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Abstract 

Computational simulations have become an indispensable tool for solving complex problems in 
engineering and science. One of the new computational techniques are the meshless methods, 
covering several application fields in engineering. In this paper the Smoothed Particle 
Hydrodynamics (SPH) method and its implementation in the explicit finite element code LS-
DYNA is discussed. Its application and efficiency is shown with two practical engineering 
application examples. The first example describes the modeling of fuel sloshing in a reservoir, 
where different formulations, using mesh-based and meshless methods, are compared and 
evaluated according to experimental measurements. The second example describes the impact 
analysis of a cellular structure, where the influence of viscous fluid pore filler flow has been 
studied. The SPH method proved to become a reliable and efficient tool, especially for solving 
large scale and advanced engineering problems. 
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1. Introduction 

Despite the fact that mesh-based numerical methods are the primary computational 
methodology in engineering computational mechanics, they still have limited application 
efficiency in many complex problems (e.g. free surface problems, large deformations). The 
major drawbacks can be attributed to the use of mesh, since the entire formulation and its 
results are based and depend on the mesh and its quality [1, 2]. Therefore recent research 
activities have been focused on development of computational methods, able to avoid the mesh 
dependence (Fig. 1). This research resulted in development of meshfree methods, promising to 
be superior in regard to conventional mesh-based numerical methods in several engineering 
applications. One of the attractive meshless formulations is the Smoothed Particle 
Hydrodynamics (SPH), which is represented by a set of particles containing individual material 
properties and moving according to the general governing conservation equations. 
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Fig. 1. Solid finite element model (left) and equivalent SPH model (right). 

This paper covers the theoretical background of SPH, its implementation in the explicit 
finite element code LS-DYNA and two practical examples of engineering applications. The first 
example describes a fluid-structure interaction problem of fluid sloshing in a reservoir. 
Different modeling approaches and solving formulations (Lagrangian, Eulerian, ALE and SPH) 
were compared and evaluated for the fluid part of the problem using the explicit code LS-
DYNA. The computational results have also been compared to available experimental 
measurements of the sloshing problem. The second example analyses the behavior of light-
weight cellular materials with viscous fluid pore fillers to increase the energy absorption 
capabilities. These materials have been increasingly used as energy absorbing components and 
their development is valuable in modern engineering applications. The cellular structure has 
been modeled with the finite element method, while the fluid filler flow was modeled with the 
meshless SPH. Fully coupled fluid-structure interaction between the cellular structure base 
material and the fluid filler was also considered. 

2. Smoothed particle hydrodynamics method and its implementation in LS-DYNA 

The basic idea of meshless methods is to provide accurate, reliable and stable computational 
solutions for integral equations or partial differential equations with various boundary 
conditions and a set of arbitrary distributed particles without any mesh connectivity between 
them (Fig. 2). The meshless methods can be divided into three main groups: (i) methods based 
on strong formulations: are computationally efficient and completely meshless, but often 
unstable and less accurate; (ii) methods based on weak formulations (Element Free Galerkin – 
EFG, Meshless Local Petrov-Galerkin – MLPG, Point Interpolation Method – PIM) are very 
stable and accurate, but there is a need of a background mesh; and (iii) particle methods 
(Molecular Dynamics – MD, Monte Carlo – MC, Smoothed Particle Hydrodynamics – SPH) 
are similar to the methods based on weak formulations and are stable for arbitrary distributed 
nodes and excellently cope with large deformation, where the accuracy mostly depends on the 
smoothing function [1]. 
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Fig. 2. SPH model with a standard mesh in the background. 

The advantage of the particle meshless methods comparing to the conventional mesh-based 
methods are: (i) the analyzed domain is discretised with particles that are not connected with a 
mesh, allowing for simple and accurate solution at large deformations; (ii) the discretisation of 
complex geometries is less complicated; and (iii) the physical values and paths of the particles 
are easy to follow and evaluate, consequently it is also simple to determine the free surface of 
movable interfaces or deformable boundaries. 

In the Smoothed Particle Hydrodynamics method, the state of the system is represented by 
a set of particles (Fig. 3), which possess individual material properties and move according to 
the governing conservation equations. SPH as a meshfree, Lagrangian particle method, was 
developed by Lucy, Gingold and Monaghan, initially to simulate astrophysical problems [1-8]. 
Later the SPH was extensively studied and extended to dynamic response with material strength 
as well as dynamic fluid flows with large deformations. It has some special advantages over the 
traditional mesh-based numerical methods. The most significant is the adaptive nature of the 
SPH method, which is achieved at the very early stage of the field variable (i.e. density, 
velocity, energy) approximation that is performed at each time step based on a current local set 
of arbitrarily distributed particles. Because of the adaptive nature of the SPH approximation, the 
formulation of the SPH is not affected by the arbitrariness of the particle distribution. Therefore, 
it can handle problems with extremely large deformations very well. Another advantage of the 
SPH method is the combination of the Lagrangian formulation and particle approximation. 

 
Fig. 3. SPH model. 

Unlike the meshfree nodes in other meshfree methods, which are only used as interpolation 
points, the SPH particles also carry material properties, functioning as both approximation 
points and material components. These particles are capable of moving in space, carry all 
computed information, and thus form the computational frame for solving the partial 
differential equations describing the conservation laws. The numerical solution procedure of the 

SPH particle 
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particles 
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SPH formulation consists of the following steps [1]: (i) generation of the meshless numerical 
model, (ii) integral representation (kernel approximation), (iii) particle approximation, (iv) 
adaptation and (v) dynamic analysis. Basically, the SPH method consists of two key tasks. The 
first represents the integral representation and the second is the particle approximation. The 
concept of the integral representation of the function f (x), used in SPH method, is based on the 
following presumption 

 ( ) ( ) ( )' ' 'f f dδ= −∫x x x x x , (1) 

where ( )f x  is the function of a three-dimensional position vector x and ( )'δ −x x  is the Dirac 

delta function [1, 2, 9, 10]. From the equation (1) it is evident that any function ( )f x  can be 
written in an integral form. The Dirac delta function can be substituted with a smoothing 
function 

 ( ) ( ) ( )' ', 'f f W h d≈ −∫x x x x x  (2) 

where W is the smoothing function and h is the smoothing length determining the influence 
domain of the smoothing function. It should be noted that the integral form in eq. (2) is only an 
approximation with second order accuracy when the smoothing function is not equal to Dirac’s 
delta function. The smoothing function has to satisfy the following conditions: (i) normalization 
(unity) condition, (ii) Delta function property condition, (iii) compact condition and (iv) 
positivity condition [1]. Additionally, the smoothing function has to be symmetric, continuous 
and uniform, yet its value has to monotonically decrease with increasing the distance to the 
observed particle. 

The computational SPH model consists of a finite number of mass particles spread over 
certain space, which is achieved by introduction of the particle approximation. The continuous 
approximate integral form (eq. (2)) has to be transformed into a discretised form of particle 
summations in the influence domain (Fig. 4). 

Using the sum over particles for integral approximation is of crucial importance and 
ensures that the SPH method does not depend on any background mesh during the numerical 
integration, which is the advantage in comparison with some other meshless methods (e.g. 
EFG). The governing equations of mass, momentum and energy conservation can be written in 
the following form 
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where iσ  and jσ  are components of stress tensor at particle i and j, respectively, determined 
with the constitutive equation, and vij is the component of the relative velocity vector between 
particle i and particle j [1, 2, 8, 11]. 
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Fig. 4. Particle approximation (central particle i) within the influence area (S) of the smoothing 

function W [1]. 

Despite all described advantages, the SPH method has still to cope with some numerical 
difficulties, like particle inconsistency, inaccuracy at domain boundaries and instabilities at 
tensile stress state [3]. However, the SPH method accuracy and stability also depend on the 
particle number (particle density) within the influence domain and the time step of time 
integration scheme. In application, the principal potential advantage of the SPH method is that 
there is no need for connectivity between particles with a conventional mesh, hence avoiding 
element distortion problems at large deformations. In comparison with the Eulerian description, 
the SPH method offers higher efficiency in terms of modeling domain, since only the material 
domains have to be discretized and not also the areas through which the material might move 
during the simulation. However, the SPH method is relatively new in comparison with standard 
Lagrangian and Eulerian methods, still having some difficulties with stability, consistency and 
fulfilling the conservation equations [1, 4, 7, 8]. 

With recent improvement and development, the Smoothed Particle Hydrodynamics method 
definitely became a reliable tool providing adequate accurate and stable results and excellent 
adaptivity, achieving a high level for implementation in many commercial computational 
packages and application in several engineering areas. One of the engineering finite element 
codes which also include the SPH method is LS-DYNA [12, 13]. 

The LS-DYNA was primarily developed for solving structural dynamic problems with 
explicit time integration scheme. Through the years it became one of the leading computational 
codes for crash tests evaluation and it spreads from explicit to implicit time-integration, using 
different formulations of mesh-based as well as meshfree methods. The SPH method in LS-
DYNA is very efficient at high strain rate and large deformations problems. During the entire 
computational simulation it is important to know which particles interact with each other and 
which particles are within the influence domain, therefore the neighbor search is of crucial 
importance for the analysis. The influence domain (spherical or ellipsoidal shape) is defined by 
the radius of 2h [3]. The search of neighboring particles in a model with N particles requests to 
perform N-1 distance calculations for only one particle. This leads to N(N-1) calculations for the 
distances between all the particles, which consequently increases computational time. This can 
be overcome by application of methods for search of neighbor particles, similar to the methods 
being used in solving contact problems. One of the most effective methods is the bucket sort 
method, which is based on splitting the analyzed domain into several boxes of a given size (Fig. 
5). The neighbor search accounts only for particles in the same box and the neighboring boxes 

i 

W  
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regarding the influence domain. After a list of possible neighbors is known, the distances 
between them are computed. With the bucket sort technique it is possible to reduce the number 
of distance calculations (≈ N log N) which consequently enormously reduces the computational 
time and increases its efficiency [3, 8]. 

 
Fig. 5. Bucket sort and neighbor search [3]. 

Another difficulty that may appear using SPH at large deformations is the change of 
particle’s number in the influence area. If the smoothing length remains constant during the 
entire simulations, the number of particles in this area significantly depends on the type of 
loading (e.g. at compressive loading the number of particles increases, resulting in much longer 
computational times, at tensile loading the number of particles decreases, resulting in low 
accuracy and stability problems). Therefore, it is reasonable to use a variable smoothing length 
h, changing in time and space. Its advantage is to maintain approximate the same number of 
particles in the influence domain. The default equation for evaluation of the variable smoothing 
length is defined as  

 ( )1
3

dh hdiv
dt

= v  (6) 

where div(v) is the divergence of velocity. The smoothing length increases, if the distances 
between parts become larger (tensile loading) and decreases, if the distances between parts are 
getting smaller (compressive loading). However, the value of the smoothing length has to 
remain in certain limits to assure the numerical stability [3, 8]. 

3. First practical example: Simulation of fluid sloshing in a reservoir 

This example presents a new computational model for simulation of a fuel reservoir 
deformation under impact loading conditions, considering also the fuel motion. For this purpose 
different methods describing the fluid motion were evaluated using a simplified reservoir 
problem, analyzed with the explicit dynamic code LS-DYNA [13]. Computational results were 
then compared with previously published experimental observations [14]. 

3.1 Problem definition 

The analyzed reservoir consists of a closed PMMA container box (Fig. 6) with 30 mm wall 
thickness, which is 60% filled with water and 40% with air, and is subjected to gravitation 
(negative z direction) and longitudinal time-dependent acceleration (negative x direction) with a 
peak acceleration of approximately 30 g [14]. 

2h 



M. Vesenjak and Z. Ren: Application Aspects of the Meshless SPH Method 

 

80

 
Fig. 6. Dimensions of reservoir and initial conditions. 

The box was modeled with the four-noded Belytschko-Tsay shell elements with three 
integration points through the thickness. The elastic material model is used for the box 
container with material data corresponding to the PMMA material (ρ = 1180 kg/m3, E = 3000 
MPa and ν = 0.35). 

3.2 Domain descriptions and solution techniques for the fluid 

The modeling of the fluid domain and its interaction with structure can be in LS-DYNA 
analyzed using different types of the domain description and solution techniques. Four of them 
have been evaluated in this example in order to simulate the fluid motion in the reservoir: (i) 
mesh-based Lagrangian formulation, (ii) mesh-based Eulerian formulation (using the mesh 
smoothing and advection approximations [15, 16]), mesh-based Arbitrary Lagrange-Eulerian 
formulation – ALE (using the mesh smoothing and advection approximations [15, 16]) and the 
meshless Smoothed Particle Hydrodynamics method. 

Solid finite elements and particle elements were used for the water and air discretisation in 
the observed problem, depending on the applied method. A special material model was used for 
water modeling (ρ = 1000 kg/m3 at 293 K) and air (ρ = 1 kg/m3 at 293 K). The air was 
considered only in Eulerian and ALE model. A penalty based interaction between fluid and 
structure was applied in all computational models. Explicit dynamic analyses were carried out 
by using all four described techniques. The models have been solved with LS-DYNA Linux 
Version 970. The computational time frame was set to 80 ms and the smallest time step of the 
simulation was automatically adjusted by the code to ensure the stability and convergence of 
results. 

3.3 Computational results and conclusions 

The motion of the fluid during the acceleration was recorded with high-speed camera during the 
experimental testing [14]. The recorded fluid free surface shape at the time instance t = 38 ms 
(dotted line) was compared with results of the fluid free surface shape obtained with different 
computational models, Fig. 7. It is obvious that the Lagrangian and SPH models are only good 
for approximating the fluid motion at the right side wall, since in reality the fluid would not 
retain the form of the container which is the case observed in simulations at the left side wall. 
However, this observation must be considered in view of required computational results. In case 
where only the impulse of the fluid motion towards the reservoir wall is needed, the 
deformations and deflections on the opposite side could be neglected, until they do not 
influence the required results. Eulerian and ALE formulations performed much better in 
describing the form of the fluid free surface. However, this is only achieved by substantial 
increase in calculation times, which is not always acceptable. It is important to observe that by 
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using the Lagrangian formulation results in significant element distortion and consequently 
large computational errors. This once again confirms the fact that the Lagrangian formulation is 
unsuitable for modeling large deformations. 

 
Fig. 7. The fluid free surface shape at the time of t = 38 ms: a) Lagrangian model; b) ALE 

model; c) Eulerian model; d) SPH model. 

The fluid pressure acting on the reservoir surface at Point 1 (Fig. 6) due to the acceleration 
was also measured during the experimental testing and evaluated with different modeling 
approaches in LS-DYNA. The computational results have been determined by two different 
approaches: (i) in the Lagrangian and SPH model the pressure at Point 1 (Fig. 6) was measured 
with contact forces which appeared at the observed point [17] and (ii) for the Eulerian and ALE 
models the pressure was determined by the leakage control, i.e. by determining the force that is 
needed for establishing equilibrium in every observed element on the boundary [18]. The 
comparison of the pressure at Point 1 for the computational and experimental results is shown 
in Fig. 8. The best agreement with the experimental results were achieved by using the 
Lagrangian formulation and SPH method, whereby the simulation with the Lagrangian model at 
some points failed due to large element deformation which are too distorted. The SPH 
formulation provided excellent results, especially becase this formulation results in fast and 
uncomplicated analyses, since the mesh consists only of SPH particles. The pressure drop, 
observed by the Eulerian and ALE formulations, is attributed to the air which obviously 
dampened the fluid motion in the reservoir and consequently reduced the pressure measured 
during the simulation.  

 
Fig. 8. Comparison of the pressure time-variation at Point 1 (Fig. 6). 
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It was also observed that the Lagrangian and SPH solution techniques are the most efficient 
considering the computational time. Computationally, the most extensive simulations have been 
observed using the Eulerian and ALE formulations, which results in use of the performed 
approximations during the solution procedure in order to reduce or to overcome the motion and 
deformation of the mesh. 

Computational simulations have shown that the fluid motion can be properly described by 
applying different alternative formulations in the LS-DYNA. The fluid motion in regard to the 
fluid free surface prediction can be best described with the ALE and Eulerian methods, while 
the Lagrangian and SPH models provide better predictions of fluid forces acting on the 
reservoir structure. However, the main advantage of using the SPH model is in the short pre-
processing and computational time. Additionally, these two models are also very economical 
and suitable for use in simulations of large scale and advanced engineering problems.  

4. Second practical example: Pore filler flow through the cellular structure 

Cellular structures have an attractive combination of physical and mechanical properties and are 
being increasingly used in modern engineering applications [19, 20]. Research of their behavior 
under quasi-static and high strain rates is valuable for engineering applications such as those 
related to impact and energy absorption problems. A logical solution to increase the stiffness 
and energy absorption of open-cell cellular materials is by filling the cellular structure with 
viscous fluid. The fluid offers certain level of flow resistance during collapse of cellular 
structure due to its viscosity, which in turn increases the structure stiffness. Preliminary 
investigations have shown that in combination with high strain-rate loading this results in 
substantial increase of energy absorption [21, 22]. This example shows the results of parametric 
computational simulations of cellular structures with open-cell morphology under impact 
loading conditions accounting for fluid filler flow, modeled with the meshless SPH method by 
using the finite element code LS-DYNA [13, 18]. 

4.1 Computational model 

The open-cell cellular material with a regular structure (Fig. 9) was modeled with three relative 
densities ρ/ρ0 = 0.37, 0.27 and 0.16. This corresponds to the basic geometry dimensions hole 
diameter of d = 3 mm and the intercellular wall thickness of c = 1.5, 1.0 and 0.5 mm. 

 
Fig. 9. Analyzed open-cell cellular structure. 
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The polymer FullCure M730 was used as the base material with the following material 
properties: E = 2323 MPa, ν = 0.3, σy (tensile) = 49 MPa and σy (compressive) = 91 MPa. The 
strain rate effects were also considered by implementing the Cowper-Symonds constitutive 
relation [13, 22-25]. The cellular structure base material was discretised with 8-node fully 
integrated quadratic solid elements. With additional parametric analyses, the proper mesh 
density (l ≈ 0.1 mm) and time step size (Δt ≈ 0.04 µs) have been determined to assure adequate 
precision of computational results [22, 26]. Water (ρ = 1000 kg/m3 at 293 K) was chosen as a 
viscous fluid filler, which was modeled with the SPH particles. The relationship between the 
change of volume and pressure in this study has been represented with the Mie-Grüneisen 
equation of state [13, 22]. An optimal distance between the SPH particles (l ≈ 0.112 mm) and 
mass of single particles (mi ≈ 1.42 μg) has been determined with separate parametric 
simulations [22]. 

Fully coupled fluid-structure interaction between the cellular structure’s base material and 
the fluid filler was considered. The upper surface of the cellular structure has been subjected to 
a uniaxial compressive impact loading, with displacement controlled compressive load at a 
strain rate of 1000 s-1. Symmetry boundary conditions have been applied due to regular 
geometry of the structure [22, 27]. A single LS-DYNA analysis run of the model with 16 cells 
lasted approximately 12 hours on a PC-cluster of 4 units with Intel Pentium IV 3200 MHz 
processors and 1 GB RAM each. 

Initial parametric simulations of the liquid filler outflow have been also performed with the 
ANSYS CFX [28] code in order to evaluate and validate the SPH fluid models. The comparison 
between the computational results obtained with the LS-DYNA code using the SPH model and 
the ANSYS CFX code using the finite volume method. Very good agreement of results from 
both codes can be observed, which in turn validates suitability of the SPH model to accurately 
simulate the filler flow through the cellular material [22, 26]. 

4.2 Computational results and conclusion 

Figure 10 shows the deformation of the cellular structure with liquid filler outflow under 
impact loading at different time sequences. 

 

ε = 0.1 ms 

 

ε = 0.3 ms 

 

ε = 0.2 ms 

 

ε = 0.4 ms 
 

Fig. 10. Behavior of the cellular structure with fluid filler under impact loading. 
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Figure 11 illustrates the influence of the relative density and the filler. As already observed 
in the previous investigations, the stiffness increases with increasing the relative density [22]. 
Computational simulations have shown that the filler influences more the behavior of cellular 
structure with a higher relative density than the cellular structure with a lower relative density. 
The reason for this effect can be explained by smaller pore sizes in a cellular structure with high 
relative density, which leads to higher resistance during the filler outflow, which consequently 
contributes to the increase of cellular structure macroscopic stiffness and its energy absorption 
capacity. Further computational simulation considering different filler viscosities have shown 
that the increase of the filler's viscosity results in increase of cellular structure macroscopic 
stiffness and higher energy absorption capacity. 

 
Fig. 11. Influence of the pore filler. 

The computational simulations of cellular structures with fluid fillers have shown the 
practical applicability of the SPH method for solving engineering problems. The conducted 
simulations have shown that the fluid filler influence is more pronounced in cellular structure 
with higher relative density than in cellular structures with lower relative density. With further 
computational simulations it was also determined that the increase of the filler viscosity results 
in increase of cellular structure stiffness which contributes to higher capability of deformational 
energy absorption. 

5. Conclusions 

The paper describes one of the new computational techniques, the meshless Smoothed Particle 
Hydrodynamics (SPH) method, and its implementation in the explicit code LS-DYNA. 

The application of the SPH method was presented on two practical engineering examples. 
The first example described the modeling of a sloshing problem in a reservoir, where the fluid 
has been analyzed using different numerical techniques. The computational results were 
compared to and validated with the experimental measurements. The second example presented 
the pore filler flow through the open network of cellular structure with the purpose to study its 
influence on capability of the impact energy absorption, where fully coupled fluid-structure 
interaction between the cellular structure base material and the fluid filler was considered. 

Although the SPH method is relatively new computational method and still suffers from 
some numerical difficulties, its implementation into the LS-DYNA code proved to be very 
successful. The SPH method thus proves to be a reliable and efficient tool, providing adequate 
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accurate and stabile results and excellent adaptivity, especially for solving large scale and 
advanced engineering problems. 
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