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Abstract  

An extended finite element method (X-FEM) for two-dimensional crack modelling is described 
in this paper. For the crack calculation, a discontinuous function and the asymptotic crack-tip 
displacement fields are added to the finite element approximation using the concept Partition of 
Unity (PU). This enables the domain to be modelled by finite elements with no explicit meshing 
of the crack faces. Computational geometry issues associated with the representation of the 
crack and the enrichment of the finite element approximation are discussed. The presented 
Stress Intensity Factors (SIFs) for crack is in a good agreement with benchmark solutions. For 
calculation of the SIFs, we used the J-Equivalent Domain Integral (J-EDI) method. 

Key words: eXtended Finite Element Method (X-FEM); Partition of Unity Method (PUM); 
local enrichment; elastostatics; Stress Intensity Factors (SIFs); J-Equivalen Domain Integral 
method (J-EDI method).  

1. Introduction  

The eXtended Finite Element Method, X-FEM, attempts to alleviate the computational 
challenges associated with mesh generation by not requiring the finite element mesh to conform 
to cracks, and in addition, provides use of higher-order elements or special finite elements 
without significant changes in the formulation. Building on prior work of Belytchko and Black 
[1], the basis of the method is given in [2] for two-dimensional cracks. 

The essence of the X-FEM lies in sub-dividing a model problem into two distinct parts: 
mesh generation for the geometric domain (cracks not included), and enriching the finite 
element approximation by additional functions that model the flaw(s) and other geometric 
entities. 

Modelling crack growth in a traditional finite element framework is cumbersome due to 
need for the mesh to match the geometry of the discontinuity. Many methods require remeshing 
of the domain at each time step. In the X-FEM there is no need for the remeshing because the 
mesh is not changed as the crack grows, and also is completely independent of the location and 
geometry of the crack. The discontinuities across the crack are modelled by enrichment 
functions. 
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2. Extended Finite Element Method (X-FEM) 

In this paper, the method of discontinuous enrichment is presented in general framework. We 
illustrate how two-dimensional formulation can be enriched for a crack model. The concept of 
incorporating local enrichment in the finite element partition of unity was introduced in Melenk 
and Babuska [3]. The essential feature is multiplication of the enrichment functions by the 
nodal shape functions. The approximation for a vector-valued function ( )hu x  with the partition 
of unity enrichment has a general form [3]: 

 enr
1 1

( ) ( ) ( )
N M

h
I I

I
N F α

α
α= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑u x x x b  (1) 

where is IN , (1, )I N=  are the finite element shape functions, ( )Fα x , (1, )Mα =  are the 
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αb  is the nodal enriched degree of freedom vector associated with the 

elastic asymptotic crack-tip function that has the form of the Westergaard field for the crack tip. 
The finite element shape functions form a partition of unity: ( ) 1II

N =∑ x . From Eq. (1), we 

note that the finite element space 1( 1; 0 ( 1))F Fα α≡ = ≠  is a subspace of the enrichment space. 

We denote by uN  the set of all nodes in the domain, and aN  subset of nodes enriched by 
the Heavisade function, and bN  is a subset of nodes enriched by NT (Near Tip) functions. In 
particular case, for the crack, the enriched displacement approximation is written as [4, 5, 6]: 
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where 
I

u  is the  nodal displacement vector associated with the continuous part of the finite 
element solution, Ia  is the nodal enriched degree of freedom vector associated with the 
Heavisade discontinuous) function. 

2.1 Enrichment function 

The ( ),x y≡x denotes Cartesian coordinates in 2D space. For crack modelling two types of 
enriched functions can be used: Generalized Heavisade step function ( )H x  and a set of elastic 
asymptotic functions of the displacement near the crack tip (i.e. NT functions). 

The enrichment is able to take a local form only by enriching those nodes whose support 
intersects a region of crack. Two distinct regions are identified for the crack geometry, 
precisely, one of them is the crack interior and the other is near the tip region as shown in Fig. 
1. In Fig. 1 is shown a region of a crack for enrichment by H and NT functions. The circled 
nodes are enriched with a discontinuous function, while the squared nodes are enriched with NT 
functions. It can be noticed that this shape of enriching near the crack tip (see Fig. 1), is used in 
the [4]. In this paper we carried out a modification in the shape of enriching near the crack tip 
(see next sections).  
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Fig. 1. Regions for enrichment near the edges of the crack. 

2.1.1 Generalized Heaviside function 

The interior of the crack ( cΓ is the enrichment – domain) is modelled by the generalized 
Heaviside enrichment function ( )H X , where ( )H X  takes the value +1 above the crack and –1 
below the crack [4, 5, 6]: 

 
*1 if ( ) 0

( )
*1 if ( ) 0

H
⎧ − ⋅ ≥⎪= ⎨
⎪ − − ⋅ <⎩

X X n
X

X X n
 (3) 

where X  is a sample (Gauss) point, *X (lies on the crack) is the closest point to X , and n  is 
the unit outward normal to crack at *X  (see Fig. 2).  

 
Fig. 2. Illustration of the values of Heaviside function above and below of the crack. 

In the first published works [1,2] the above shape modelling of the discontinuity was not 
used. The formulation (3) began to be used due to practical numerical reasons.  

2.1.2 Near-tip crack functions  

Choosing the model of the crack-tip provides the representation of crack tip fields in fracture 
computations. Crack-tip enrichment functions are based on the Westergaard field and are used 
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in the element which contains the crack tip. The crack-tip enrichment consists of functions 
which incorporate the radial and angular behaviour of the two-dimensional asymptotic crack-tip 
displacement field. 

The crack tip enriched functions ensure that the crack terminates precisely at the location of 
the crack-tip. Use of the linear elastic asymptotic crack-tip fields serve as suitable enrichment 
functions for providing the correct near-tip behaviour, and in addition, their use also leads to 
better accuracy on relatively coarse finite element meshes in 2D [2,4,5,6]. 

The crack tip enrichment functions in the isotropic elasticity have  the form of the 
Westergaard field for the crack tip:  

 1 2 3 4( ) { , , , } cos , sin , sin sin , cos sin
2 2 2 2

F F F F F r r r rθ θ θ θθ θ⎡ ⎤= = ⎢ ⎥⎣ ⎦
x  (4) 

where is r  and θ  denote polar coordinates in the local system at the crack tip. It can be noted 
that the second function of the set (4) is discontinuous over the crack faces [1,2]. The 
discontinuity over the crack faces can be obtained using other functions, like Heaviside function 
(3), which have discontinuity. In  [4, 5] the discontinuity behind of the tip in the CT element 
(element which contains the crack tip) is accomplished by the second function of the set (4). In 
this paper, the discontinuity in the CT element is achieved by the Heavisade function (3).  

2.2 Level set representation of the crack 

In this report, a crack is presented using the set of the linear segments. The crack is described by 
means of the position of the tip and level set of a vector valued mapping. A signed distance 
function ( )ψ x is defined over computational domain Ω  as 

 * *( ) ( ) min
c

signψ
∈Γ

⎡ ⎤= ⋅ − −⎣ ⎦ x
x n X X X X  (5) 

where n is the unit normal to cΓ  and *X  is the closest point to the X , see Fig. 2. The crack is 
then represented as the zero level set of the function ( )ψ X , i.e. 

 ( ) 0ψ =X  (6) 

 
Fig. 3. Definition of the Level Set Functions ( )ψ X  and ( )γ X  around the crack. 
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 ( ) ( )CTγ = − ⋅X X X t  (7) 

where t  is the unit tangent to cΓ  at the crack tip cΛ , and CTX is the coordinate of cΛ . The 
value ( ) 0γ =X  corresponds to the crack tip. We define the LS functions ( )ψ X  and ( )γ X in 
the entire computational domain. The crack and crack tip are represented as 

 { }: ( , ) 0 ( , ) 0c t tψ γΓ = = ∧ ≤X X X  (8) 

In Fig. 3, the definition of ( )ψ x and ( )γ x  around the crack is shown. For the crack 
representations, the linear interpolation has been used. The Heavisade step function is modified 
using the LS function: 
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The Near tip functions ( , ), 1,4F rα θ α = , that have the form of the Westergaard field for 
the crack tip [3], should also be defined using the LS functions [6] to obtain polar coordinates in 
the local system at the crack tip (see Fig. 4): 
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Fig. 4. The enriched nodes of the element which contain the crack tip 
a) H+NT enriched:  b) H enriched. 
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Apart of the other authors [4, 5] we use the NT functions only ahead the crack tip 
( ( , ) 0tγ >X ); while behind the crack tip ( ( , ) 0tγ <X ) we ensured discontinuous across the 
crack ( ( , ) 0tψ =X ), using only the step function ( ( ))H γ X . Therefore, the Westergaard field 
was used only for the derivation of the asymptotic stress field ahead the location nears the tip 
(see Fig. 4a) [7]. 

Since the NT functions are used for the cracks in the linear-elastic materials, we have 
considered the results in the case when the enrichment is done only by the H function (see Fig. 
4b). Enrichment by H function is applied only behind the crack, hence discontinuity occurrs. 
This analysis is very important for further use of the X-FEM for the elastic-plastic materials. 

3.  Equialent domain integral method (EDI) for evaluation J-intgreal 

Rice [8] defined a path-independent contour J-integral for two-dimensional crack problems 
in linear and nonlinear elastic materials. As shown in Fig. 5, J is the line integral surrounding a 
two-dimensional crack tip and is defined as:  

 ( )1 1 ,10
lim

S
S

j ij i jJ W u n dδ σ
Γ →

Γ

= − Γ∫ ,       , 1, 2i j =  (11) 

where W  is the strain energy density given by: 

 1 1 , , , , 1, 2
2 2ij ij ijkl kl ijW C i j k lσ ε ε ε= = =  (12) 

and jn  is the outward normal vector to the contour integration, SΓ  is the contour around the 
crack tip (as shown in Fig. 5), ijσ  is stress tensor, ijε  is strain tensor, ijklC  is constitutive tensor, 
and iu  is component of the displacement vector.  

The contour integral (11) is not in the best suited form for finite element calculations. 
Therefore, the contour integral is transformed into an equivalent domain form. The equivalent 
domain integral method (EDI) is an alternative way to obtain the J-integral. The contour 
integral is replaced by an integral over a finite-size domain. The EDI approach has the 
advantage that the effect of variable body forces can be included easily. The standard J-contour 
integral given in Eq. (1 1) is rewritten, by introducing a weight function ( )1 2,q x x  into the EDI. 
Hence, we define the following contour integral: 

 1 ,1( )j ij i jW u m qdδ σ
Γ

Ψ = − Γ∫  (13) 

where 0 S
+ −Γ = Γ + Γ − Γ + Γ  is the contour (Fig. 5), jm  is a unit vector outward normal to the 

corresponding contour (i.e. j jm n= on 0Γ  and j jm n= − on SΓ ), and q  is a weight function 
defined as 1q =  inside the contour  Γ and 0q =  for the domain outside Γ .  
Taking the limit 0SΓ →  leads to [10, 11]: 
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Applying the divergence theorem to Eq. (11), we obtain the following expression: 

 ( ) ( ), , , ,k ij i k kj j ij i k kjA A j
J u W q dA u W qdAσ δ σ δ= − + −∫ ∫  (15) 

 
Fig. 5. Conversion of the contour integral into an EDI. 

where A  is the area enclosed by Γ . Note that the addend in the above equation must vanish for 
linear-elastic materials [9, 12], so we have 

 ( ), ,k ij i k kj jA
J u W q dAσ δ= −∫  (16) 

This expression is analogous to the one proposed for a surface integral based method, to 
evaluate stress intensity factors. 

3.1. Numerical evaluation of the J-integral 

When the material of the considered structure is homogeneous, and with no body forces, the 
finite element implementation of Eq. (16) becomes very similar to equation of the contour 
integral. The only difference is the introduction of the weight function q  when Eq. (16) is used. 
With the isoparametric finite element formulation, the distribution of q  within the elements is 
determined by a standard interpolation scheme using the shape functions ih : 
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where iQ  are the values of the weight function at the nodal points, and m  is the number of 
nodes. The spatial derivatives of q  can be obtained using the usual procedures for 
isoparametric elements.  

 
 

a)                                                                             b) 

Fig. 6. The weight function q on the elements. 

The equivalent domain integral in 2D can be calculated as a sum of the discretized values 
of Eq. (16), [9,12]:  
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The terms within [ ]p
⋅  are evaluated at the Gauss points using the Gauss weight factors pw  

for each point. The present formulation is adequate for a structure of homogeneous material in 
which no body forces are present. For the numerical evaluation of the above integral, the 
domain A  is a subset of the set of elements about the crack tip. Figure 6a shows a typical set of 
elements for the domain A . The domain A is the set which contains all elements which have a 
node within a circle of radius cr  about the crack tip. Figure 6b shows the contour plot of the 
weight function q  for the elements. The function q can be interpolated within the elements 
using the nodal shape functions, according to Eq.  (17). 

4. Numerical example 

To illustrate the versatility and effectiveness of the enriched approximation, the stress intensity 
factors are calculated using the standard FEM and X-FEM that are incorporated in the in-house 
software PAK [13]. In this example we determine the stress intensity factor for opening mode 
of fracture ( IK ) using J-EDI method. A rectangular plate with a centred crack is shown in Fig. 
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7. The plate is subjected to uniform uniaxial tensile stress yyσ  at the two ends. The right half of 
the model is analyzed. 
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Fig. 7. The centred crack in rectangular plate. 

The analysis of the half model was performed using the standard FEM and X-FEM. In the 
standard FEM, eight-node elements and 2x2 Gauss quadrature are used. The four-node elements 
in the entire domain and 6x6 Gauss quadrature only in the part of the domain  with enriched 
nodes were used in the X-FEM.  

 
Fig. 8. The stress field yyσ around the crack tip. 
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The stress field near the crack tip is asymptotic and when  0cr →  (see Fig. 8), then the 
stress yyσ → ∞ . The results of the stress field near the crack tip are obtained using: theoretical, 
the FEM and the X-FEM, with the denisty of the mesh: 40x40 and 80x80. The example is tested 
in two forms using X-FEM: 
 a) the nodes are enriched using only Heaviside function with the meshes: 40x40; and 80x80; 
 b) the nodes are enriched using Heaviside function behaind crack tip and NT functions ahead 
the crack tip, with the meshes: 40x40; and 80x80, (see Fig. 4). 

The stress distributation near the tip of the centered crack is shwon in Fig. 9. All numerical 
results tend to the theoretical values. Also, it can be seen that stress in the Gauss points closest 
to the crack tip grows up, i.e. tends to the asymptotic value. It can be noticed that the influence 
of mesh density is larger than when including the NT functions. Hence, higher mesh density 
with H enrichment gives better results than the lower mesh density with H+NT enrichments. On 
the other hand, if we compare the models with the same mesh density, better results are 
obtained using H+NT enrichment. 

The numerical results for the stress intensity factor of the first mode are compared with the 
theoretical results. The theoretical values are obtained using the following equation: 

 ( )/ , /teor
IK F a b h b aσ π=  (19) 

The correction factor ( )/ , /F a b h b for the given geometry, ( )0.5, 0.5F , is taken from [7] and 

in this case it has the value ( )0.5, 0.5 1.9F ≈ . According to the applied loading and chosen 
correction factor, theoretical value of the stress intensity factor is:  

 7.52teor
IK Psi in=  (20) 

The results for the SIF shown in the Table 1, obtained by integration of J-integral and using 
J-EDI method, correspond to different integration domain cr  (see Fig 6a). The radius of thhe 
integration domain cr is defined as % of the length of the crack a .  

The results for the SIF are obtained using: standard FEM with 4-node discretization 
(FEM4), standard FEM with 8-node discretisation (FEM8), X-FEM with H enrichment 
(XFEM(H)) and X-FEM with H+NT enrichments (XFEM(H+NT)). In this example the same 
size of the elements are used in standard FEM as in the X-FEM. The difference is that the 
quarter of the rectangular plate with the central crack is used in the standard FEM, and half of 
the test model is used in the X-FEM. The results obtained using standard FEM and X-FEM are 
compared with the analytical value and are shown in Table 1. Comparison is given as 
Numerical/Analytical [%]. 
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(% )cr a  KI 
FEM4,40x40 

KI 
FEM8, 40x40 

KI 
XFEM(H), 40x40 

KI 
XFEM(H+NT), 40x40 

10 11.41 7.68 7.40 7.52 
15 11.61 7.65 7.52 7.55 
20 11.62 7.65 6.76 6.89 
25 10.41 7.40 7.51 7.56 
30 11.67 7.56 7.51 7.53 
35 11.69 7.60 7.50 7.51 
40 11.70 7.57 7.49 7.50 
Avg. vel. 11.44 7.59 7.39 7.44 
N/A % 52% 0.88% 1.73% 1.06% 

Table 1. Comparison of results for the SIFs obtained by FEM and X-FEM with the theoretical 
value 

 

Fig. 9. Stess field arround the crack tip - model 
(XFEM(H), 40x40). 

 

 

Fig. 10. Field of displacement normal to the 
crack sides, for the model with the central crack 

(X-FEM model). 

Stress field of the half of model, around the central crack, which is obtained using X-FEM, 
is shown in Fig. 9. The crack overlaps the elements edges, and there is no physical separation of 
the joint sides of elements. In this case, the discontinuity is modelled using the enrichment 
functions. It can be noticed that using the X-FEM the stress concentration is modelled at the 
place of the real crack tip.  Displacement field around the central crack obtained by the X-FEM 
is shown in Fig. 10 

5. Conclusion 

The essential idea of the X-FEM method is to add enrichment functions to the 
approximation that contains a discontinuous displacement field. The crack is represented as 
discontinuity in the displacements within the element. The X-FEM does not require projection 
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between mesh and crack geometry, and allows arbitrary crack direction within the finite 
element mesh.   

In this paper we demonstrated modelling of discontinuous crack fields within an existing 
finite element numerical algorithm. The methodology adopted for crack modelling belongs to 
the class of the extended finite element method (X-FEM), which is a particular case of the 
partition of unity method [3]. The finite element software PAK – FM&F [13] is used in this 
study, and the implementation for crack modelling within isotropic media is described. The 
crack is described by the position of the tip and level set of a vector valued mapping. Here,  the 
LS functions are used to determine values of NT functions. We have also modified the 
enrichment of the CT element. 

Numerical results, obtained by these modifications, are compared with the theoretical 
values, and good agreement is achieved. This study shows that the X-FEM can be incorporated 
within a standard finite element package. By solving suitable test examples we showed that 
relatively good agreement with analytical values is obtained for the SIFs, using the standard 
FEM with 8-node elements and X-FEM with 4-node elements.   
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