. The model consists of the solid and fluid 
phases with deformation of solid and fluid flow through pores. Relative motion between the 
solid and fluid governed by Darcy’s law. Activation corresponding to the biochemical processes 
which transform biochemical energy into the mechanical action is included into the model 
through the active stresses in the selected fiber directions. The activation evolution is specified 
by a time function. 

Solved examples demonstrate applicability of the proposed cell model. 
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1. Introduction 

It is observed in experimentally that cells have elastic and viscous response when subjected 
loading. This response can be modeled by solid continuum with viscoelastic constitutive laws. 
For a recent review of these models see Mofrad et al. (2006). Cells are very complex structures, 
with water, charged or ucharged micromoleculs, ions and other molecules, and it is hard to find 
a phenomenological constitutive relationships which can represent cell behavior under complex 
mechanical and other actions (as osmotic or electric). Various models have been introduced 
with the aim to represent the real physical composition of the cell, among which are biphasic, 
i.e. fluid-solid mixture models. 

According to biphasic models, a cell can be considered as a solid-fluid mixture continuum, 
with cytoplasm as the fluid and cytoskeleton as the solid. In the solid-fluid mixture formulation 
the viscous response comes from the solid fluid interaction. Furthemore, the viscoelasticity can 
also be included in the solid phase constitutive law. These models can further be extended to 
three-phasic (fluid-solid-ion) models to include coupling of mechanical, chemical and electrical 
events. A review of multiphasic cell models is given by Guilak et al. (2006).  

We use here the biphasic model of cell as described in Kojic et al. [1] where cartilage is 
represented as a solid-fluid mixture. The mixture contains elastic porous solid and fluid which 
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fills the pores. The additional effects arising due to action of osmotic pressure are neglected in 
the cell model. But, in order to model biochemical processes within the cell which result into 
mechanical internal mechanical stresses, we include activation within the continnum model, as 
in muscle modeling [2]-[6]. 

A review of various cell mechanical models is presented in Mofrad and Kamm [7]. 

2. Model formulation 

Schematics of the biphasic model is shown in Fig. 1. The field variables at a material point of 
the continuum are: displacement of solid u , relative fluid velocity with respect to solid 
(Darcy’s velocity) q , and fluid pressure p. The total stress within the solid includes the passive 
part sσ ; and active part aσ , acting along the skeleton fiber direction 0ξ  at a material point. The 
stress sσ  can be determined from the constitutive law (e.g. elastic as for cartilage model). On 
the other hand, the stress aσ can be expressed in terms of the fiber stretch ξλ  and the activation 
level (expressed, for example by an activation function) 

 
Fig. 1. Biphasic model of cell. Stresses at a material point P within the solid phase include the 

passive and active parts sσ  and aσ (2D representation of stresses in the figure). The stress aσ  is 
acting along the fibers (direction 0ξ ) and depend on the fiber stretch ξλ . The field variables of 

the model are: displacement of solid u , relative fluid velocity with respect to solid (Darcy’s 
velocity) q , and fluid pressure p. 
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where 0σ  is the tetanized stress within the fiber, dependent on the fiber stretch λ ; ( )tα  is the 
time function (activation function) which expresses the muscle activation as a scaling factor for 
stress with respect to the tetanized state, ( )0 1a tα≤ ≤  ( 0aα =  corresponds to a passive (non-
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activated) state, while 1aα =  for a tetanized state); v  and 0v  are the velocity and reference 
velocity of muscle contraction; and c is a material constant. 

The governing equations of the model include the balance equations for linear momentum 
of solid and fluid, and for mass. In the derivations of the equations of balance of linear 
momentum we have to take into account the interaction force between the solid and fluid 
arising from the viscous effects described by the Dracy’s law. Combining these balance 
equations for the two phases we finally obtain the equation: 

 T
fρ ρ ρ∇ + − + =σ b u q 0&&&  (2) 

where b is the body force per unit volume of the mixture; σ is the total stress which can be 
expressed in terms of σs, aσ and p, as  

 ( )( )= 1- - a
sn n p+σ σ σ m  (3) 

Here, n is porosity; ρ=(1-n)ρs+nρf is the mixture density, with ρs and ρf being densities of 
solid and fluid, respectively, and n is porosity; m is a constant vector defined as mT={1 1 1 0 0 
0} which provides that the pressure component contributes to the normal stresses only.  

Assuming elastic behavior of the solid skeleton, the continuity equation can be written as 
[8] 

 
T E T E

T T
  2

1( ) 0
3 9s s f s

n n p
K K K K

⎛ ⎞ −
∇ + − + + − =⎜ ⎟

⎝ ⎠

m C m C mq m e& &  (4) 

where EC  is the elastic constitutive matrix, and sK  and fK  are bulk moduli for the solid 
skeleton material and fluid, respectively. 

The governing equations (2) and (4) can further be transformed into the finite element 
equations by employing the standard Galerkin method [6], [9-12]. The finite element 
incremental equations of balance are  
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where U , P  and Q  are the nodal vectors for displacement of solid, fluid pressure and Darcy’s 
velocity, respectively; and the left upper indices n and n+1 denote that the quantity is evaluated 
at the start and end of the current time step n. The matrices and vectors are: 
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were the quantities are: uN , qN and pN are the interpolation matrices for displacements, 

Darcy’s velocities and pressure, respectively; n B  is the strain-displacement relation matrix; 
1n+ t  is the stress vector on the element surface with the unit normal 1n+ n ; and ‘,x’ denotes 

differentiation with respect to the Cartesian coordinates. These equations can be further written 
in incremental-iterative form [6]. We note here that the nodal force 1n

u
+ F  includes the total 

stress 1n+ σ  given in (3), with the activation function at the end of time step. 

During iterations we use the density of the mixture ρ, and the porosity n from the start of 
time step, i.e., nρ and nn, respectively. After convergence is reached, the porosity is updated by 
using the continuity equation for fluid, from which the following relation can be obtained [1]: 

 1 1( ) Tn n n n n

f
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where tΔ  is the time step size. In deriving this equation the spatial changes of the fluid density 
is neglected, i.e. / 0f ixρ∂ ∂ =  is used. This is physically acceptable approximation since the 
fluid velocity is small, the fluid is nearly incompressible, and the fully saturated conditions are 
considered. 
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3. Examples 

We present two examples as application of the biphasic model introduced in the previous 
section. 

3.1 Deformation of red blood cell subjected to action optical tweezers  

The deformation of red blood cells (RBCs) has been the subject of many investigations. The 
RBCs deformation is particularly very large during blood flow through capillaries. There, a 
RBC of a biconcave shape with diameter of around 8 mμ passes through capillaries of diameter 
as small as of 3 mμ , changing to a bullet shape with large strains, and then recovers its initial 
shape after leaving the capillaries. This deformability is necessary for mass exchange and 
normal function of blood. Loss of deformability occurs in severe diseases such as malaria. 

Various experimental techniques have been introduced to investigate mechanical 
characteristics of RBCs, one of which is extension by optical tweezers (Dao et al. [13], Mills et 
al. [14]). Also, a number of mechanical models have been used for calculating the RBC 
mechanical response when subjected to loading. One them consist of a shell for the membrane, 
with neo-Hookean material model, and fluid for cytosol surrounded by the membrane 
([13],[14]). 

In this example we use elastic material for the membrane and the biphasic model described 
in Section 2 for the cytosol. Isoparametric 3D finite elements for biphasic medium [6] are used 
for both the membrane and the cytosol, with the zero-porosity for the membrane. It is assumed 
that the RBC has initially biconcave shape (Fig. 2a. We model one eight part of the cell (in the 
first coordinate quadrant) loaded by 1/4F due to symmetry in geometry and loading. The force 
is distributed on the a part of the surface, as it is in the experiment, and increases slowly so that 
the quasi-static deformation is assumed. The data used in the model are:  

Membrane thickness 90 nmδ = ; Young’s moduli for membrane and biphasic model 
2/pN mμ⎡ ⎤⎣ ⎦ : 2 11.772 10 ,1.5 10× × ; porosities: n=0. and n=0.7; bulk moduli (for cytosol) 
2/pN mμ⎡ ⎤⎣ ⎦ : 98.3333, 1.0 10s fK K= = ⋅ ; permeability 2 41 10 /k m pN sμ= × .  

When the RBC is subjected to axial forces, it deforms into the force action and contracts in 
the direction normal to the action of forces. The deformed configuration with the displacement 
field is shown in Fig. 2b. Experimentally recorded and computed shapes (top view) of the 
deformed cell agree reasonable well (Fig. 2c). 

Change of the cell diameters in terms of the extension force F (computed for three values 
of initial diameters, and experimentally recorded - Dao et al. [13]) in the direction of force 
action (axial) and in direction orthogonal to this one (transverse in the figure) in terms of the 
axial force F is shown in Fig. 2d, computed for three initial diameters and measured 
experimentally. The axial diameter increases and the transverse diameter decreases nonlinearly 
with the force increase. 
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Fig. 2. Biphasic FE model of RBC subjected to uniaxial extension forces. One quarter of the 
cell is modeled due to symmetry (3D biphasic finite elements). a) Initial biconcave shape; b) 
Deformed shape at force of 300 [pN]; c) Deformed shape (top view) experimentally recorded 
and computed; d) Change of axial and transverse diameters in terms of extensional force for 
three initial diameters (computed results are represented by lines, and experimental by bars). 

 
Fig. 3. Computed change of RBC diameters for initial biconcave, cylindrical and elliptical 

shape. The softest is the biconcave RBC. 
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We also modeled deformation of RBC assuming cylindrical shape and change of the axial 
and transverse diameters with the force increase is shown in Fig. 3. It can be seen that, as 
expected, the RBCs of cylindrical and elliptical shape are stiffer with respect to theRBC of 
biconcave shape. 

The computational results agree reasonably well with experiments and show that the 
biphasic model can be used for modeling the RBC mechanical response. 

3.2 Modeling of cell crawling  

In this example we model motion of cell over a plane surface. The cell consists of membrane, 
interior, nucleus and skeleton. The plane strain 2D model is considered. Initial dimensions, 
shape and the FE mesh of the cell are shown in Fig. 4b (position 1).  

 
Fig. 4. Crawling of cell over a flat surface (2D plane strain conditions in plane x-y). Biphasic 

model includes: cytoplasm with cytoskeleton and nucleus, and membrane. a) Activation 
function of skeleton structure (left panel) and constitutive law for the active stress 

( ) ( )HA Ti HA
zE z E E E
h

= + − (right panel); b) Three positions of the cell during crawling (1-

initial, after first step; 2-middle, when detachment of the front and attachment of the rear part 
occur; 3-after relaxation) with the displacement field. Data: Young’s moduli [MPa] for solid 

within solid-fluid mixture, and within nucleus ( )E r and 0.3E = , respectively; initial porosity 

0.7n = ; permeability cor
uσ ; solid and fluid density 0( ) (1 exp( ))t A Btρ ρ= + − ; bulk moduli of 

solid and fluid r
INTE Cρ= , 266can

uσ ρ= . 
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The membrane and the biphasic medium have the same characteristics as in Example 1. 
Cytoskeleton is modeled by a set of fibers (truss finite elements) connecting the nodes parallel 
to the surface and around the nucleus. It is assumed that the nucleus is stiffer than the cell 
cytoplasm, with no fibers. We use the constitutive law of the fibers shown in Fig. 4a (right 
panel), with the activation and characteristics of muscle shown in Fig. 4a (left panel). Data are 
given in the figure caption. 

It is assumed that the cell has the protrusion and that it is attached at the front part to the 
surface (McGrath and Dewey [15]) at the position 1. Then, due to activation the cell deforms 
and slides over the surface. It is assumed that the activation function is linear (Fig. 4a left panel) 
reaching maximum at time equal to 5s. The deformed cell shape and the displacement field 
within the cell are shown in the position 2 of the figure. It is then assumed that the cell attaches 
to the surface at its rear region, with detachment of the protrusion end. Activation decreases to 
zero and the cell further moves due to relaxation, reaching the initial shape at the position 3. 

4. Conclusions 

From the presented biphasic model for cell, it can be concluded that the model can be used for 
representing the mechanical response. Also, by including the activation stress into the model, 
biochemical processes occurring within the cell can be included and motion of cell caused by 
the internal ‘motors’ can be modeled. 

Further extension and refinement of this cell model can lead to modeling complex cell 
biomechanical responses.  

The presented examples and others within the cell mechanics and other fields of 
bioengineering can be solved using the software accompanying the book Kojic M., Filipovic, 
Stojanovic, Kojic N. [6].  
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