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Abstract 

Numerical models based on the penalty and Lagrange multiplier method for contact problems 
with friction are compared in this paper. The presented approaches, with use of Coulomb’s 
frictional law, elasto-plastic tangential slip decomposition, and consistent linearization, result in 
quadratic rates of convergence with the Newton-Raphson iteration. A standard contact search 
algorithm independent of the formulation is used for the detection of contact between 
previously separate meshes and for the application of displacement constraints where contact 
was identified. 

The models have been implemented into a version of the computational finite element 
program PAK [3]. Numerical examples that illustrate performance of the described procedures 
are given. 
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1. Introduction  

Contact mechanics has its application in many engineering problems. The interaction between 
soil and foundations in civil engineering, general bearing problems as well as bolt and screw 
joints in mechanical engineering, are examples of small deformation contact problems. On 
contrary, the impact of cars, car tire-road interaction and metal forming are large deformation 
contact problems. Here, nonlinear material laws, damage, dynamic fatigue, friction, wear, etc. 
must be taken into account to design optimal components and assemblies.  

Effective application of finite element contact solvers demands a high degree of experience 
since the general robustness and stability cannot be guaranteed. For this reason the development 
of more efficient, fast and stabile finite element contact discretizations is still a hot topic, 
especially due to the fact that engineering applications become more and more complex. 

The aim of this paper is to provide a  framework for contact problems with friction, based 
on the penalty [4-8] and the Lagrange multiplier method [1,2]. The Lagrange multiplier method 
provides exact solutions but have additional degrees of freedom. The penalty formulation is 
purely geometrically based and therefore no additional degrees of freedom need be activated or 
inactivated, but the solution is dependent on the introduced penalty factor. Numerical examples 
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are shown to demonstrate comparison of the presented algorithms when applied to contact 
problems. 

2. Formulation of the multi-body frictional contact problem 

A contact between two deformable bodies is considered. As the configuration of two bodies 
coming into the contact is not a priori known, the contact represents a nonlinear problem even 
when the continuum behaves as a linear elastic material.  

2.1 Contact kinematics 

Two bodies are considered: (1)B  and (2)B , Fig. 1. We will denote the contact surface ( )i
CΓ  as the 

part of the body (i)B  such that all material points where contact may occur at any time t are 
included.  

Using a standard notation in contact mechanics we will assign to each pair of contact 
surfaces involved in the problem as slave and master surfaces. In particular, let (1)

CΓ  is taken to 
be the slave surface and (2)

CΓ  is the master surface. The condition which must be satisfied is that 
any slave particle cannot penetrate the master surface. 

Let x  be the projection point of the current position of the slave node kx  onto current 
position of the master surface (2)

CΓ , defined as 
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where 1, 2α =  and 1 2( , )α ξ ξa  are the tangent covariant base vectors at the point.  

The definition of the projection point allows us to define the distance between any slave 
node and the master surface. The normal gap or the penetration Ng  for slave node k is defined 
as the distance between current positions of this node with respect to the master surface (2)

CΓ  

 ( )k
Ng = − ⋅x x n  (2) 

where n  refers to the normal to the master face (2)
CΓ at point x  (Fig. 1). Normal to be defined 

using tangent vectors at the point x  is 
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Fig. 1. Geometry of a 3D node-to-segment contact element. 

This gap (2) gives the non-penetration conditions as follows:  

 0     perfect contact;    0            no contact;    0          penetrationN N Ng g g= > <  (4) 

If the analyzed problem is frictionless, the function (4) completely defines the contact 
kinematics. However, if the friction is modeled, tangential relative displacement must be 
introduced. In this case the sliding path of the node kx  over the contact surface (2)

CΓ  is 
described by total tangential relative displacement as 

 
0 0 0

t t t

T T
t t t

g dt dt a dtα α β
α αβξ ξ ξ= = =∫ ∫ ∫g a& & &&  (5) 

within a time interval from t0 to t. 

The time derivatives of parameter αξ  in equation (6) can be computed from the relation 
(1), [8]. In the geometrically linear case we obtain the following result: 

 k
Ta gβ

βα α αξ ⎡ ⎤= − ⋅ =⎣ ⎦x x a& && &  (6) 

where aαβ α β= ⋅a a  is the metric tensor at point x  of the master surface (2)
CΓ . From the 

equations (5) and (6) we can deduce the relative tangential velocity at the contact point 

 T Tgα α
α αξ= =g a a&& &  (7) 

2.2 Constitutive equations for contact interface 

For mathematical and computational modeling the surface characteristics have to be put into the 
constitutive interface constraint. 

A contact stress vector t  with respect to the current contact interface (2)
CΓ  can be split into 

a normal and tangential parts, 

 N T N Tt t α
α= + = +t t t n a  (8) 
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where αa  is the contravariant base vector. The stress acts on both surfaces obeying the action-
reaction principle: 1 2( , )ξ ξ = −t t  at the contact point x . The tangential stress Tt α  is equal to 
zero in the case of frictionless contact. When the contact occurs, one has the condition 0Nt < . 
If there is no penetration between the bodies, then the relations 0Ng >  and 0Nt =  hold. This 
leads to the statements 

 0,      0,      0N N N Ng t t g≥ ≤ =  (9) 

which are known as Kuhn-Tucker conditions. 

In the tangential direction a distinction is made between stick and slip. As long as no 
sliding between to bodies occurs, the tangential relative velocity is equal to zero. If the velocity 
is zero, also the tangential relative displacement (5) is zero. This state is called the stick case 
with the following restriction: 

   T T= ⇔ =g 0 g 0&  (10) 

A relative movement between two bodies occurs if the static friction resistance is overcome 
and the loading is large enough such that the sliding process can be kept. Therefore, the relative 
sliding velocity, with respect to the sliding displacement, is in the opposite direction to the 
friction force. With this, the tangential stress vector is restricted as follows: 

 
sl

sl T
T N sl

T

g
t α

α μ= − t
g
&

&
 (11) 

where μ  is the friction coefficient. In the simplest form of Coulomb’s law (11), μ  is constant 
and no distinction is made between static and sliding friction.  

After the introduction of the stick and slip constraints, one needs an indicator to decide 
whether stick or slip actually takes place. Therefore, an indicator function 

 -T Nf tμ= t  (12) 

is evaluated, which respect to the Coulomb’s model for frictional interface law. In equation (12) 
the first term is =T T Tt a tαβ

α βt . Then the following contact states can be distinguished: 
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Using the penalty method for normal stress, the constitutive equation can be formulated as 

 N N Nt gε=  (14) 

where Nε  is the normal penalty parameter. The tangential part is different for the stick and for 
the slip cases. For the stick, a simple linear constitutive model can be used to describe the 
tangential stress 

 stick
T T Tt gα αε=  (15) 

where Tε  is  the tangential penalty parameter. For the slip, the tangential stress is given by the 
constitutive law for frictional sliding (11). A backward Euler integration scheme and return 
mapping strategy are employed to integrate the friction equations (12). If a state of stick is 
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assumed, the trial values of the tangential contact pressure vector Tt α , and the indicator function 
f  at load step n+1 can be expressed in terms of their values at load step n, as follows 

 1   1  1
trial
T n T n T T n T n T nt t g t a β

α α α α αβε ε ξ+ + += + Δ = + Δ  (16) 

 1 1 1
trial trial

Tn Tn Nnf tμ+ + += −t  (17) 

The return mapping is completed by 
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 1
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The penalty method can be illustrated as a group of linear elastic springs that force the 
body back to the contact surface when overlapping or sliding occurs.  

2.3 Equilibrium equation for bodies in contact 

When two bodies at time t are in contact, the principle of virtual work can be written as (for a 
detailed legend of the symbols see [8]) 

 ( )
2

1
: 0c

V V S
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where cC  is “contact contribution”. For the Lagrange multiplier method for contact with 
friction, the contact contribution are formulated for stick as 

 ( )
C

c N N T T
S

C g dAλ δ δ= + ⋅∫ λ g  (21) 

and for case of sliding it is 

 ( )
C

c N N T T
S

C g dAλ δ δ= + ⋅∫ t g  (22) 

where Ngδ  and Tδ g  are the variations of gap and tangential displacement; Nλ  and Tλ  are 
normal and tangential Lagrange multipliers and Tt  is tangential stress vector which is 
determined from the constitutive law for frictional slip. Note that the Lagrange multiplier Nλ  
can be identified as the contact stress Nt . 

Contact contribution for the penalty method are formulated as follow  

 ( )
C

c N N N T T
S

C g g dAε δ δ= + ⋅∫ t g  (23) 
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3. Finite element formulation 

3.1 Finite element formulation of frictional contact 

The virtual work of boundary nodes which are in contact is formulated for a slave node k: 

 k T
c N N T T N k N T k T N k N T k c cC F g t A g A t A g t A α

αδ δ δ δ δ δξ δ= + = + = + =F g t g u F  (24) 

Here, the quantities are: N N kF t A=  the normal force; T T kF t Aα α=  the tangential force [8]; kA  
the area of the contact element; cF  the contact force vector. 

For the penalty method we define a displacement vector for the five-node contact elements 
(k, 1, 2, 3, 4)  

 { }1 2 3 4
T k
cδ δ δ δ δ δ=u u u u u u  (25) 

and the vectors 
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Thus, the contact force vector can be expressed by (26) for the slave node k which is in contact, 
by 

 c N TF F α
α⎡ ⎤= +⎣ ⎦F N D  (27) 

The contact forces NF  and TF α  in (27) can be obtained by multiplying the constitutive 
interfaces laws (15), (16) and (18) by the area of the contact element kA . 

3.3 Algorithm for frictional contact 

In order to apply Newton’s method for the solution of nonlinear system of the equilibrium 
equation (20), a linearization of the contact contributions is necessary. The linearization of the 
equation (25), for the infinitesimal theory, gives 

 T
N N T c c ct g t α

αδ δξ δΔ + Δ ⋅ = Δu K u  (28) 

where cK  is the contact stiffness matrix of contact element. It is assumed that the contact area 

kA  is not changing significantly so the area kA  is contained within the penalty parameters. The 
tangent stiffness matrix for the normal contact is 

 T
N Nε=K NN  (29) 

Analogous to (29) we obtain the symmetric tangent stiffness matrix for stick condition, 

 stick T
T T a α β

αβε=K D D  (30) 

For the slip condition, the tangent stiffness matrix is  
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The second term in the tangent matrix is non-symmetric. This is because the Coulomb’s of 
friction can be viewed as a non-associative constitutive equation. 

Frictional contact algorithm using penalty method is shown in Table 1.  
LOOP over all contact segment k 
 (check for contact (2))  IF 0Ng ≤  THEN 

  (the first iteration) IF i=1  THEN 
       set all active nodes to state stick, 

       1Tn+t  (15), compute matrix stick
TK  (30) 

    ELSE 
       Compute trial state:  1

trial
T nt α +  (16) and 1

trial
Tnf +  (17) 

       IF  1 0trial
Tnf + ≤  THEN 

          1  1
trial

T n T nt tα α+ +=  , compute matrix stick
TK  (30) 

          GO TO (a) 
      ELSE 

            1 1  1
trial

T n Nn T nt t nα αμ+ + +=  , compute matrix slip
TK  (31) 

      ENDIF 
    ENDIF 
      ENDIF 
(a)   END LOOP  

Table 1. Frictional contact algorithm using the penalty method 

The linearization of the equations (21) and (22) gives the stiffness matrix for Lagrange 
multiplier method 

 T
N N T c ct g t α

α λδ δξ δΔ + Δ ⋅ = Δu K u  (32) 

Detailed description of the Lagrange multiplier method contact stiffness matrix is given in 
reference [1]. 

Finally, we obtain the global nonlinear finite element equation for the penalty method as 

 [ ] ( )c ct+ + = −MU K K U F F&&  (33) 

and for Lagrange multiplier method , 
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M K U FK F
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 (34) 

where: M is mass matrix; K  is stiffness matrix and vector ( )tF  corresponds to an external 
force. The contact force vector for the 3D contact elements for the Lagrange multiplier method 
is 

 [ ]1 2 3 4
T H H H Hλ =F λ λ λ λ λ   (35) 
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4. Examples 

4.1 Compression of a cylinder 

Compression of a cylinder between two parallel plates is considered. Initial dimensions of 
the cylinder are: radius 6.35r mm= , height 2h r= . Elasto-plastic material model with 
following yield curve is used 

 ( )( )0 0 1 pe
y y y y pe H eδσ σ σ σ δ−

∞= + − − +  (36) 

Material constants are: 210.40 GPaE = , 0.3118ν = , 164.206 GPaK = , 80.1938 GPaG = , 
0 0.45 GPayσ = ,  0.75 GPayσ ∞ = , 16.96 GPaδ = , 0.12924 GPaH = . Due to symmetry, 

one-eight of the cylinder is modeled, with symmetry conditions for nodes lying in coordinate 
planes. It is assumed that there is no friction, and the solutions are obtained using contact 
element based on the Lagrange multiplier (see [1]) and penalty methods.  
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Fig. 2. Force – displacement relationship. 

Deformation of the cylinder is increased by prescribed displacement at the plate. Solution 
is obtained by 25 steps of displacement increments equal to 0.2 mm; and by full-Newton 
iteration method with line search. The three different values for normal penalty parameter are 
considered: a) 10N Eε = ⋅ ; b) 100N Eε = ⋅  and c) 1000N Eε = ⋅ . The force - displacement 
diagram is shown in Fig. 2. In this example, a penalty number which is chosen have to be at 
least 100 times larger then E, for good approximation of the normal force. It is obvious that the 
value of the penalty parameter has the effect on accuracy of the results in contact problems. 
Initial and deformed configurations at the final step are shown in Fig. 3. 

     
Fig. 3. Initial and final deformed configurations. 
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4.2 The contact between an elastic ring and a foundation 

An elastic ring consists of an outer and inner rings of the same thickness 5 t UL=  with 
different materials. The geometry and material parameters are given in Fig. 4. A total 
downward displacement of 40 u UL=  is applied to the ring at its top end in 80 steps. The 
computation is performed for both Lagrange and penalty formulations ( 5

N 10  ULε = ).  
 

     
Fig. 4. The elastic ring with the foundation. 

  

  
Fig. 5. Vertical stress field and deformation configuration, left panel: the Lagrange 

multiplier formulation; right panel: the penalty formulation 
(upper figures – step 44; lower figures – step 80). 

Inner ring: 
E=105 UF/UL2 
ν=0.3 

Outer ring: 
E=103 UF/UL2 
ν=0.3 

Foundation: 
E=108 UF/UL2 
ν=0.0 
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The foundation consists of 52x10 four-node elements. The ring is discretized with 64x2 
elements. In the final state, the ring has a lift off in the middle. The Lagrange multiplier and the 
penalty formulations show good agreement of results. Vertical stress field for both formulations 
are shown in Fig. 5, for step 44 step 80. 

5. Conclusions 

In the paper a model for three-dimensional contact problem with friction based on the penalty 
and Lagrange multiplier method was described. Due to the intrinsic similarity between friction 
and the classical elasto-plasticity [9,10], the constitutive model for friction can be constructed 
following the same formalism as in classical elasto-plasticity. Using the penalty method, the 
computation time is smaller but the results are strongly dependent on the value of the penalty 
factor. The Lagrange multiplier method leads to exact solution but with more iterations and 
significant increase of the number of degrees of freedom, i.e. equations, and thus reduces 
computational efficiency. The numerical examples indicate a possibility of easy comparative 
simultaneous use of both procedures in the analysis of finite deformation problems within the 
same computer code. 
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